Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
Crit Rev Biotechnol ; : 1-20, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38817002

ABSTRACT

Second generation biorefineries play an important role in the production of renewable energy and fuels, utilizing forest and agro-industrial residues and by-products as raw materials. The integration of novel bioproducts, such as: xylitol, ß-carotene, xylooligosaccharides, and biopigments into the biorefinery's portfolio can offer economic benefits in the valorization of lignocellulosic materials, particularly cellulosic and hemicellulosic fractions. Fungal biopigments, known for their additional antioxidant and antimicrobial properties, are appealing to consumers and can have applications in various industrial sectors, including food and pharmaceuticals. The use of lignocellulosic materials as carbon and nutrient sources for the growth medium helps to reduce production costs, increasing the competitiveness of fungal biopigments in the market. In addition, the implementation of biopigment production in biorefineries allows the utilization of underutilized fractions, such as hemicellulose, for value-added bioproducts. This study deals with the potential of fungal biopigments production in second generation biorefineries in order to diversify the produced biomolecules together with energy generation. A comprehensive and critical review of the recent literature on this topic has been conducted, covering the major possible raw materials, general aspects of second generation biorefineries, the fungal biopigments and their potential for incorporation into biorefineries.

2.
Microbiol Mol Biol Rev ; 88(1): e0002723, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38372526

ABSTRACT

SUMMARYThe endoplasmic reticulum (ER) is one of the most extensive organelles in eukaryotic cells. It performs crucial roles in protein and lipid synthesis and Ca2+ homeostasis. Most information on ER types, functions, organization, and domains comes from studies in uninucleate animal, plant, and yeast cells. In contrast, there is limited information on the multinucleate cells of filamentous fungi, i.e., hyphae. We provide an analytical review of existing literature to categorize different types of ER described in filamentous fungi while emphasizing the research techniques and markers used. Additionally, we identify the knowledge gaps that need to be resolved better to understand the structure-function correlation of ER in filamentous fungi. Finally, advanced technologies that can provide breakthroughs in understanding the ER in filamentous fungi are discussed.


Subject(s)
Fungal Proteins , Fungi , Animals , Fungal Proteins/metabolism , Fungi/metabolism , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae/metabolism , Hyphae
3.
Arch Microbiol ; 206(3): 123, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407586

ABSTRACT

In this comprehensive study, we delved into the capabilities of five fungal strains: Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium glabrum, and Penicillium rubens (the latter isolated from heavy crude oil [HCO]) in metabolizing HCO as a carbon source. Employing a meticulously designed experimental approach, conducted at room temperature (25 °C), we systematically explored various culture media and incubation periods. The results unveiled the exceptional resilience of all these fungi to HCO, with A. flavus standing out as the top performer. Notably, A. flavus exhibited robust growth, achieving a remarkable 59.1% expansion across the medium's surface, accompanied by distinctive macroscopic traits, including a cottony appearance and vibrant coloration. In an effort to further scrutinize its biotransformation prowess, we conducted experiments in a liquid medium, quantifying CO2 production through gas chromatography, which reached its zenith at day 30, signifying substantial bioconversion with a 38% increase in CO2 production. Additionally, we monitored changes in surface tension using the Du Noüy ring method, revealing a reduction in aqueous phase tension from 72.3 to 47 mN/m. This compelling evidence confirms that A. flavus adeptly metabolizes HCO to fuel its growth, while concurrently generating valuable biosurfactants. These findings underscore the immense biotechnological potential of A. flavus in addressing challenges related to HCO, thereby offering promising prospects for bioremediation and crude oil bioupgrading endeavors.


Subject(s)
Aspergillus flavus , Carbon Dioxide , Biodegradation, Environmental , Aspergillus niger , Biotechnology
4.
Microbiol Spectr ; 12(1): e0213923, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38088545

ABSTRACT

IMPORTANCE: Sexual reproduction allows eukaryotic organisms to produce genetically diverse progeny. This process relies on meiosis, a reductional division that enables ploidy maintenance and genetic recombination. Meiotic differentiation also involves the renewal of cell functioning to promote offspring rejuvenation. Research in the model fungus Podospora anserina has shown that this process involves a complex regulation of the function and dynamics of different organelles, including peroxisomes. These organelles are critical for meiosis induction and play further significant roles in meiotic development. Here we show that PEX13-a key constituent of the protein conduit through which the proteins defining peroxisome function reach into the organelle-is subject to a developmental regulation that almost certainly involves its selective ubiquitination-dependent removal and that modulates its abundance throughout meiotic development and at different sexual differentiation processes. Our results show that meiotic development involves a complex developmental regulation of the peroxisome protein translocation system.


Subject(s)
Peroxisomes , Podospora , Peroxisomes/metabolism , Podospora/genetics , Podospora/metabolism , Fungal Proteins/metabolism , Protein Transport , Meiosis
5.
Front Med (Lausanne) ; 10: 1268324, 2023.
Article in English | MEDLINE | ID: mdl-38076229

ABSTRACT

Background: Onychomycoses are fungal infections that can be seen in any component of the nail unit, including the matrix, bed, and plate, and are caused by dermatophyte fungi, non-dermatophyte fungi, and yeasts. This disease affects approximately 1 to 8% of the general population and occurs in approximately 19 to 51.9% of the patients on hemodialysis. The high incidence of onychomycosis in patients on hemodialysis is associated, mainly, with immunologic deficits and histological changes caused by uremia. Methods: Adult patients of the São Francisco University Hospital Hemodialysis Center were included. The following characteristics were evaluated: age, sex, body mass index, comorbidity, and household location. All patients were clinically evaluated and those with suspected onychomycosis had subungual debris of the affected nail plate collected for the direct mycological examination and fungal culture. The onychomycosis severity for those patients with a positive result in the fungal culture examination was evaluated using the Onychomycosis Severity Index system. Results: The study included 151 patients, and 70 out of the 151 patients (46.4%) showed nail alteration, and among them, 31 out of the 70 patients (44.3%) had the onychomycosis diagnosis confirmed by direct mycological examination. The pathogens observed in the patients were Trichophyton rubrum [8 out of 31 (25.8%)], Trichophyton mentagrophytes [7 out of 31 (22.6%)], Scytalidium spp. [6 out of 31 (19.4%)], Candida spp. [2 out of 31 (6.45%)], Rhodotorula spp. [1 out of 31 (3.2%)], Candida albicans [1/31 (3.2%)], Penicillium marneffei [1 out of 31 (3.22%)], and T. rubrum and Rhodotorula spp. [1 out of 31 (3.2%)]. Three participants presented negative results in the culture examination, and one did not allow the collection of material for the examination. The nail involvement severity score for the majority of them was severe [23 out of 27 (85.2%)], and only 1 out of the 27 (3.7%) and 3 out of the 27 (1.1%) patients presented moderate and mild scores, respectively. The distal subungual onychomycosis occurred in 12 out of 27 (44.4%) patients, a mixed pattern occurred in 14 out of 27 (51.9%) patients, and, white superficial occurred in only 1 out of 27 (3.7%) patients. In the bivariate analysis, a higher risk of onychomycosis was associated with the male sex [23/31 (74.2%) vs. 56/120 (46.7%); OR = 3.286 (95%CI = 1.362 to 7.928)] and obesity [8/31 (25.8%) vs. 12/120 (10.0%); OR = 3.130 (95%CI = 1.150 to 8.521)]. Patients with diabetes mellitus were more susceptible to onychomycosis attacks (p-value = 0.049; 16 out of 31 (51.6%) vs. 40 out of 120 (33.3%); however, OR was 2.133 (95%CI = 0.959 to 4.648). The patients with onychomycosis were older but without a significant difference between the groups (p-value = 0.073; 66 years old vs. 58 years old). The multivariable model using the logistic regression (backward model) confirmed our results and was able to predict (81.5%) the onychomycosis-positive diagnosis (chi-square = 27.73; p-value <0.001). The age [OR = 1.036; 95%CI = 1.004 to 1.069], male sex [OR = 5.746; 95%CI = 2.057 to 16.046], and presence of obesity [OR = 4.800; 95%CI = 1.435 to 16.055] were positive and significant in predicting the onychomycosis-positive diagnosis. Conclusion: In our study, onychomycosis in patients on hemodialysis was associated with a great variety of microorganisms, mainly Trichophyton species. The nail involvement severity score for the majority of patients was severe, and distal subungual onychomycosis and mixed pattern onychomycosis were the most prevalent clinical types. The main risk factors associated with onychomycosis were male sex, older age, and the presence of obesity.

6.
Nat Prod Res ; : 1-9, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37933528

ABSTRACT

The present study aimed to investigate the antifungal activity of citronellal (CIT) against clinical isolates of T. rubrum and to show the possible mechanism of action involved. The antifungal potential of CIT was evaluated from the Minimum Inhibitory Concentration (MIC), Minimum Fungicide Concentration (MFC) and assays with ergosterol and sorbitol, to elucidate the possible mechanisms of action, and molecular docking. MIC and MFC values ranged from 4 to 512 µg/mL. Regarding the mechanism of action, the monoterpene demonstrated interaction with fungal ergosterol. In addition, it is possible to observe that CIT acts on crucial enzymes for the biosynthesis and maintenance of the fungal cell membrane, due to the ability of the monoterpene to bind to CYP51. The results obtained in this research demonstrate that CIT has the potential to become, in the future, a product for the treatment of dermatophytosis.

7.
Plants (Basel) ; 12(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37836135

ABSTRACT

The use of phosphate-solubilizing fungi in coffee cultivation is an alternative to the use of traditional fertilizers. The objective of this study was to analyze the mechanisms involved in the phosphorus solubilization of fungal strains and to evaluate the effect of a phosphate-solubilizing strain on coffee plants. For this, phosphorus-solubilizing fungal strains were selected for evaluation of their solubilization potential and phosphatase activity. Coffee plants were inoculated in the field with a phosphate-solubilizing strain, and the soil and foliar soluble phosphorus contents, as well as coffee bean yield, were quantified. Of the 151 strains analyzed, Sagenomella diversispora, Penicillium waksmanii, and Penicillium brevicompactum showed the highest solubilization. Aspergillus niger and P. waksmanii presented the highest soluble phosphorus values; however, P. brevicompactum showed the highest phosphatase activity. The P. brevicompactum strain inoculated on the coffee plants did not favor the foliar phosphorus content but increased the soil soluble phosphorus content in two of the coffee plantations. The plants inoculated with the phosphate-solubilizing strain showed an increase in coffee bean weight on all plantations, although this increase was only significant in two of the three selected coffee plantations.

8.
J Basic Microbiol ; 63(10): 1085-1094, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37551023

ABSTRACT

Interdisciplinary studies on cultural heritage artworks provide efficient solutions to control fungal growth and the negative effects of biodeterioration. In this study, we aimed to identify the population of filamentous fungi colonizing an engraving by the Dutch painter Rembrandt, whose conservation status was compromised and showed visible stains of biodeterioration. Microbiological techniques, such as cultivation-dependent approaches and molecular biology, have been used to identify fungal populations. In addition, the anaerobic atmosphere technique and eco-friendly antifungal agents, such as essential oils (EOs) of Curcuma longa, Thymus vulgaris, and Melaleuca alternifolia, were tested against the metabolically active fungal population Cladoposporium spinulosum. Furthermore, in vitro assays revealed that the interaction between the fungal strains and EO was positive, inhibiting the growth of these fungi, and the EOs from T. vulgaris and M. alternifolia showed low minimum inhibitory concentration values. Exposure to anaerobic conditions for 35 days was effective in the total elimination of isolated fungal strains. In conclusion, this study demonstrated the effectiveness of a nondestructive technique for artwork on engraving colonized by fungal strains and using EO as an alternative to toxic antifungals used in conventional treatments in artworks. Thus, this interdisciplinary study involving applied microbiology and botanical and preventive conservation presents a tool to control microbial growth while maintaining artwork integrity.


Subject(s)
Antifungal Agents , Oils, Volatile , Antifungal Agents/pharmacology , Engraving and Engravings , Fungi , Cladosporium , Oils, Volatile/pharmacology , Microbial Sensitivity Tests
9.
Fungal Genet Biol ; 168: 103823, 2023 10.
Article in English | MEDLINE | ID: mdl-37453457

ABSTRACT

Filamentous fungi develop intricate hyphal networks that support mycelial foraging and transport of resources. These networks have been analyzed recently using graph theory, enabling the development of models that seek to predict functional traits. However, attention has focused mainly on mature colonies. Here, we report the extraction and analysis of the graph corresponding to Trichoderma atroviride mycelia only a few hours after conidia germination. To extract the graph for a given mycelium, a mosaic conformed of multiple bright-field, optical microscopy images is digitally processed using freely available software. The resulting graphs are characterized in terms of number of nodes and edges, average edge length, total mycelium length, hyphal growth unit, maximum edge length and mycelium diameter, for colonies between 8 h and 14 h after conidium germination. Our results show that the emerging hyphal network grows first by hyphal elongation and branching, and then it transitions to a stage where hyphal-hyphal interactions become significant. As a tangled hyphal network develops with decreasing hyphal mean length, the mycelium maintains long (∼2 mm) hyphae-a behavior that suggests a combination of aggregated and dispersed architectures to support foraging. Lastly, analysis of early network development in Podospora anserina reveals striking similarity with T. atroviride, suggesting common mechanisms during initial colony formation in filamentous fungi.


Subject(s)
Hyphae , Mycelium , Fungi , Microscopy
10.
Biochim Biophys Acta Proteins Proteom ; 1871(4): 140919, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37164048

ABSTRACT

Lignocellulosic biomass is a promising alternative for producing biofuels, despite its recalcitrant nature. There are microorganisms in nature capable of efficiently degrade biomass, such as the filamentous fungi. Among them, Aspergillus fumigatus var. niveus (AFUMN) has a wide variety of carbohydrate-active enzymes (CAZymes), especially hydrolases, but a low number of oxidative enzymes in its genome. To confirm the enzymatic profile of this fungus, this study analyzed the secretome of AFUMN cultured in sugarcane bagasse as the sole carbon source. As expected, the secretome showed a predominance of hydrolytic enzymes compared to oxidative activity. However, it is known that hydrolytic enzymes act in synergy with oxidative proteins to efficiently degrade cellulose polymer, such as the Lytic Polysaccharide Monooxygenases (LPMOs). Thus, three LPMOs from the fungus Thermothelomyces thermophilus (TtLPMO9D, TtLPMO9H, and TtLPMO9O) were selected, heterologous expressed in Aspergillus nidulans, purified, and used to supplement the AFUMN secretome to evaluate their effect on the saccharification of sugarcane bagasse. The saccharification assay was carried out using different concentrations of AFUMN secretome supplemented with recombinant T. thermophilus LPMOs, as well as ascorbic acid as reducing agent for oxidative enzymes. Through a statistic design created by Design-Expert software, we were able to analyze a possible cooperative effect between these components. The results indicated that, in general, the addition of TtLPMO9D and ascorbic acid did not favor the conversion process in this study, while TtLPMO9O had a highly significant cooperative effect in bagasse saccharification compared to the control using only AFUMN secretome.


Subject(s)
Cellulose , Saccharum , Aspergillus fumigatus/metabolism , Mixed Function Oxygenases , Saccharum/metabolism , Saccharum/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Polysaccharides
11.
Fungal Genet Biol ; 165: 103778, 2023 03.
Article in English | MEDLINE | ID: mdl-36690295

ABSTRACT

Extracellular vesicles (EVs) are nanosized structures containing proteins, lipids, and nucleic acids, released by living cells to the surrounding medium. EVs participate in diverse processes, such as intercellular communication, virulence, and disease. In pathogenic fungi, EVs carry enzymes that allow them to invade the host or undergo environmental adaptation successfully. In Neurospora crassa, a non-pathogenic filamentous fungus widely used as a model organism, the vesicle-dependent secretory mechanisms that lead to polarized growth are well studied. In contrast, biosynthesis of EVs in this fungus has been practically unexplored. In the present work, we analyzed N. crassa culture's supernatant for the presence of EVs by dynamic light scattering (DLS), transmission electron microscopy (TEM) and proteomic analysis. We identified spherical membranous structures, with a predominant subpopulation averaging a hydrodynamic diameter (dh) of 68 nm and a particle diameter (dp) of 38 nm. EV samples stained with osmium tetroxide vapors were better resolved than those stained with uranyl acetate. Mass spectrometry analysis identified 252 proteins, including enzymes involved in carbohydrate metabolic processes, oxidative stress response, cell wall organization/remodeling, and circadian clock-regulated proteins. Some of these proteins have been previously reported in exosomes from human cells or in EVs of other fungi. In view of the results, it is suggested a putative role for EVs in cell wall biosynthesis and vegetative development in N. crassa.


Subject(s)
Extracellular Vesicles , Neurospora crassa , Humans , Hyphae , Proteomics/methods , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Microscopy, Electron, Transmission
12.
Environ Sci Pollut Res Int ; 30(13): 35517-35527, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36529799

ABSTRACT

Oils and grease (O&G) have low affinity for water and represent a class of pollutants present in the dairy industry. Enzyme-mediated bioremediation using biocatalysts, such as lipases, has shown promising potential in biotechnology, as they are versatile catalysts with high enantioselectivity and regioselectivity and easy availability, being considered a clean technology (white biotechnology). Specially in the treatment of effluents from dairy industries, these enzymes are of particular importance as they specifically hydrolyze O&G. In this context, the objective of this work is to prospect filamentous fungi with the ability to synthesize lipases for application in a high-fat dairy wastewater environment. We identified and characterized the fungal species Aspergillus sclerotiorum as a good lipase producer. Specifically, we observed highest lipolytic activity (20.72 U g-1) after 96 h of fermentation using sunflower seed as substrate. The fungal solid fermented was used in the bioremediation in dairy effluent to reduce O&G. The experiment was done in kinetic from 24 to 168 h and reduced over 90% of the O&G present in the sample after 168 h. Collectively, our work demonstrated the efficiency and applicability of fungal fermented solids in bioremediation and how this process can contribute to a more sustainable wastewater pretreatment, reducing the generation of effluents produced by dairy industries.


Subject(s)
Aspergillus , Wastewater , Biodegradation, Environmental , Lipase , Oils
13.
Bioprocess Biosyst Eng ; 46(1): 147-156, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36437377

ABSTRACT

Consumer choice is typically influenced by color, leading to an increase in the use of artificial colorants by industry. However, several artificial colorants have been banned due to their harmful effects on human health and the environment, leading to increased interest in colorants from natural sources. Natural colorants can be found in plants, insects, and microorganisms. The importance of evaluating the technical and cost feasibility for the production of natural colorants are important factors for the replacement of artificial counterpart. Therefore, it is highly beneficial to predict the productivity of microbial colorants. The use of statistical methods that generate polynomial models through multiple regressions can provide information of interest about a bioprocess. However, modeling and control of biological processes require complex systems models, because they are nonlinear and non-deterministic systems. In this regard, artificial neural networks are suitable for estimating bioprocess variables with systems modeling. In this work, two different strategies were developed to predict the production of red colorants by Talaromyces amestolkiae, namely simulation by artificial neural networks (ANN) and response surface methodology (RSM). The results showed that the colorant concentration predicted by ANN is closer to the experimental data than that predicted by polynomial models fitted by multiple regression. Thus, this work suggests that the use of ANN can identify the initial conditions of the culture parameters that have the greatest influence on colorant production and can be a tool to be employed to improve the production of biotechnological products, such as microbial colorants.


Subject(s)
Biotechnology , Talaromyces , Humans , Biotechnology/methods , Neural Networks, Computer
14.
Microb Genom ; 8(10)2022 10.
Article in English | MEDLINE | ID: mdl-36239595

ABSTRACT

The ability to respond to injury is essential for the survival of an organism and involves analogous mechanisms in animals and plants. Such mechanisms integrate coordinated genetic and metabolic reprogramming events requiring regulation by small RNAs for adequate healing of the wounded area. We have previously reported that the response to injury of the filamentous fungus Trichoderma atroviride involves molecular mechanisms closely resembling those of plants and animals that lead to the formation of new hyphae (regeneration) and the development of asexual reproduction structures (conidiophores). However, the involvement of microRNAs in this process has not been investigated in fungi. In this work, we explore the participation of microRNA-like RNAs (milRNAs) molecules by sequencing messenger and small RNAs during the injury response of the WT strain and RNAi mutants. We found that Dcr2 appears to play an important role in hyphal regeneration and is required to produce the majority of sRNAs in T. atroviride. We also determined that the three main milRNAs produced via Dcr2 are induced during the damage-triggered developmental process. Importantly, elimination of a single milRNA phenocopied the main defects observed in the dcr2 mutant. Our results demonstrate the essential role of milRNAs in hyphal regeneration and asexual development by post-transcriptionally regulating cellular signalling processes involving phosphorylation events. These observations allow us to conclude that fungi, like plants and animals, in response to damage activate fine-tuning regulatory mechanisms.


Subject(s)
Hypocreales , MicroRNAs , Animals , Gene Expression Regulation, Fungal , Hyphae/genetics , Hypocreales/genetics , Hypocreales/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Regeneration/genetics
15.
Int J Mol Sci ; 23(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36012636

ABSTRACT

Lipases are enzymes that hydrolyze triglycerides to fatty acids and glycerol. A typical element in lipases is a conserved motif of five amino acids (the pentapeptide), most commonly G-X-S-X-G. Lipases with the pentapeptide A-X-S-X-G are present in species of Bacillus, Paucimonas lemoignei, and the yeast Trichosporon asahii; they are usually thermotolerant and solvent resistant. Recently, while searching for true lipases in the Trichoderma harzianum genome, one lipase containing the pentapeptide AHSMG was identified. In this study, we cloned from T. harzianum strain B13-1 the lipase ID135964, renamed here as ThaL, which is 97.65% identical with the reference. We found that ThaL is a lid-containing true lipase of cluster III that belongs to a large family comprising highly conserved proteins in filamentous fungi in the orders Hypocreales and Glomerellales, in which predominantly pathogenic fungi are found. ThaL was expressed in conidia, as well as in T. harzianum mycelium, where it was cultured in liquid minimal medium. These results-together with the amino acid composition, absence of a signal peptide, mitochondrial sorting prediction, disordered regions in the protein, and lineage-specific phylogenetic distribution of its homologs-suggest that ThaL is a non-canonical effector. In summary, AHSMG-lipase is a novel lipase family in filamentous fungi, and is probably involved in pathogenicity.


Subject(s)
Bacillus , Hypocreales , Bacillus/metabolism , Fungi/metabolism , Hypocreales/metabolism , Lipase/metabolism , Phylogeny , Pseudomonas/metabolism
16.
Fungal Biol ; 126(8): 471-479, 2022 08.
Article in English | MEDLINE | ID: mdl-35851139

ABSTRACT

The enzyme tannase is of great industrial and biotechnological importance for the hydrolysis of vegetable tannins, reducing their undesirable effects and generating products for a wide range of processes. Thus, the search for new microorganisms that permit more stable tannase production is of considerable importance. A strain of P. mangiferae isolated from cocoa leaves was selected and investigated for its capacity to produce tannase enzymes and gallic acid through submerged fermentation. The assessment of the variables affecting tannase production by P. mangiferae showed that tannic acid, ammonium nitrate and temperature were the most significant (8.4 U/mL). The variables were analyzed using Response Surface Methodology - RSM (Box-Behnken design), with the best conditions for tannase production being: 1.9% carbon source, 1% nitrogen source and temperature of 23 °C. Tannase activity doubled (16.9 U/mL) after the optimization process when compared to the initial fermentation. A pH of 7.0 was optimal for the tannase and it presented stability above 80% with pH between 4.0 and 7.0 after 2h of incubation. The optimal temperature was 30 °C and activity remained at above 80% at 40-60 °C after 1 h. Production of gallic acid was achieved with 1% tannic acid (0.9 mg/mL) and P. mangiferae had not used up the gallic acid produced by tannic acid hydrolysis after 144 h of fermentation. A 5% tannic acid concentration was the best for gallic acid production (1.6 mg/mL). These results demonstrate P. mangiferae's potential for tannase and gallic acid production for biotechnological applications.


Subject(s)
Carboxylic Ester Hydrolases , Gallic Acid , Hydrogen-Ion Concentration , Pestalotiopsis , Tannins/chemistry
17.
Antonie Van Leeuwenhoek ; 115(8): 1009-1029, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35678932

ABSTRACT

The genomes of two Penicillium strains were sequenced and studied in this study: strain 2HH was isolated from the digestive tract of Anobium punctatum beetle larva in 1979 and the cellulase hypersecretory strain S1M29, derived from strain 2HH by a long-term mutagenesis process. With these data, the strains were reclassified and insight is obtained on molecular features related to cellulase hyperproduction and the albino phenotype of the mutant. Both strains were previously identified as Penicillium echinulatum and this investigation indicated that these should be reclassified. Phylogenetic and phenotype data showed that these strains represent a new Penicillium species in series Oxalica, for which the name Penicillium ucsense is proposed here. Six additional strains (SFC101850, SFCP10873, SFCP10886, SFCP10931, SFCP10932 and SFCP10933) collected from the marine environment in the Republic of Korea were also classified as this species, indicating a worldwide distribution of this new taxon. Compared to the closely related strain Penicillium oxalicum 114-2, the composition of cell wall-associated proteins of P. ucsense 2HH shows five fewer chitinases, considerable differences in the number of proteins related to ß-D-glucan metabolism. The genomic comparison of 2HH and S1M29 highlighted single amino-acid substitutions in two major proteins (BGL2 and FlbA) that can be associated with the hyperproduction of cellulases. The study of melanin pathways shows that the S1M29 albino phenotype resulted from a single amino-acid substitution in the enzyme ALB1, a precursor of the 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis. Our study provides important knowledge towards understanding species distribution, molecular mechanisms, melanin production and cell wall biosynthesis of this new Penicillium species.


Subject(s)
Cellulase , Penicillium , Cellulase/genetics , Genomics , Melanins/metabolism , Penicillium/genetics , Phylogeny
18.
Molecules ; 27(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35566386

ABSTRACT

The high rates of morbidity and mortality due to fungal infections are associated with a limited antifungal arsenal and the high toxicity of drugs. Therefore, the identification of novel drug targets is challenging due to the several resemblances between fungal and human cells. Here, we report the in vitro antifungal evaluation of two acylphenols series, namely 2-acyl-1,4-benzo- and 2-acyl-1,4-naphthohydroquinones. The antifungal properties were assessed on diverse Candida and filamentous fungi strains through the halo of inhibition (HOI) and minimal inhibitory concentration (MIC). The antifungal activities of 2-acyl-1,4-benzohydroquinone derivatives were higher than those of the 2-acyl-1,4-naphthohydroquinone analogues. The evaluation indicates that 2-octanoylbenzohydroquinone 4 is the most active member of the 2-acylbenzohydroquinone series, with MIC values ranging from 2 to 16 µg/mL. In some fungal strains (i.e., Candida krusei and Rhizopus oryzae), such MIC values of compound 4 (2 and 4 µg/mL) were comparable to that obtained by amphotericin B (1 µg/mL). The compound 4 was evaluated for its antioxidant activity by means of FRAP, ABTS and DPPH assays, showing moderate activity as compared to standard antioxidants. Molecular docking studies of compound 4 and ADMET predictions make this compound a potential candidate for topical pharmacological use. The results obtained using the most active acylbenzohydroquinones are promising because some evaluated Candida strains are known to have decreased sensitivity to standard antifungal treatments.


Subject(s)
Antifungal Agents , Mycoses , Amphotericin B/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Candida , Fungi , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycoses/microbiology
19.
Gene ; 822: 146345, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35189252

ABSTRACT

Penicillium echinulatum 2HH is an ascomycete well known for its production of cellulolytic enzymes. Understanding lignocellulolytic and sugar uptake systems is essential to obtain efficient fungi strains for the production of bioethanol. In this study we performed a genome-wide functional annotation of carbohydrate-active enzymes and sugar transporters involved in the lignocellulolytic system of P. echinulatum 2HH and S1M29 strains (wildtype and mutant, respectively) and eleven related fungi. Additionally, signal peptide and orthology prediction were carried out. We encountered a diverse assortment of cellulolytic enzymes in P. echinulatum, especially in terms of ß-glucosidases and endoglucanases. Other enzymes required for the breakdown of cellulosic biomass were also found, including cellobiohydrolases, lytic cellulose monooxygenases and cellobiose dehydrogenases. The S1M29 mutant, which is known to produce an increased cellulase activity, and the 2HH wild type strain of P. echinulatum did not show significant differences between their enzymatic repertoire. Nevertheless, we unveiled an amino acid substitution for a predicted intracellular ß-glucosidase of the mutant, which might contribute to hyperexpression of cellulases through a cellodextrin induction pathway. Most of the P. echinulatum enzymes presented orthologs in P. oxalicum 114-2, supporting the presence of highly similar cellulolytic mechanisms and a close phylogenetic relationship between these fungi. A phylogenetic analysis of intracellular ß-glucosidases and sugar transporters allowed us to identify several proteins potentially involved in the accumulation of intracellular cellodextrins. These may prove valuable targets in the genetic engineering of P. echinulatum focused on industrial cellulases production. Our study marks an important step in characterizing and understanding the molecular mechanisms employed by P. echinulatum in the enzymatic hydrolysis of lignocellulosic biomass.


Subject(s)
Fungal Proteins/genetics , Fungal Proteins/metabolism , Lignin/metabolism , Penicillium/metabolism , Amino Acid Substitution , Biological Transport , Carbohydrate Metabolism , Cellulose/analogs & derivatives , Dextrins , Gene Expression Regulation, Fungal , Molecular Sequence Annotation , Penicillium/genetics , Phylogeny , Sugars/metabolism
20.
Curr Drug Metab ; 22(13): 1035-1064, 2021.
Article in English | MEDLINE | ID: mdl-34825868

ABSTRACT

The goal of the biotransformation process is to develop structural changes and generate new chemical compounds, which can occur naturally in mammalian and microbial organisms, such as filamentous fungi, and represent a tool to achieve enhanced bioactive compounds. Cunninghamella spp. is among the fungal models most widely used in biotransformation processes at phase I and II reactions, mimicking the metabolism of drugs and xenobiotics in mammals and generating new molecules based on substances of natural and synthetic origin. Therefore, the goal of this review is to highlight the studies involving the biotransformation of Cunninghamella species between January 2015 and March 2021, in addition to updating existing studies to identify the similarities between the human metabolite and Cunninghamella patterns of active compounds, with related advantages and challenges, and providing new tools for further studies in this scope.


Subject(s)
Biological Factors , Biotransformation , Cunninghamella/physiology , Xenobiotics , Biological Factors/metabolism , Biological Factors/pharmacology , Drug Discovery/methods , Fungi/physiology , Humans , Metabolism , Models, Biological , Xenobiotics/metabolism , Xenobiotics/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL