Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
1.
Heliyon ; 10(11): e31658, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828340

ABSTRACT

To enhance the energy absorption properties of the energy-absorbing structure, carbon fiber-reinforced polymer (CFRPs) with higher specific energy absorption and porous material aluminum foam with better compressive characteristics were organically combined, and a lighter aluminum foam winding carbon fiber-reinforced polymer structure (CFRP-FA-FW) was designed. Through quasi-static compression testing, the deformation mode and energy absorption properties of CFRP-FA-FW under axial load were examined. The energy absorption and specific energy absorption of CFRP-FA-FW are both increased by 113.55 % and 60.73 %, respectively, compared to the simple composite structure CFRP-FA. Finite element simulation was used for the parametric analysis of the CFRP-FA-FW structure to assess the effects of the relative density of the aluminum foam, the fiber lay-up angle, and the thickness. The results reveal that the change in the relative density of aluminum foam has little impact on the failure deformation mode of CFRP-FA-FW under axial load; the structure has a higher energy absorption capacity and a smoother energy absorption process when the fiber lay-up angle is [0°/90°]ns and [45°]ns; the energy absorption capacity of CFRP-FA-FW is significantly improved by increasing the thickness of the carbon fiber lay-up, and the procedure is also more efficient.

2.
Sci Rep ; 14(1): 14128, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898049

ABSTRACT

This manuscript offers an exhaustive analysis of Flexible Printed Circuits (FPCs), concentrating on enhancing their design to surmount two primary challenges. Firstly, it seeks to obviate contact with proximate components. Secondly, it aspires to adhere to pre-established curvature constraints. Predicated on the curvature properties of FPCs, we have developed a model adept at accurately forecasting FPC deformation under diverse conditions. Our inquiry entails a thorough examination of various FPC configurations, including bell, 'U', and 'S' shapes. Central to our methodology is the strategic optimization of FPC spatial arrangements, aiming to avert mechanical interference and control curvature, thus mitigating mechanical strain. This dual-faceted strategy is pivotal in enhancing the durability and operational reliability of FPCs, particularly in contexts demanding elevated flexibility and precision. Our research offers essential insights into the refinement of FPC design, skillfully addressing the complexities associated with curvature and physical interaction. Collectively, this study advocates a comprehensive framework for the design and implementation of FPCs, significantly advancing the field of contemporary electronics by ensuring these components meet the evolving demands of the industry.

3.
J Neurosci Methods ; 408: 110176, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795980

ABSTRACT

BACKGROUND: Transcranial magnetic stimulation (TMS) is used to treat a range of brain disorders by inducing an electric field (E-field) in the brain. However, the precise neural effects of TMS are not well understood. Nonhuman primates (NHPs) are used to model the impact of TMS on neural activity, but a systematic method of quantifying the induced E-field in the cortex of NHPs has not been developed. NEW METHOD: The pipeline uses statistical parametric mapping (SPM) to automatically segment a structural MRI image of a rhesus macaque into five tissue compartments. Manual corrections are necessary around implants. The segmented tissues are tessellated into 3D meshes used in finite element method (FEM) software to compute the TMS induced E-field in the brain. The gray matter can be further segmented into cortical laminae using a volume preserving method for defining layers. RESULTS: Models of three NHPs were generated with TMS coils placed over the precentral gyrus. Two coil configurations, active and sham, were simulated and compared. The results demonstrated a large difference in E-fields at the target. Additionally, the simulations were calculated using two different E-field solvers and were found to not significantly differ. COMPARISON WITH EXISTING METHODS: Current methods segment NHP tissues manually or use automated methods for only the brain tissue. Existing methods also do not stratify the gray matter into layers. CONCLUSION: The pipeline calculates the induced E-field in NHP models by TMS and can be used to plan implant surgeries and determine approximate E-field values around neuron recording sites.


Subject(s)
Finite Element Analysis , Macaca mulatta , Magnetic Resonance Imaging , Transcranial Magnetic Stimulation , Animals , Transcranial Magnetic Stimulation/methods , Models, Neurological , Male , Computer Simulation , Image Processing, Computer-Assisted/methods , Gray Matter/physiology , Gray Matter/diagnostic imaging
4.
Sci Rep ; 14(1): 11024, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744984

ABSTRACT

The integration of Artificial Intelligence (AI) and Machine Learning (ML) techniques into computational science has ushered in a new era of innovation and efficiency in various fields, with particular significance in computational fluid dynamics (CFD). Several methods based on AI and Machine Learning (ML) have been standardized in many fields of computational science, including computational fluid dynamics (CFD). This study aims to couple CFD with artificial neural networks (ANNs) to predict the fluid forces that arise when a flowing fluid interacts with obstacles installed in the flow domain. The momentum equation elucidating the flow has been simulated by adopting the finite element method (FEM) for a range of rheological and kinematic conditions. Hydrodynamic forces, including pressure drop between the back and front of the obstacle, surface drag, and lift variations, are measured on the outer surface of the cylinder via CFD simulations. This data has subsequently been fed into a Feed-Forward Back (FFB) propagation neural network for the prediction of such forces with completely unknown data. For all cases, higher predictivity is achieved for the drag coefficient (CD) and lift coefficient (CL) since the mean square error (MSE) is within ± 2% and the coefficient of determination (R) is approximately 99% for all the cases. The influence of pertinent parameters like the power law index (n) and Reynolds number (Re) on velocity, pressure, and drag and lift coefficients is also presented for limited cases. Moreover, a significant reduction in computing time has been noticed while applying hybrid CFD-ANN approach as compared with CFD simulations only.

5.
Materials (Basel) ; 17(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38730916

ABSTRACT

For the complex structure of fibrous network materials, it is a challenge to analyze the network strength and deformation mechanism. Here, we identify a failure mode transition within the network material comprising brittle fibers and bonds, which is related to the strength ratio of the bond to the fiber. A failure criterion for this type of fibrous network is proposed to quantitatively characterize this transition between bond damage and fiber damage. Additionally, tensile experiments on carbon and ceramic fibrous network materials were conducted, and the experimental results show that the failure modes of these network materials satisfy the theoretical prediction. The relationship between the failure mode, the relative density of network and strength of the components is established based on finite element analysis of the 3D network model. The failure mode transforms from bond damage to fiber damage as increasing of bond strength. According to the transition of the failure modes in the brittle fibrous network, it is possible to tailor the mechanical properties of fibrous network material by balancing the competition between bond and fiber properties, which is significant for optimizing material design and engineering applications.

6.
Ann Biomed Eng ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753110

ABSTRACT

This study aims to estimate the maximum power consumption that guarantees a thermally safe operation for a titanium-enclosed chest wall unit (CWU) subcutaneously implanted in the pre-pectoral area. This unit is a central piece of an envisioned fully-implantable bi-directional brain-computer interface (BD-BCI). To this end, we created a thermal simulation model using the finite element method implemented in COMSOL. We also performed a sensitivity analysis to ensure that our predictions were robust against the natural variation of physiological and environmental parameters. Based on this analysis, we predict that the CWU can consume between 378 and 538 mW of power without raising the surrounding tissue's temperature above the thermal safety threshold of 2  ∘ C. This power budget should be sufficient to power all of the CWU's basic functionalities, which include training the decoder, online decoding, wireless data transmission, and cortical stimulation. This power budget assessment provides an important specification for the design of a CWU-an integral part of a fully-implantable BD-BCI system.

7.
Sensors (Basel) ; 24(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38610503

ABSTRACT

Ice accumulation on infrastructure poses severe safety risks and economic losses, necessitating effective detection and monitoring solutions. This study introduces a novel approach employing surface acoustic wave (SAW) sensors, known for their small size, wireless operation, energy self-sufficiency, and retrofit capability. Utilizing a SAW dual-mode delay line device on a 64°-rotated Y-cut lithium niobate substrate, we demonstrate a solution for combined ice detection and temperature measurement. In addition to the shear-horizontal polarized leaky SAW, our findings reveal an electrically excitable Rayleigh-type wave in the X+90° direction on the same cut. Experimental results in a temperature chamber confirm capability for reliable differentiation between liquid water and ice loading and simultaneous temperature measurements. This research presents a promising advancement in addressing safety concerns and economic losses associated with ice accretion.

8.
Heliyon ; 10(8): e29525, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644850

ABSTRACT

In this work, a workflow has been developed for the generation of surrogate metamodels to predict and evaluate failure with a confidence above 95 % in initial service conditions of high-performance cylindrical vessels manufactured in composites by Roll Wrapping technology. Currently, there is no specific testing standardization for this type of vessel and to fill this gap probabilistic numerical models were developed, performed by the Finite Element Method, fed with the material characteristics obtained experimentally by 2D digital image correlation from flat specimens. From the initial numerical model, a surrogate metamodel was generated by stochastic approximations. Once the metamodels were obtained by robust engineering, an experimental ring-ring tensile test was developed under service conditions and deformations were measured by high-precision 3D digital image correlation. Parametric and robust tests showed that the results of the metamodel did not show statistically significant differences, with errors in the rupture part of less than 2 % with respect to the results obtained in the test, being proposed as a basis for new test procedures.

9.
Sensors (Basel) ; 24(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38676077

ABSTRACT

This paper reports a self-temperature compensation barometer based on a quartz resonant pressure sensor. A novel sensor chip that contains a double-ended tuning fork (DETF) resonator and a single-ended tuning fork (SETF) resonator is designed and fabricated. The two resonators are designed on the same diaphragm. The DETF resonator works as a pressure sensor. To reduce the influence of the temperature drift, the SETF resonator works as a temperature compensation sensor, which senses the instantaneous temperature of the DETF resonator. The temperature compensation method based on polynomial fitting is studied. The experimental results show that the accuracy is 0.019% F.S. in a pressure range of 200~1200 hPa over a temperature range of -20 °C~+60 °C. The absolute errors of the barometer are within ±23 Pa. To verify its actual performance, a drone flight test was conducted. The test results are consistent with the actual flight trajectory.

10.
Dent Mater ; 40(5): 858-868, 2024 May.
Article in English | MEDLINE | ID: mdl-38616152

ABSTRACT

OBJECTIVES: This study evaluates the potential for osseointegration and remodeling of customized dental implants made from Titanium-Hydroxyapatite Functionally Graded Material (Ti-HAP FGM) with optimized geometry, using the finite element method (FEM). METHODS: The study utilized CT scan images to model and assemble various geometrical designs of dental implants in a mandibular slice. The mechanical properties of Ti-HAP FGMs were computed by varying volume fractions (VF) of hydroxyapatite (0-20%), and a bone remodeling algorithm was used to evaluate the biomechanical characteristics of the ultimate bone configuration in the peri-implant tissue. RESULTS: The findings of the FEA reveal that osseointegration improves with changes in the density and mechanical properties of the bone surrounding Ti-HAP implants, which are influenced by the varying VF of hydroxyapatite in the FGM. SIGNIFICANCE: Increasing the hydroxyapatite fraction improves osseointegration, and appropriate length and diameter selection of Ti-HAP dental implants contribute to their stability and longevity.


Subject(s)
Bone Remodeling , Dental Implants , Durapatite , Finite Element Analysis , Osseointegration , Titanium , Bone Remodeling/physiology , Durapatite/chemistry , Titanium/chemistry , Mandible , Tomography, X-Ray Computed , Humans , Biomechanical Phenomena , Dental Prosthesis Design , Algorithms , Materials Testing
11.
Orthop Surg ; 16(4): 976-983, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38438142

ABSTRACT

OBJECTIVE: Traditional internal fixation of calcaneus fractures, involving lateral L-shaped incisions and plate fixation, has disadvantages such as increased operative exposure, eccentric plate fixation, and complications. The aim of this study was to design a Spatial Weaving Intra-calcaneal Fixator System (SWIFS) for the treatment of complex calcaneal fractures and to compare its biomechanical properties with those of traditional calcaneal plates. METHODS: The computed tomography (CT) data of the normal adult calcaneus was used for modeling, and the largest trapezoidal column structure was cut and separated from the model and related parameters were measured. The SWIFS was designed within the target trapezoid, according to the characteristics of the fracture of the calcaneus. The Sanders model classification type IV calcaneal fracture was established in finite element software, and fixation with calcaneal plate and the SWIFS examined. Overall structural strength distribution and displacement in the two groups were compared. RESULTS: The maximum 3D trapezoidal column in the calcaneus was constructed, and the dimensions were measured. The SWIFS and the corresponding guide device were successfully designed. In the one-legged erect position state, the SWIFS group exhibited a peak von Mises equivalent stress of 96.00 MPa, a maximum displacement of 0.31 mm, and a structural stiffness of 2258.06 N/mm. The conventional calcaneal plate showed a peak von Mises equivalent stress of 228.66 Mpa, a maximum displacement of 1.26 mm, and a structural stiffness of 555.56 N/mm. The SWIFS group exhibited a 75.40% decrease in displacement and a 306.45% increase in stiffness. CONCLUSION: Compared with fixation by conventional calcaneal plate, the SWIFS provides better structural stability and effective stress distribution.


Subject(s)
Ankle Injuries , Calcaneus , Fractures, Bone , Adult , Humans , Finite Element Analysis , Fractures, Bone/surgery , Fracture Fixation, Internal/methods , Calcaneus/surgery , Bone Plates , Biomechanical Phenomena
12.
Materials (Basel) ; 17(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38541468

ABSTRACT

Lattice materials are widely used in industries due to their designable capabilities of specific stiffness and energy absorption. However, evaluating the mechanical response of macroscopic lattice structures can be computationally expensive. Homogenization-based multi-scale analysis offers an efficient approach to address this issue. To achieve a simpler, while precise, homogenization, the authors proposed an equidistant segmentation (ES) method for the measurement of the effective shear modulus. In this method, the periodic boundary conditions (PBCs) are approximated by constraining the lateral displacement of nodes between parallel layers of periodic cells. The validations were applied to three typical lattice topologies: body-centered cubic (BCC) lattices, gyroid-, and primitive-triply periodic minimal surface (TPMS) lattices, to predict and compare their anti-vibration capacities. The results demonstrated the rationality and the promising precision of the multi-scale-based equivalent modal analysis through the proposed method and that it eliminated the geometric limitation of lattices with diverse frameworks. Overall, a higher anti-vibration capacity of TPMS was observed. In the study, the authors examined the influence of the relative densities on the balance between the anti-vibration capacity and loading capacity (per unit mass) of the TPMS topologies. Specifically, the unit mass of the TPMS with lower relative densities was able to resist higher frequencies, and the structures were dominated by the anti-vibration capacity. In contrast, a higher relative density is better when emphasizing the loading capacity. These findings may provide notable references to the designers and inform the selection of lattice materials for various industrial applications.

13.
Biomimetics (Basel) ; 9(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38534845

ABSTRACT

Soft robots that incorporate elastomeric matrices and flexible materials have gained attention for their unique capabilities, surpassing those of rigid robots, with increased degrees of freedom and movement. Research has highlighted the adaptability, agility, and sensitivity of soft robotic actuators in various applications, including industrial grippers, locomotive robots, wearable assistive devices, and more. It has been demonstrated that bellow-shaped actuators exhibit greater efficiency compared to uniformly shaped fiber-reinforced actuators as they require less input pressure to achieve a comparable range of motion (ROM). Nevertheless, the mathematical quantification of the performance of bellow-based soft fluidic actuators is not well established due to their inherent non-uniform and complex structure, particularly when compared to fiber-reinforced actuators. Furthermore, the design of bellow dimensions is mostly based on intuition without standardized guidance and criteria. This article presents a comprehensive description of the quasi-static analytical modeling process used to analyze bellow-based soft actuators with linear extension. The results of the models are validated through finite element method (FEM) simulations and experimental testing, considering elongation in free space under fluidic pressurization. This study facilitates the determination of optimal geometrical parameters for bellow-based actuators, allowing for effective biomimetic robot design optimization and performance prediction.

14.
Cureus ; 16(2): e54283, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38496186

ABSTRACT

Background Monocortical mini-screw-type temporary anchorage devices (TADs), or mini-screws, have significantly impacted orthodontic treatment strategies, especially in severe crowding and protrusion cases. These devices offer flexibility in placement sites, but the chosen location can considerably influence tooth displacement patterns. Key factors include the 'line of force' and the biomechanical properties of orthodontic tools. By analyzing tension distribution and three-dimensional displacements, the finite element method (FEM) provides a thorough means to comprehend these patterns. The Curve of Spee (COS) is a crucial factor potentially affecting displacement. Objective This study aimed to leverage finite element analysis (FEA) to understand the impact of varying mini-implant heights (10 mm, 13 mm, and 16 mm) on the displacements of different tooth types under a consistent force of 150 gm and compare these displacements both in the presence and absence of the COS. Materials and methods A CAD model of the jaw and teeth was developed using CT scan data and a Rexcan III 3D White Light Scanner. This model was meshed in Altair HyperMesh using tetrahedral elements, resulting in a Finite Element Model. The model incorporated various components, including teeth, the periodontal ligament (PDL), alveolar bone, brackets, a titanium mini-screw, and an archwire measuring 0.019 x 0.025 inches. Unique material properties were assigned to the PDL, and the assembly accurately replicated the clinical alignment of the archwire and brackets. Subsequently, stress and strain analyses were conducted on the model using the FEM. Results The displacement patterns of various teeth at implant heights of 10 mm, 13 mm, and 16 mm under a 150-gm force were analyzed in relation to the COS. Notably, for the central incisor, the COS significantly affected displacements in the Y and Z directions. Similarly, the Lateral Incisor and Canine exhibited marked changes in the Z direction with the presence of the COS. The Second Premolar's apex displacement showed significant variation due to the COS, while the First Molar displayed notable changes in the X direction. Generally, the presence of the COS either maintained or slightly increased Z-directional displacements across teeth, particularly at the apices. Conclusion The presence of COS significantly influences tooth displacement patterns when using mini-screws at different implant heights. Central incisors, lateral incisors, and canines are particularly sensitive to changes in the Z direction with the COS. The biomechanical analysis emphasizes the importance of considering COS in treatment planning for optimal results with mini-implants in orthodontics.

15.
Med Biol Eng Comput ; 62(5): 1549-1567, 2024 May.
Article in English | MEDLINE | ID: mdl-38308669

ABSTRACT

Radiofrequency ablation is a nominally invasive technique to eradicate cancerous or non-cancerous cells by heating. However, it is still hampered to acquire a successful cell destruction process due to inappropriate RF intensities that will not entirely obliterate tumorous tissues, causing in treatment failure. In this study, we are acquainted with a nanoassisted RF ablation procedure of cardiac tumor to provide better outcomes for long-term survival rate without any recurrences. A three-dimensional thermo-electric energy model is employed to investigate nanothermal field and ablation efficiency into the left atrium tumor. The cell death model is adopted to quantify the degree of tissue injury while injecting the Fe3O4 nanoparticles concentrations up to 20% into the target tissue. The results reveal that when nanothermal field extents as a function of tissue depth (10 mm) from the electrode tip, the increasing thermal rates were approximately 0.54362%, 3.17039%, and 7.27397% for the particle concentration levels of 7%, 10%, and 15% compared with no-particle case. In the 7% Fe3O4 nanoparticles, 100% fractional damage index is achieved after ablation time of 18 s whereas tissue annihilation approach proceeds longer to complete for no-particle case. The outcomes indicate that injecting nanoparticles may lessen ablation time in surgeries and prevent damage to adjacent healthy tissue.


Subject(s)
Catheter Ablation , Heart Neoplasms , Radiofrequency Ablation , Humans , Computer Simulation , Catheter Ablation/methods , Heart Atria/surgery
16.
Phys Med Biol ; 69(7)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38412537

ABSTRACT

Objective. An elevated interstitial fluid pressure (IFP) can lead to strain-induced stiffening of poroelastic biological tissues. As shear wave elastography (SWE) measures functional tissue stiffness based on the propagation speed of acoustically induced shear waves, the shear wave velocity (SWV) can be used as an indirect measurement of the IFP. The underlying biomechanical principle for this stiffening behavior with pressurization is however not well understood, and we therefore studied how IFP affects SWV through SWE experiments and numerical modeling.Approach. For model set-up and verification, SWE experiments were performed while dynamically modulating IFP in a chicken breast. To identify the confounding factors of the SWV-IFP relationship, we manipulated the material model (linear poroelastic versus porohyperelastic), deformation assumptions (geometric linearity versus nonlinearity), and boundary conditions (constrained versus unconstrained) in a finite element model mimicking the SWE experiments.Main results. The experiments demonstrated a statistically significant positive correlation between the SWV and IFP. The model was able to reproduce a similar SWV-IFP relationship by considering an unconstrained porohyperelastic tissue. Material nonlinearity was identified as the primary factor contributing to this relationship, whereas geometric nonlinearity played a smaller role. The experiments also highlighted the importance of the dynamic nature of the pressurization procedure, as indicated by a different observed SWV-IFP for pressure buildup and relaxation, but its clinical relevance needs to be further investigated.Significance. The developed model provides an adaptable framework for SWE of poroelastic tissues and paves the way towards non-invasive measurements of IFP.


Subject(s)
Elasticity Imaging Techniques , Elasticity Imaging Techniques/methods , Extracellular Fluid/diagnostic imaging
17.
Sci Rep ; 14(1): 4711, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38409482

ABSTRACT

Nowadays, droplet microfluidics has become widely utilized for high-throughput assays. Efficient mixing is crucial for initiating biochemical reactions in many applications. Rapid mixing during droplet formation eliminates the need for incorporating micromixers, which can complicate the chip design. Furthermore, immediate mixing of substances upon contact can significantly improve the consistency of chemical reactions and resulting products. This study introduces three innovative designs for droplet generators that achieve efficient mixing and produce small droplets. The T-cross and cross-T geometries combine cross and T junction mixing mechanisms, resulting in improved mixing efficiency. Numerical simulations were conducted to compare these novel geometries with traditional T and cross junctions in terms of mixing index, droplet diameter, and eccentricity. The cross-T geometry exhibited the highest mixing index and produced the smallest droplets. For the flow rate ratio of 0.5, this geometry offered a 10% increase in the mixing index and a decrease in the droplet diameter by 10% compared to the T junction. While the T junction has the best mixing efficiency among traditional droplet generators, it produces larger droplets, which can increase the risk of contamination due to contact with the microchannel walls. Therefore, the cross-T geometry is highly desirable in most applications due to its production of considerably smaller droplets. The asymmetric cross junction offered a 8% increase in mixing index and around 2% decrease in droplet diameter compared to the conventional cross junction in flow rate ratio of 0.5. All novel geometries demonstrated comparable mixing efficiency to the T junction. The cross junction exhibited the lowest mixing efficiency and produced larger droplets compared to the cross-T geometry (around 1%). Thus, the novel geometries, particularly the cross-T geometry, are a favorable choice for applications where both high mixing efficiency and small droplet sizes are important.

18.
Sensors (Basel) ; 24(4)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38400344

ABSTRACT

Magnetoelectric (ME) magnetic field sensors are novel sensing devices of great interest in the field of biomagnetic measurements. We investigate the influence of magnetic crosstalk and the linearity of the response of ME sensors in different array and excitation configurations. To achieve this aim, we introduce a combined multiscale 3D finite-element method (FEM) model consisting of an array of 15 ME sensors and an MRI-based human head model with three approximated compartments of biological tissues for skin, skull, and white matter. A linearized material model at the small-signal working point is assumed. We apply homogeneous magnetic fields and perform inhomogeneous magnetic field excitation for the ME sensors by placing an electric point dipole source inside the head. Our findings indicate significant magnetic crosstalk between adjacent sensors leading down to a 15.6% lower magnetic response at a close distance of 5 mm and an increasing sensor response with diminishing crosstalk effects at increasing distances up to 5 cm. The outermost sensors in the array exhibit significantly less crosstalk than the sensors located in the center of the array, and the vertically adjacent sensors exhibit a stronger crosstalk effect than the horizontally adjacent ones. Furthermore, we calculate the ratio between the electric and magnetic sensor responses as the sensitivity value and find near-constant sensitivities for each sensor, confirming a linear relationship despite magnetic crosstalk and the potential to simulate excitation sources and sensor responses independently.


Subject(s)
Magnetic Fields , Magnetic Resonance Imaging , Humans , Computer Simulation , Head/diagnostic imaging
19.
J Mech Behav Biomed Mater ; 151: 106371, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176197

ABSTRACT

BACKGROUND: Temporomandibular joint (TMJ) overloading is considered a primary cause of temporomandibular joint disorders (TMD). Accordingly, craniomaxillofacial structural parameters affect the loading situation in the TMJ. However, no effective method exists for quantitatively measuring the loading variation in human TMJs. Clinical statistics, which draws from general rules from large amounts of clinical data, cannot entry for exploring the underlying biomechanical mechanism in craniomaxillofacial system. The finite element method (FEM) is an effective tool for analyze the stress and load on TMJs for several cases in a short period of time; however, it is difficult to generalize general patterns through calculations between different cases due to the different geometric characteristics and occlusal contacts between each case. METHODS: (1) This study included 88 subjects with 176 unilateral data to measure angle (α) of the distance to the plane of occlusion. The bone destruction score was evaluated for clinical statistics. To rule out effects of the potential factors and ensure the generality of the study, one participant with no obvious bone destruction was selected as the standard case for establishing the three-dimensional (3D) theoretical model and FEM. (2) Three groups of forces, including biting, muscles and joint reaction forces on mandible, were adopted to establish a 3D theoretical model. (3) By modifying the sagittal α and coronal three types of deviation angle (φ) of the original model, nine candidate models were obtained for the FEM studies. RESULTS: (1) The static equilibrium equations, were used to establish a 3D theoretical model for describing the loading of the TMJ. The theoretical model was validated by monotonously modifying the structural parameter in comparison to two-dimensional theoretical models reported previously; (2) The force on the TMJ gradually decreased with α, and this trend was validated by both clinic statistics and FEM results; (3) The effects of the three types of deviation angle were different. The results of the case where only rotating biting forces were considered was consistent with clinical statistics, indicating that the side with lower α experiences higher TMJ load. (4) Changing the unilateral proportionality coefficients of biting and muscle force produced opposite effects, wherein the effects of the muscle force were stronger than those of the biting forces. CONCLUSIONS: A negative correlation was observed between the joint load and α. Among the three types of asymmetric deformities, occlusal deviations were the primary factors leading to TMD. Unilateral occlusion can result in a greater load on the ipsilateral joint and should be avoided when using the side corresponding to the TMD. This study provides a theoretical basis for the biomechanical mechanism of TMD and also enables the targeted mitigation and treatment of TMD through structural modification.


Subject(s)
Temporomandibular Joint Disorders , Temporomandibular Joint , Humans , Temporomandibular Joint/physiology , Mandible/physiology , Muscles , Models, Theoretical
20.
New Phytol ; 241(2): 937-949, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37644727

ABSTRACT

The first land ecosystems were composed of organisms considered simple in nature, yet the morphological diversity of their flora was extraordinary. The biological significance of this diversity remains a mystery largely due to the absence of feasible study approaches. To study the functional biology of Early Devonian flora, we have reconstructed extinct plants from fossilised remains in silico. We explored the morphological diversity of sporangia in relation to their mechanical properties using finite element method. Our approach highlights the impact of sporangia morphology on spore dispersal and adaptation. We discovered previously unidentified innovations among early land plants, discussing how different species might have opted for different spore dispersal strategies. We present examples of convergent evolution for turgor pressure resistance, achieved by homogenisation of stress in spherical sporangia and by torquing force in Tortilicaulis-like specimens. In addition, we show a potential mechanism for stress-assisted sporangium rupture. Our study reveals the deceptive complexity of this seemingly simple group of organisms. We leveraged the quantitative nature of our approach and constructed a fitness landscape to understand the different ecological niches present in the Early Devonian Welsh Borderland flora. By connecting morphology to functional biology, these findings facilitate a deeper understanding of the diversity of early land plants and their place within their ecosystem.


Subject(s)
Ecosystem , Embryophyta , Plants , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...