Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Chempluschem ; : e202400442, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105675

ABSTRACT

Brazil has one of the greatest biodiversities on the planet, where various crops play a strategic role in the country's economy. Among the highly appreciated biomasses is babassu, whose oil extraction generates residual babassu mesocarp (BM), which still needs new strategies for valorization. This work aimed to use BM as a support for the immobilization of Thermomyces lanuginosus lipase (TLL) in an 8.83 mL packed-bed reactor, followed by its application as a biocatalyst for the synthesis of hexyl laurate in an integrated process. Initially, the percolation of a solution containing 5 mg of TLL at 25 °C and flows ranging from 1.767 to 0.074 mL min-1 was investigated, where at the lowest flow rate tested (residence time of 2 h), it was possible to obtain an immobilized derivative with hydrolytic activity of 504.7 U g-1 and 31.7 % of recovered activity. Subsequent studies of treatment with n-hexane, as well as the effect of temperature on the immobilization process, were able to improve the activities of the final biocatalyst BM-TLLF, achieving a final hydrolysis activity of 7023 U g-1 and esterification activity of 430 U ⋅ g-1 against 142 U g-1 and 113.5 U g-1 respectively presented by the commercial TLIM biocatalyst. Desorption studies showed that the TL IM has 18 mg of protein per gram of support, compared to 4.92 mg presented by BM-TLL. Both biocatalysts were applied to synthesize hexyl laurate, achieving 98 % conversion at 40 °C within 2 h. Notably, BM-TLLF displayed exceptional recyclability, maintaining catalytic efficiency over 12 cycles. This reflects a productivity of 180 mg of product ⋅ h-1 U-1 of the enzyme, surpassing 46 mg h-1 U-1 obtained for TLIM. These results demonstrate the efficacy of continuous flow technology in creating a competitive and integrated process offering an exciting alternative for the valorization of residual lignocellulosic biomass.

2.
Chempluschem ; 89(6): e202300784, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38373019

ABSTRACT

The design of new and more sustainable synthetic protocols to access new materials or valuable compounds will have a high impact on the broader chemistry community. In this sense, continuous-flow photochemistry has emerged as a powerful technique which has been employed successfully in various areas such as biopharma, organic chemistry, as well as materials science. However, it is important to note that chemical processes must not only advance towards new or improved chemical transformations, but also implement new technologies that enable new process opportunities. For this reason, the design of novel photoreactors is key to advancing photochemical strategies. In this sense, the use of equipment and techniques embracing processes intensification is important in developing more sustainable protocols. Among the most recent applications, spinning continuous flow reactors, such as rotor reactors or vortex reactors, have shown promising performance as new synthetic tools. Nevertheless, there is currently no review in the literature that effectively summarizes and showcases the most recent applications of such type of photoreactors. Herein, we highlight fundamental aspects and applications of two categories of spinning reactors, the Spinning Disc Reactors (SDRs) and Thin Film Vortex reactors, critiquing the scope and limitations of these advanced processing technologies. Further, we take a view on the future of spinning reactors in flow as a synthetic toolbox to explore new photochemical transformations.

3.
Chempluschem ; 88(10): e202300384, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37721529

ABSTRACT

Certified reference materials (CRM) of amphetamine derivatives were produced through a simple, rapid and efficient synthesis in both batch and continuous-flow conditions, accompanied by the development of a comprehensive certification protocol for this class of substances. Our chemistry enabled the synthesis of MDA, MDMA, PMA and PMMA in two steps from safrole and estragole with overall yields of 38-61 % in 48 hours under batch conditions and 61-65 % in 65 minutes under continuous-flow conditions, followed by the development of a certification protocol for these materials through identity checking, homogeneity, stability, and characterization studies. Furthermore, as result of this work, a very pure CRM of MDA.HCl with 99.1±1.4 g/100 g of certified characterization value was produced. Considering the importance of supplying amphetamine calibrants for public security efforts in Forensic Chemistry, the potential therapeutical applications, and responding to the rising demand for the synthesis of CRM, this work presents a pioneering approach for the production of amphetamine and related compounds.

4.
Methods Mol Biol ; 2487: 355-360, 2022.
Article in English | MEDLINE | ID: mdl-35687246

ABSTRACT

Deep Eutectic Solvents (DES) are used as reaction media for lipase-catalyzed esterifications in continuous devices. In particular, DES may be useful for lipophilization-like reactions involving substrates with unpaired solubilities. Aspects to be considered are the viscosity of the solvent, as well as the stability of the enzyme in the non-conventional media. The viscosity can be decreased by adding buffer as cosolvent (up to 20% v/v) and keeping the non-conventional nature. Lipases can be stabilized by following a double immobilization pattern, comprising CLEA formation and entrapment in LentiKats®. The low viscosity and high stability of the CLEA-LK-lipase enable the use of DES under flow conditions.


Subject(s)
Deep Eutectic Solvents , Lipase , Catalysis , Esterification , Lipase/metabolism , Solvents , Viscosity
5.
Molecules ; 27(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35268698

ABSTRACT

Organoselenium compounds have been successfully applied in biological, medicinal and material sciences, as well as a powerful tool for modern organic synthesis, attracting the attention of the scientific community. This great success is mainly due to the breaking of paradigm demonstrated by innumerous works, that the selenium compounds were toxic and would have a potential impact on the environment. In this update review, we highlight the relevance of these compounds in several fields of research as well as the possibility to synthesize them through more environmentally sustainable methodologies, involving catalytic processes, flow chemistry, electrosynthesis, as well as by the use of alternative energy sources, including mechanochemical, photochemistry, sonochemical and microwave irradiation.

6.
Beilstein J Org Chem ; 15: 1210-1216, 2019.
Article in English | MEDLINE | ID: mdl-31293668

ABSTRACT

The multicomponent synthesis of prolyl pseudo-peptide catalysts using the Ugi reaction with furfurylamines or isocyanides is described. The incorporation of such a polymerizable furan handle enabled the subsequent polymerization of the peptide catalyst with furfuryl alcohol, thus rendering polyfurfuryl alcohol-supported catalysts for applications in heterogeneous enamine catalysis. The utilization of the polymer-supported catalysts in both batch and continuous-flow organocatalytic procedures proved moderate catalytic efficacy and enantioselectivity, but excellent diastereoselectivity in the asymmetric Michael addition of n-butanal to ß-nitrostyrene that was used as a model reaction. This work supports the potential of multicomponent reactions towards the assembly of catalysts and their simultaneous functionalization for immobilization.

7.
Mol Divers ; 21(4): 893-902, 2017 11.
Article in English | MEDLINE | ID: mdl-28702849

ABSTRACT

The Ugi multicomponent reaction has been used as an important synthetic route to obtain compounds with potential biological activity. We present the rapid and efficient synthesis of [Formula: see text]-amino-1,3-dicarbonyl compounds in moderate to good yields via Ugi flow chemistry reactions performed with a continuous flow reactor. Such [Formula: see text]-amino-1,3-dicarbonyl compounds can act as precursors for the production of [Formula: see text]-amino acids via hydrolysis of the ethyl ester group as well as building blocks for the synthesis of novel compounds with the 1,2,3-triazole ring. The [Formula: see text]-amino acid derivatives of the Ugi flow chemistry reaction products were then used for dipeptide synthesis.


Subject(s)
Triazoles/chemistry , Triazoles/chemical synthesis , Aldehydes/chemistry , Chemistry Techniques, Synthetic , Click Chemistry , Models, Molecular , Molecular Conformation , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL