Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 15(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37896305

ABSTRACT

The study focused on the evaluation of the influence of inhibitory compounds such as hydrogen sulfide (H2S) and methanol (CH3OH) on the catalytic productivity and properties of the polymers in the polymerization process with the Ziegler-Natta catalyst. The investigation involved experimental measurements, computational calculations using DFT, and analysis of various parameters, such as molecular weight, melt flow index, xylene solubility, and reactivity descriptors. The results revealed a clear correlation between the concentration of H2S and methanol and the parameters evaluated. Increasing the H2S concentrations, on average by 0.5 and 1.0 ppm, resulted in a drastic decrease in the polymer's molecular weight. A directly proportional relationship was observed between the flow rate and the H2S concentration. In the case of methanol, the change occurred from 60 ppm, causing a sharp decrease in the molecular weight of the polymer, which translates into an increase in the fluidity index and a decrease in solubility in xylene. The presence of these inhibitors also affected the catalytic activity, causing a reduction in the productivity of the Ziegler-Natta catalyst. Computational calculations provided a deeper understanding of the molecular behavior and reactivity of the studied compounds. The computational calculations yielded significantly lower results compared to other studies, with values of -69.0 and -43.9 kcal/mol for the Ti-CH3OH and H2S interactions, respectively. These results indicate remarkable stability in the studied interactions and suggest that both adsorptions are highly favorable.

2.
Polymers (Basel) ; 15(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37688245

ABSTRACT

Polypropylene synthesis is a critical process in the plastics industry, where control of catalytic activity is essential to ensure the quality and performance of the final product. In this study, the effect of two inhibitors, propanol and arsine, on the properties of synthesized polypropylene was investigated. Experiments were conducted using a conventional catalyst to polymerize propylene, and different concentrations of propanol and arsine were incorporated into the process. The results revealed that the addition of propanol led to a significant decrease in the Melt Flow Index (MFI) of the resulting polypropylene. The reduction in the MFI was most notable at a concentration of 62.33 ppm propanol, suggesting that propanol acts as an effective inhibitor by slowing down the polymerization rate and thus reducing the fluidity of the molten polypropylene. On the other hand, introducing arsine as an inhibitor increased the MFI of polypropylene. The maximum increase in the MFI was observed at a concentration of 0.035 ppm arsine. This suggests that small amounts of arsine affect the MFI and Mw of the produced PP. Regarding the catalyst productivity, it was found that as the concentration of propanol in the sample increased (approximately seven ppm), there was a decrease in productivity from 45 TM/kg to 44 TM/kg. Starting from 10 ppm, productivity continued to decline, reaching its lowest point at 52 ppm, with only 35 MT/kg. In the case of arsine, changes in catalyst productivity were observed at lower concentrations than with propanol. Starting from about 0.006 ppm, productivity decreased, reaching 39 MT/kg at a concentration of 0.024 ppm and further decreasing to 36 TM/kg with 0.0036 ppm. Computational analysis supported the experimental findings, indicating that arsine adsorbs more stably to the catalyst with an energy of -60.8 Kcal/mol, compared to propanol (-46.17 Kcal/mol) and isobutyl (-33.13 Kcal/mol). Analyses of HOMO and LUMO orbitals, as well as reactivity descriptors, such as electronegativity, chemical potential, and nucleophilicity, shed light on the potential interactions and chemical reactions involving inhibitors. Generated maps of molecular electrostatic potential (MEP) illustrated the charge distribution within the studied molecules, further contributing to the understanding of their reactivity. The computational results supported the experimental findings and provided additional information on the molecular interactions between the inhibitors and the catalyst, shedding light on the possible modes of inhibition. Solubles in xylene values indicate that both propanol and arsine affect the polymer's morphology, which may have significant implications for its properties and final applications.

3.
Polymers (Basel) ; 15(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37765660

ABSTRACT

This research study examined how the use of dimethylformamide (DMF) as an inhibitor affects the propylene polymerization process when using a Ziegler-Natta catalyst. Several experiments were carried out using TiCl4/MgCl2 as a catalyst, aluminum trialkyl as a cocatalyst, and different amounts of DMF. Then, we analyzed how DMF influences other aspects of the process, such as catalyst activity, molecular weight, and the number of branches in the polymer chains obtained, using experimental and computational methods. The results revealed that as the DMF/Ti ratio increases, the catalyst activity decreases. From a concentration of 5.11 ppm of DMF, a decrease in catalyst activity was observed, ranging from 45 TM/Kg to 44 TM/Kg. When the DMF concentration was increased to 40.23 ppm, the catalyst activity decreased to 43 TM/Kg, and with 75.32 ppm, it dropped even further to 39 TM/Kg. The highest concentration of DMF evaluated, 89.92 ppm, resulted in a catalyst productivity of 36.5 TM/Kg and lost productivity of 22%. In addition, significant changes in the polymer's melt flow index (MFI) were noted as the DMF concentration increased. When 89.92 ppm of DMF was added, the MFI loss was 75%, indicating a higher flowability of the polymer. In this study, it was found that dimethylformamide (DMF) exhibits a strong affinity for the titanium center of a Ziegler-Natta (ZN) catalyst, with an adsorption energy (Ead) of approximately -46.157 kcal/mol, indicating a robust interaction. This affinity is significantly higher compared to propylene, which has an Ead of approximately -5.2 kcal/mol. The study also revealed that the energy gap between the highest occupied molecular orbital (HOMO) of DMF and the lowest unoccupied molecular orbital (SOMO) of the Ziegler-Natta (ZN) catalyst is energetically favorable, with a value of approximately 0.311 eV.

4.
Polymers (Basel) ; 15(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37242839

ABSTRACT

The presence of impurities such as H2S, thiols, ketones, and permanent gases in propylene of fossil origin and their use in the polypropylene production process affect the efficiency of the synthesis and the mechanical properties of the polymer and generate millions of losses worldwide. This creates an urgent need to know the families of inhibitors and their concentration levels. This article uses ethylene green to synthesize an ethylene-propylene copolymer. It describes the impact of trace impurities of furan in ethylene green and how this furan influences the loss of properties such as thermal and mechanical properties of the random copolymer. For the development of the investigation, 12 runs were carried out, each in triplicate. The results show an evident influence of furan on the productivity of the Ziegler-Natta catalyst (ZN); productivity losses of 10, 20, and 41% were obtained for the copolymers synthesized with ethylene rich in 6, 12, and 25 ppm of furan, respectively. PP0 (without furan) did not present losses. Likewise, as the concentration of furan increased, it was observed that the melt flow index (MFI), thermal (TGA), and mechanical properties (tensile, bending, and impact) decreased significantly. Therefore, it can be affirmed that furan should be a substance to be controlled in the purification processes of green ethylene.

5.
BJA Open ; 4: 100093, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37588784
6.
Ultrasound Med Biol ; 42(12): 2887-2892, 2016 12.
Article in English | MEDLINE | ID: mdl-27680571

ABSTRACT

Three-dimensional power Doppler quantification has limited application because of its high dependency on attenuation. The purpose of the study described here was to assess if different degrees of attenuation, depending on pulse repetition frequency (PRF) adjustment, alter 3-D power Doppler quantification in a region of 100% moving blood when using vascularization index, flow index and vascularization flow index (VFI). A cubic-shaped gelatin phantom with a 1.8-mm-internal-diameter silicon tube was used. The tube, placed at 45° to the phantom's surface, was filled with blood-mimicking fluid with as constant maximum velocity of 30 cm/s. Two different attenuation blocks (low and high attenuation) were alternatively placed between the phantom and the transvaginal transducer. One single observer acquired 10 data sets for each PRF level from 0.3 to 7.5 kHz, using the high- and low-attenuation blocks, for a total of 200 3-D power Doppler data sets. We assessed VFI from 1.5-mm-diameter spherical samples, virtually placed inside the tube, always at the same position. No difference was noted between high- and low-attenuation VFI values when using a PRF of 0.3 kHz. As PRF increased, it was observed that VFI quantification progressively differed between low and high attenuation. Also, a slope on VFI values for both high- and low-attenuation models could be observed when increasing PRF, particularly above 4.0 kHz. We concluded that PRF adjustment is very relevant when using VFI to quantify 3-D power Doppler signal.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Ultrasonography, Doppler/methods , Phantoms, Imaging
7.
Materials (Basel) ; 9(11)2016 Nov 14.
Article in English | MEDLINE | ID: mdl-28774042

ABSTRACT

Metamaterial behavior of polymer nanocomposites (NCs) based on isotactic polypropylene (iPP) and multi-walled carbon nanotubes (MWCNTs) was investigated based on the observation of a negative dielectric constant (ε'). It is demonstrated that as the dielectric constant switches from negative to positive, the plasma frequency (ωp) depends strongly on the ultrasound-assisted fabrication method, as well as on the melt flow index of the iPP. NCs were fabricated using ultrasound-assisted extrusion methods with 10 wt % loadings of MWCNTs in iPPs with different melt flow indices (MFI). AC electrical conductivity (σ(AC)) as a function of frequency was determined to complement the electrical classification of the NCs, which were previously designated as insulating (I), static-dissipative (SD), and conductive (C) materials. It was found that the SD and C materials can also be classified as metamaterials (M). This type of behavior emerges from the negative dielectric constant observed at low frequencies although, at certain frequencies, the dielectric constant becomes positive. Our method of fabrication allows for the preparation of metamaterials with tunable ωp. iPP pure samples show only positive dielectric constants. Electrical conductivity increases in all cases with the addition of MWCNTs with the largest increases observed for samples with the highest MFI. A relationship between MFI and the fabrication method, with respect to electrical properties, is reported.

8.
Materials (Basel) ; 8(11): 7900-7912, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-28793686

ABSTRACT

Isotactic polypropylenes (iPP) with different melt flow indexes (MFI) were used to fabricate nanocomposites (NCs) with 10 wt % loadings of multi-wall carbon nanotubes (MWCNTs) using ultrasound-assisted extrusion methods to determine their effect on the morphology, melt flow, and electrical properties of the NCs. Three different types of iPPs were used with MFIs of 2.5, 34 and 1200 g/10 min. Four different NC fabrication methods based on melt extrusion were used. In the first method melt extrusion fabrication without ultrasound assistance was used. In the second and third methods, an ultrasound probe attached to a hot chamber located at the exit of the die was used to subject the sample to fixed frequency and variable frequency, respectively. The fourth method is similar to the first method, with the difference being that the carbon nanotubes were treated in a fluidized air-bed with an ultrasound probe before being used in the fabrication of the NCs with no ultrasound assistance during extrusion. The samples were characterized by MFI, Optical microscopy (OM), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), electrical surface resistivity, and electric charge. MFI decreases in all cases with addition of MWCNTs with the largest decrease observed for samples with the highest MFI. The surface resistivity, which ranged from 1013 to 105 Ω/sq, and electric charge, were observed to depend on the ultrasound-assisted fabrication method as well as on the melt flow index of the iPP. A relationship between agglomerate size and area ratio with electric charge was found. Several trends in the overall data were identified and are discussed in terms of MFI and the different fabrication methods.

SELECTION OF CITATIONS
SEARCH DETAIL