Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 15606, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971868

ABSTRACT

Coaxial nozzles are widely used to produce fibers with core-shell structures. However, conventional coaxial nozzles cannot adjust the coaxiality of the inner and outer needles in real-time during the fiber production process, resulting in uneven fiber wall thickness and poor quality. Therefore, we proposed an innovative semi-flexible coaxial nozzle with a dynamic self-centering function. This new design addresses the challenge of ensuring the coaxiality of the inner and outer needles of the coaxial nozzle. First, based on the principles of fluid dynamics and fluid-structure interaction, a self-centering model for a coaxial nozzle is established. Second, the influence of external fluid velocity and inner needle elastic modulus on the centering time and coaxiality error is analyzed by finite element simulation. Finally, the self-centering performance of the coaxial nozzle is verified by observing the coaxial extrusion process online and measuring the wall thickness of the formed hollow fiber. The results showed that the coaxiality error increased with the increase of Young's modulus E and decreased with the increase of flow velocity. The centering time required for the inner needle to achieve force balance decreases with the increase of Young's modulus ( E ) and fluid velocity ( v f ). The nozzle exhibits significant self-centering performance, dynamically reducing the initial coaxiality error from 380 to 60 µm within 26 s. Additionally, it can mitigate the coaxiality error caused by manufacturing and assembly precision, effectively controlling them within 8 µm. Our research provides valuable references and solutions for addressing issues such as uneven fiber wall thickness caused by coaxiality errors.

2.
Ann Biomed Eng ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941057

ABSTRACT

Some previous researches have demonstrated that appropriate mechanical stimulation can enhance bone formation. However, most studies have employed the strain energy density (SED) method for predicting bone remodeling, with only a few considering the potential impact of wall fluid shear stress (FSS) on this process. To bridge this gap, the current study compared the prediction of bone formation and resorption via SED and wall FSS by using fluid-solid coupling numerical simulation. Specifically, 8-week-old female Sprague-Dawley rats were subjected to stretching of the eighth caudal vertebra using a custom-made device. Based on micro-computed tomography images, a three-dimensional model integrating fluid-solid coupling was created to represent compact bone, cancellous bone, and bone marrow. The animals were grouped into control, 1 Hz, and 10 Hz categories, wherein a tensile displacement load of 1000 µÎµ was applied to the loading end. The results revealed that SED values tended to increase with elevated porosity, whereas wall FSS values decreased it. Notably, wall FSS demonstrated the higher predictive accuracy for cancellous bone resorption than SED. These findings support the notion that fluid flow within cancellous bone spaces can significantly impact bone resorption. Therefore, the findings of this study contribute to a more comprehensive understanding of the role of wall FSS in bone remodeling, providing a theoretical support for the dynamic evolution of bone structures under mechanical stimulation.

3.
Sci Rep ; 14(1): 14786, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926465

ABSTRACT

In order to provide suitable material selection for such fluid-solid coupling model tests, orthogonal experimental studies were conducted using iron concentrate powder and barite powder as aggregates, cement as cementitious materials, and gypsum and clay as modifiers. This research showed: (1) The ATC plays a dominant role in controlling the strength indexes and water absorption of the material, and these indexes show a significant decrease with the increase of the bone adhesive ratio. For each level of ATC increase, the compressive strength decreases by 0.2 MPa, the elastic modulus decreases by 10-20 MPa, and the cohesion decreases by 25-45 kPa. (2) Mixing gypsum and cement cannot jointly promote strength growth. (3) With the increase of GTC, the water absorption rate of the material increases, while the softening coefficient and permeability coefficient decrease obviously. Gypsum, which accounts for 4-16% of cement content, can be suitable for studying the hydraulic properties of similar materials for most sedimentary rock. Based on Weibull statistical damage theory, a damage constitutive model for the entire process of rock triaxial compression under the combined action of rainwater infiltration and load was established. Due to the influence of internal pores, the experimental and theoretical results have a certain deviation, the higher the confining pressure, the more obvious the deviation. In addition, the higher the rock strength, the less obvious the deviation caused by pores. This damage model can better describe the progressive failure process of rocks after rainwater infiltration, and can provide theoretical reference for the study of slope stability caused by rainwater infiltration.

4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 351-359, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38686417

ABSTRACT

In this work, we investigated the influence of the bifurcation geometry of the iliac artery on the propagation properties of the pulse wave, and applied software to establish the straight bifurcation and curved bifurcation bi-directional fluid-solid coupling finite element analysis models based on the iliac artery, and compared and analyzed the influence of the bifurcation angle of the blood vessel on the propagation characteristics of the pulse wave. It was found that the bifurcation geometry had a significant effect on the pulse wave propagation in the iliac arteries, and the pressure and velocity pulse wave amplitudes predicted by these two models had a good agreement with that before the vessel bifurcation in a cardiac cycle. The curvilinear bifurcation model predicted the pulse wave amplitude to be lower and the pressure drop to be smaller after the bifurcation, which was more in line with the actual situation of the human body. In addition, the bifurcation point is accompanied by the stress concentration phenomenon in the vessel wall, and there is a transient increase in the velocity pulse waveform amplitude, which was consistent with the fact that the bifurcation site is prone to phenomena such as arterial stenosis and hardening. The preliminary results of this paper will provide some reference for the use of pulse waveforms in the diagnosis of arterial diseases.


Subject(s)
Finite Element Analysis , Iliac Artery , Models, Cardiovascular , Pulse Wave Analysis , Humans , Iliac Artery/physiology , Blood Pressure/physiology , Pulsatile Flow/physiology , Blood Flow Velocity/physiology , Computer Simulation
5.
J Biomech Eng ; 146(6)2024 06 01.
Article in English | MEDLINE | ID: mdl-38470372

ABSTRACT

The cilia of the outer hair cells (OHCs) are the key microstructures involved in cochlear acoustic function, and their interactions with lymph in the cochlea involve complex, highly nonlinear, coupled motion and energy conversions, including macroscopic fluid-solid coupling. Recent optical measurements have shown that the frequency selectivity of the cochlea at high sound levels is entirely mechanical and is determined by the interactions of the hair bundles with the surrounding fluid. In this paper, an analytical mathematical model of the spiral cochlea containing macro- and micromeasurements was developed to investigate how the phonosensitive function of OHCs' motions is influenced by the macrostructural and microstructural fluid-solid coupling in the spiral cochlea. The results showed that the macrostructural and microstructural fluid-solid coupling exerted the radial forces of OHCs through the flow field, deflecting the cilia and generating frequency-selective properties of the microstructures. This finding showed that microstructural frequency selectivity arises from the radial motions of stereocilia hair bundles and enhances the hearing of sound signals at specific frequencies. It also implied that the macrostructural and microstructural fluid-solid couplings influence the OHCs' radial forces and that this is a key factor in the excitation of ion channels that enables their activity in helping the brain to detect sound.


Subject(s)
Cochlea , Hearing , Hair Cells, Auditory, Outer , Motion , Models, Theoretical
6.
Heliyon ; 10(3): e24931, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317993

ABSTRACT

The moisture content of freshly picked walnuts is very high. In order to facilitate storage and transportation, it needs to be dried to prevent mildew. In this study, the pre-drying simulation and experimental study were carried out on the walnut drying equipment made by the research group to determine the optimal drying parameters. The effects of different inlet temperatures (353K, 373K, 393K), drying wind speeds (1.1 m/s, 1.4 m/s, 1.7 m/s) and drying time (30min, 45min, 60min) on the temperature and velocity fields of fluid and walnuts in the drying device were investigated by using the orthogonal test method of three factors and three levels. FLUENT software was used to simulate the drying process of open walnuts under hot air heating, and the distribution of fluid temperature field and velocity field in the drying device and the temperature change law of walnuts were obtained. The results show that when the inlet temperature is 393K, the inlet velocity is 1.7 m/s, and the drying time is 45min, the temperature field distribution of fluid and walnut in the drying device is the best and the change is the most uniform. In addition, the temperature change of the simulation results is consistent with the test results through experiments, which verifies the reliability of the simulation results. In order to more accurately simulate the change law of temperature and humidity transfer in hot air drying of walnuts, the walnut was modeled as a sphere consisting of three layers: walnut shell, air gap and walnut kernel. The reliability of the parameters was verified by surface response analysis. Taking inlet temperature, velocity and drying time as influencing factors and temperature change rate as evaluation index, the determination coefficient of regression model was R2 = 0.9966, and the correction determination coefficient Adj. R2 = 0.9922, indicating three influences. This study provides a theoretical basis for determining the optimum operating parameters of open walnut pre-drying, and has application value for walnut food processing.

7.
Materials (Basel) ; 17(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38399197

ABSTRACT

To calculate and analyze the equivalent resilient modulus of a submerged subgrade, a constitutive model considering the effect of saturation and matrix suction was introduced using ABAQUS's user-defined material (UMAT)subroutine. The pavement response under falling weight deflectometer (FWD) load was simulated at various water levels based on the derived distribution of the resilient modulus within the subgrade. The equivalent resilient modulus of the subgrade was then calculated using the equivalent iteration and weighted average methods. Based on this, the influence of the material and structural parameters of the subgrade was analyzed. The results indicate that the effect of water level rise on the tensile strain at the bottom of the asphalt layer and the compressive strain at the top of the subgrade is obvious, and its trend is similar to an exponential change. The equivalent resilient modulus of the subgrade basically decreases linearly with the rise in the water level, and there is high consistency between the equivalent iteration and weighted average methods. The saturated permeability coefficient and subgrade height have the most significant effect on the resilient modulus of the subgrade, which should be emphasized in the design of submerged subgrades, and the suggested values of the resilient modulus of the subgrade should be proposed according to the relevant construction conditions.

8.
Heliyon ; 10(4): e26035, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38370181

ABSTRACT

Lead-based reactor is a new type of reactor using liquid lead or lead-bismuth alloy as a coolant. As the core working element of the main pump, the impeller is subjected to a huge load when conveying heavy metal liquids and is highly susceptible to damage. In this study, we used ANSYS and FLUENT software to investigate the stress, deformation, and creep deformation of the nuclear main pump impeller under a liquid lead-bismuth environment by the fluid-solid coupling method. The maximum equivalent force of the impeller was located at the junction of the blade and hub, which was prone to fatigue damage under the action of alternating load. The stress, deformation, and creep characteristics of the impeller blade were observed to generally increase with rotational speed. Particularly, the junction of the blade root and hub exhibited high susceptibility to stress concentration and fatigue damage. At a flow rate of 0.64 m/s and a speed of 690 r/min, the maximum equivalent force was 16.7 MPa, which was lower than the yield strength of 316L stainless steel. Additionally, the maximum deformation was less than 0.63 mm. Over a five-year period, the creep of the impeller ranged from a minimum of 0.228% to a maximum of 0.447%, indicating that the impeller can reliably operate in a liquid lead-bismuth environment for at least five years.

9.
BMC Musculoskelet Disord ; 25(1): 123, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336651

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the effects of four different doses of verapamil on the mechanical behaviors of solid and the characteristics of fluid flow in cancellous bone of distal femur of type 2 diabetes rats under dynamic external load. METHODS: Based on the micro-CT images, the finite element models of cancellous bones and fluids at distal femurs of rats in control group, diabetes group, treatment groups VER 4, VER 12, VER 24, and VER 48 (verapamil doses of 4, 12, 24, and 48 mg/kg/day, respectively) were constructed. A sinusoidal time-varying displacement load with an amplitude of 0.8 µm and a period of 1s was applied to the upper surface of the solid region. Then, fluid-solid coupling numerical simulation method was used to analyze the magnitudes and distributions of von Mises stress, flow velocity, and fluid shear stress of cancellous bone models in each group. RESULTS: The results for mean values of von Mises stress, flow velocity and FSS (t = 0.25s) were as follows: their values in control group were lower than those in diabetes group; the three parameters varied with the dose of verapamil; in the four treatment groups, the values of VER 48 group were the lowest, they were the closest to control group, and they were smaller than diabetes group. Among the four treatment groups, VER 48 group had the highest proportion of the nodes with FSS = 1-3 Pa on the surface of cancellous bone, and more areas in VER 48 group were subjected to fluid shear stress of 1-3 Pa for more than half of the time. CONCLUSION: It could be seen that among the four treatment groups, osteoblasts on the cancellous bone surface in the highest dose group (VER 48 group) were more easily activated by mechanical loading, and the treatment effect was the best. This study might help in understanding the mechanism of verapamil's effect on the bone of type 2 diabetes mellitus, and provide theoretical guidance for the selection of verapamil dose in the clinical treatment of type 2 diabetes mellitus.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Rats , Animals , Cancellous Bone/diagnostic imaging , Diabetes Mellitus, Type 2/drug therapy , Verapamil/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Computer Simulation , Stress, Mechanical , Finite Element Analysis
10.
Article in English | MEDLINE | ID: mdl-38231258

ABSTRACT

Trabeculae bone undergoes directional growth along the applied force under physiological loading. The growth of bone structure relies on the coordinated interplay among osteocytes, osteoblasts, and osteoclasts. Under normal circumstances, bone remodeling maintains a state of equilibrium. Excessive bone formation can lead to osteosclerosis, while excessive bone resorption can result in osteoporosis and osteonecrosis. The investigation of the structural characteristics of trabeculae and the mechanotransduction between bone cells plays a vital role in the treatment of bone-related diseases. In this study, a fluid-solid coupling model of the entire vertebral bone was established based on micro-CT images obtained from rat tail vertebrae subjected to tensile loading experiments. The flow characteristics of bone marrow and the mechanical response of osteocytes in different regions under physiological loading were investigated. The results revealed a U-shaped distribution of wall fluid shear stress (FSS) along the longitudinal axis in trabecular bone, with higher FSS regions exhibiting greater mechanical stimulation on osteocytes. These findings elucidate a positive correlation between the mechanical microenvironment among osteocytes, osteoblasts, and osteoclasts, providing potential strategies for the prevention and treatment of bone diseases.

11.
Comput Methods Biomech Biomed Engin ; 27(5): 609-619, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37018022

ABSTRACT

When braided dense-mesh stents are used to treat carotid stenosis, the structural mechanics of vascular stents, the contact mechanics with blood vessels, and the fluid mechanics in the blood environment need to be studied in depth to reduce the damage of stents to blood vessels and the incidence of in-stent restenosis. Three types of braided stents with 8, 16, and 24 strands and laser-cut stents with the corresponding size parameters were designed, and the bending behavior of each of these types of stent, deployment, and fluid dynamic analysis of the 24-strand braided stent were simulated. The results show that the bending stress of the 8-, 16-, and 24-strand braided stents is 46.33%, 50.24%, and 31.86% of that of their laser-cut counterparts. In addition, higher strand density of the braided stents was associated with greater bending stress; after the 24-strand braided stent was expanded within the stented carotid artery, the carotid stenosis rate was reduced from 81.52% to 46.33%. After stent implantation, the maximum stress on the vessel wall in a zero-pressure diastolic environment decreased from 0.34 to 0.20 MPa, the maximum pressure on the intravascular wall surface decreased from 4.89 to 3.98 kPa, the area of high-pressure region decreased, the wall shear force of the stenotic segment throat decreased, and blood flow increased in the stenosis segments. The braided stent had less bending stress and better flexibility than the laser-cut stent under the same stent size parameters; after the 24-strand braided stent was implanted into the stented vessel, it could effectively dilate the vessel, and the blood flow status was improved.


Subject(s)
Carotid Stenosis , Humans , Carotid Stenosis/surgery , Finite Element Analysis , Surgical Mesh , Stents , Hemodynamics , Stress, Mechanical
12.
Sci Prog ; 106(4): 368504231214704, 2023.
Article in English | MEDLINE | ID: mdl-38105497

ABSTRACT

In order to improve the drilling performance of polycrystalline diamond compact bit and prolong its service life during drilling in coal rock under the action of wind cycle, the theoretical calculation model of polycrystalline diamond compact bit cutting teeth temperature was derived based on the theory of tribology and heat transfer. The theoretical temperature field of polycrystalline diamond compact bit-cutting teeth was analyzed. Using the joint simulation of EDEM-FLUENT, the temperature variation law of polycrystalline diamond compact bit cutting teeth under the thermo-fluid-solid coupling was analyzed to verify the validity of the theoretical calculation model of polycrystalline diamond compact bit cutting teeth temperature. By building a rotary drilling test platform and conducting drilling experiments on polycrystalline diamond compact bit under different drilling parameters respectively, the correctness of the theoretical model and the simulation data were verified. In addition, a response surface analysis model was established to study the influence of different drilling parameters on the polycrystalline diamond compact bit cutting teeth temperature during drilling in coal rock. The analysis results show that the influence degree of various drilling parameters on the polycrystalline diamond compact bit cutting teeth temperature from large to small is drilling pressure, drilling speed, coal rock properties, and wind speed. Compared with the working condition without wind cycle, the drilling efficiency of polycrystalline diamond compact bit can be increased by 14.38% and the temperature is reduced by 8% when it drills in coal. The drilling efficiency of polycrystalline diamond compact bit can be increased by 17.79% and the temperature is reduced by 10.5% when it drills in coal gangue.

13.
Biomimetics (Basel) ; 8(6)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37887636

ABSTRACT

The motion process and force of the jumper crossing a multiphase environment are of great significance to the research of small amphibious robots. Here, CFD (Computational Fluid Dynamics)-based simulation analysis for motions through multiphase environments (water-air multiphase) is successfully realized by UDF (user-defined function). The analytical model is first established to investigate the jumping response of the jumpers with respect to the jump angle, force, and water depth. The numerical model of the jumper and its surrounding fluid domain is conducted to obtain various dynamic parameters in the jumping process, such as jumping height and speed. Satisfactory agreements are obtained by comparing the error of repeated simulation results (5%). Meanwhile, the influence of the jumper's own attributes, including mass and structural size, on the jumping performance is analyzed. The flow field information, such as wall shear and velocity when the jumper approaches and breaks through the water surface, is finally extracted, which lays a foundation for the structural design and dynamic underwater analysis of the amphibious robot.

14.
Comput Biol Med ; 163: 107144, 2023 09.
Article in English | MEDLINE | ID: mdl-37315384

ABSTRACT

BACKGROUND: Under external loading, the fluid shear stress (FSS) in the porous structures of bones, such as trabecular or lacunar-canalicular cavity, can influence the biological response of bone cells. However, few studies have considered both cavities. The present study investigated the characteristics of fluid flow at different scales in cancellous bone in rat femurs, as well as the effects of osteoporosis and loading frequency. METHODS: Sprague Dawley rats (3 months old) were divided into normal and osteoporotic groups. A multiscale 3D fluid-solid coupling finite element model considering trabecular system and lacunar-canalicular system was established. Cyclic displacement loadings with frequencies of 1, 2, and 4 Hz were applied. FINDINGS: Results showed that the wall FSS around the adhesion complexes of osteocyte on the canaliculi was higher than that on the osteocyte body. Under the same loading conditions, the wall FSS of the osteoporotic group was smaller than that of the normal group. The fluid velocity and FSS in trabecular pores exhibited a linear relationship with loading frequency. Similarly, the FSS around osteocytes also showed the loading frequency-dependent phenomenon. INTERPRETATION: The high cadence in movement can effectively increase the FSS level on osteocytes for osteoporotic bone, i.e., expand the space within the bone with physiological load. This study might help in understanding the process of bone remodeling under cyclic loading and provide the fundamental data for the development of strategies for osteoporosis treatment.


Subject(s)
Bone Remodeling , Cancellous Bone , Extracellular Fluid , Numerical Analysis, Computer-Assisted , Osteocytes , Osteoporosis , Rats, Sprague-Dawley , Shear Strength , Stress, Mechanical , Osteoporosis/physiopathology , Cancellous Bone/physiology , Osteocytes/physiology , Female , Animals , Extracellular Fluid/physiology , Imaging, Three-Dimensional , Rats
15.
Front Bioeng Biotechnol ; 11: 1106371, 2023.
Article in English | MEDLINE | ID: mdl-37251559

ABSTRACT

Objective: Computed tomography (CT) images of the temporal bone of large vestibular aqueduct syndrome (LVAS) patients were used to establish 3D numerical models based on the structure of the inner ear, which are, in turn, used to construct inner ear fluid-solid coupling models. The physiological features and pathophysiology of LVAS were analyzed from a biomechanical perspective using finite element analysis. Methods: CT images of the temporal bone were collected from five children attending the Second Hospital of Dalian Medical University in 2022. The CT images were used to build 3D models of the inner ear containing the vestibular aqueduct (VA) by Mimics and Geomagic software, and round window membrane models and fluid-solid coupling models were built by ANSYS software to perform fluid-solid coupling analysis. Results: By applying different pressure loads, the deformation of the round window membranes occurred, and their trend was basically the same as that of the load. The deformation and stress of the round window membranes increased with the increase in load. Under the same load, the deformation and stress of the round window membranes increased with the expansion of the midpoint width of the VA. Conclusion: CT images of the temporal bone used clinically could establish a complete 3D numerical model of the inner ear containing VA. Fluctuations in cerebrospinal fluid pressure could affect inner ear pressure, and VA had a limiting effect on the pressure from cerebrospinal fluid. The larger the VA, the smaller the limiting effect on the pressure.

16.
Biomimetics (Basel) ; 8(1)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36810400

ABSTRACT

In medical validation experiments, such as drug testing and clinical trials, 3D bioprinted biomimetic tissues, especially those containing blood vessels, can be used to replace animal models. The difficulty in the viability of printed biomimetic tissues, in general, lies in the provision of adequate oxygen and nutrients to the internal regions. This is to ensure normal cellular metabolic activity. The construction of a flow channel network in the tissue is an effective way to address this challenge by both allowing nutrients to diffuse and providing sufficient nutrients for internal cell growth and by removing metabolic waste in a timely manner. In this paper, a three-dimensional TPMS vascular flow channel network model was developed and simulated to analyse the effect of perfusion pressure on blood flow rate and vascular-like flow channel wall pressure when the perfusion pressure varies. Based on the simulation results, the in vitro perfusion culture parameters were optimised to improve the structure of the porous structure model of the vascular-like flow channel, avoiding perfusion failure due to unreasonable perfusion pressure settings or necrosis of cells without sufficient nutrients due to the lack of fluid passing through some of the channels, and the research work promotes the development of tissue engineering in vitro culture.

17.
Comput Methods Biomech Biomed Engin ; 26(16): 2047-2056, 2023.
Article in English | MEDLINE | ID: mdl-36629847

ABSTRACT

In order to explore the hearing loss resulting from exposure to continuous or intermittent loud noise. A three-dimensional liquid-solid coupling finite element model of spiral cochlea was established. The reliability of the model was verified, and the stress and amplitude of the basilar membrane of the pivotal structure in cochlea were analyzed. The results show that under the action of the same high-pressure sound, the preferential fatigue area of the cochlear high-frequency area mainly causes fatigue in the cochlear. The safer area is a sound pressure level below 70 dB, while one above 90 dB accelerates damage to the ear.


Subject(s)
Cochlea , Hearing , Reproducibility of Results , Basilar Membrane , Sound
18.
Med Eng Phys ; 109: 103910, 2022 11.
Article in English | MEDLINE | ID: mdl-36371087

ABSTRACT

PURPOSE: To find out the effect on the biomechanical response of the eye in the setting of diabetes combined with glaucoma. METHOD: Five finite element models of the human eyes with various iris-lens channel (ILC) distances (2 µm-20 µm) were constructed, respectively. The human eye model used for finite element analysis contain all the ocular contents and the optic nerve head. All these models with different ILC distances were used to simulate the effect of pupillary block and abnormal aqueous flow induced by diabetes. And those models were also used for the biomechanical properties study of ocular tissues under the elevated intraocular pressure (IOP), using unidirectional fluid-solid coupling numerical simulation method. RESULTS: For the most severe cases of pupil block (2 µm), a significant difference in chamber pressure caused the iris to move forward and had posterior adhesion to the lens. And the strain, stress, and displacement of the whole eyeball were significantly higher than those of the other four cases, while the Optic Nerve Head (ONH) region was the opposite. The promotion of IOP to biomechanical response at both global eye and ONH region was close to the normal eye conditions, or even ease for ILC = 2 µm. But in the cases of glaucoma with pupil block and high aqueous flow, the biomechanical properties of the whole eyeball were remarkably enhanced for all IOP conditions. Less influence was observed in the ONH region. CONCLUSION: The promotion of diabetes for glaucoma is not directly on the optic nerve, instead, it indirectly affects the optic nerve by affecting the global eye. Glaucoma combined with diabetes complications may increase the biomechanical damage of IOP to the whole eye.


Subject(s)
Diabetes Complications , Diabetes Mellitus , Glaucoma , Humans , Finite Element Analysis , Intraocular Pressure , Correlation of Data , Biomechanical Phenomena , Glaucoma/complications , Iris
19.
Adv Sci (Weinh) ; 9(28): e2202748, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35975421

ABSTRACT

Evaluating the delamination process in the synthesis of MXenes (2D transition metal carbides and nitrides) is critical for their development and applications. However, the preparation of large defect-free MXene flakes with high yields is challenging. Here, a power-focused delamination (PFD) strategy is demonstrated that can enhance both the delamination efficiency and yield of large Ti3 C2 Tx MXene nanosheets through repetitive precipitation and vortex shaking processes. Following this protocol, a colloidal concentration of 20.4 mg mL-1 of the Ti3 C2 Tx MXene can be achieved after five PFD cycles, and the yield of the basal-plane-defect-free Ti3 C2 Tx nanosheets reaches 61.2%, which is 6.4-fold higher than that obtained using the sonication-exfoliation method. Both nanometer-thin devices and self-supporting films exhibit excellent electrical conductivities (≈25 000 and 8260 S cm-1 for a 1.8 nm thick monolayer and 11 µm thick film, respectively). Hydrodynamic simulations reveal that the PFD method can efficiently concentrate the shear stress on the surface of the unexfoliated material, leading to the exfoliation of the nanosheets. The PFD-synthesized large MXene nanosheets exhibit superior electrical conductivities and electromagnetic shielding (shielding effectiveness per unit volume: 35 419 dB cm2 g-1 ). Therefore, the PFD strategy provides an efficient route for the preparation of high-performance single-layer MXene nanosheets with large areas and high yields.

20.
Materials (Basel) ; 14(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34885463

ABSTRACT

The cooling technology of hot turbine components has been a subject of continuous improvement for decades. In high-pressure turbine blades, the regions most affected by the excessive corrosion are the leading and trailing edges. In addition, high Kt regions at the hot gas path are exposed to cracking due to the low and high cycle fatigue failure modes. Especially in the case of a nozzle guide vane, the ability to predict thermally driven loads is crucial to assess its life and robustness. The difficulties in measuring thermal properties in hot conditions considerably limit the number of experimental results available in the literature. One of the most popular test cases is a NASA C3X vane, but coolant temperature is not explicitly revealed in the test report. As a result of that, numerous scientific works validated against that vane are potentially inconsistent. To address that ambiguity, the presented work was performed on a fully structural and a very fine mesh assuming room inlet temperature on every cooling channel. Special attention was paid to the options of the k-ω SST (shear-stress transport) viscosity model, such as Viscous heating (VH), Curvature correction (CC), Production Kato-Launder (KT), and Production limiter (PL). The strongest impact was from the Viscous heating, as it increases local vane temperature by as much as 40 deg. The significance of turbulent Prandtl number impact was also investigated. The default option used in the commercial CFD code is set to 0.85. Presented study modifies that value using equations proposed by Wassel/Catton and Kays/Crawford. Additionally, the comparison between four, two, and one-equation viscosity models was performed.

SELECTION OF CITATIONS
SEARCH DETAIL
...