ABSTRACT
When fluorophores attach to nanostructured films of intrinsically conducting polymers (ICPs), a quenching of their fluorescence may occur. We have exploited these characteristics for the development of polymeric films that can be used in a simple and efficient molecular diagnosis protocol based on the selective detection of nucleic acids. Our procedure rests on the fact that the fluorescence of 6-carboxyfluorescein-labeled single-stranded DNA (FAM-ssDNA) probes is quenched upon their immobilization on nanostructured ICP - polypyrrole (PPY) and polyaniline (PANI) - films deposited on polyethylene terephthalate (PET) substrates. Hybridization occurs whenever a sample with the complementary sequence is brought in contact with the immobilized probe, with the newly formed ds-DNA chains detaching from the flexible polymeric film and causing the restoration of the fluorescence. This sensing system exhibits a low background signal that depends on both the thickness and hydrophobicity of the films. As a model system, we used a FAM-ssDNA probe specific for the Leishmania infantum parasite. The results confirm this procedure as a simple, fast and highly sensitive scheme for the recognition of the target DNA, with a detection limit of the 1.1â¯nM and 1.3â¯nM for the PPY/PET and PANI/PET films, respectively. In addition, this biosensor has excellent stability and exhibits a good and reproducible performance even when used for the direct detection of ssDNA in relatively complex biological samples.