Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Phys Ther Sport ; 65: 1-6, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37976905

ABSTRACT

OBJECTIVES: This study aimed to determine the effect of foot strike patterns and cadences in male runners with patellofemoral pain (PFP). DESIGN: Cross-sectional study. SETTING: Biomechanics lab. METHODS: 20 male runners with PFP were instructed to randomly complete six running conditions (three cadence conditions in rearfoot strike pattern (RFS) or forefoot strike (FFS)) under a preferred running speed. MAIN OUTCOME MEASURES: The primary outcomes were peak knee joint and moment, and secondary outcomes were patellofemoral joint stress. RESULTS: Running with increased cadence has a lower flexion angle (P = 0.027, η2 = 0.45), lower extension moment (P = 0.011, η2 = 0.29), lower internal rotation moment (P = 0.040, η2 = 0.17), lower patellofemoral stress (P = 0.029, η2 = 0.52) than preferred cadence. FFS running performed significantly lower flexion angle (P = 0.003, η2 = 0.39), lower extension moment (P < 0.001, η2 = 0.91), lower adduction moment (P = 0.020, η2 = 0.25) lower patellofemoral stress (P < 0.001, η2 = 0.81) than RFS running for all cadence. CONCLUSIONS: Preliminary findings provide new perspectives for male runners with PFP to unload patellofemoral joint stress in managing PFP through the combination of the FFS pattern and increased cadence.


Subject(s)
Patellofemoral Joint , Patellofemoral Pain Syndrome , Male , Humans , Cross-Sectional Studies , Foot , Knee Joint , Biomechanical Phenomena , Gait
2.
J Sport Health Sci ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38030065

ABSTRACT

BACKGROUND: Combined knee valgus and tibial internal rotation (VL + IR) moments have been shown to stress the anterior cruciate ligament (ACL) in several in vitro cadaveric studies. To utilize this knowledge for non-contact ACL injury prevention in sports, it is necessary to elucidate how the ground reaction force (GRF) acting point (center of pressure (CoP)) in the stance foot produces combined knee VL + IR moments in risky maneuvers, such as cuttings. However, the effects of the GRF acting point on the development of the combined knee VL + IR moment in cutting are still unknown. METHODS: We first established the deterministic mechanical condition that the CoP position relative to the tibial rotational axis differentiates the GRF vector's directional probability for developing the combined knee VL + IR moment, and theoretically predicted that when the CoP is posterior to the tibial rotational axis, the GRF vector is more likely to produce the combined knee VL + IR moment than when the CoP is anterior to the tibial rotational axis. Then, we tested a stochastic aspect of our theory in a lab-controlled in vivo experiment. Fourteen females performed 60° cutting under forefoot/rearfoot strike conditions (10 trials each). The positions of lower limb markers and GRF data were measured, and the knee moment due to GRF vector was calculated. The trials were divided into anterior- and posterior-CoP groups depending on the CoP position relative to the tibial rotational axis at each 10 ms interval from 0 to 100 ms after foot strike, and the occurrence rate of the combined knee VL + IR moment was compared between trial groups. RESULTS: The posterior-CoP group showed significantly higher occurrence rates of the combined knee VL + IR moment (maximum of 82.8%) at every time point than those of the anterior-CoP trials, as theoretically predicted by the deterministic mechanical condition. CONCLUSION: The rearfoot strikes inducing the posterior CoP should be avoided to reduce the risk of non-contact ACL injury associated with the combined knee VL + IR stress.

3.
J Sports Sci Med ; 22(3): 582-590, 2023 09.
Article in English | MEDLINE | ID: mdl-37711715

ABSTRACT

This study aims to quantify how habitual foot strike patterns would affect ankle kinetics and the behavior and mechanics of the medial gastrocnemius-tendon unit (MTU) during running. A total of 14 runners with non-rearfoot strike patterns (NRFS) and 15 runners with rearfoot strike patterns (RFS) ran on an instrumented treadmill at a speed of 9 km/h. An ultrasound system and a motion capture system were synchronously triggered to collect the ultrasound images of the medial gastrocnemius (MG) and marker positions along with ground reaction forces (GRF) during running. Ankle kinetics (moment and power) and MG/MTU behavior and mechanical properties (MG shortening length, velocity, force, power, MTU shortening/lengthening length, velocity, and power) were calculated. Independent t-tests were performed to compare the two groups of runners. Pearson correlation was conducted to detect the relationship between foot strike angle and the MTU behavior and mechanics. Compared with RFS runners, NRFS runners had 1) lower foot strike angles and greater peak ankle moments; 2) lower shortening/change length and contraction velocity and greater MG peak force; 3) greater MTU lengthening, MTU shortening length and MTU lengthening velocity and power; 4) the foot strike angle was positively related to the change of fascicle length, fascicle contraction length, and MTU shortening length during the stance phase. The foot strike angle was negatively related to the MG force and MTU lengthening power. The MG in NRFS runners appears to contract with greater force in relatively isometric behavior and at a slower shortening velocity. Moreover, the lengthening length, the lengthening velocity of MTU, and the MG force were greater in habitual NRFS runners, leading to a stronger stretch reflex response potentially.


Subject(s)
Running , Tendons , Humans , Tendons/diagnostic imaging , Foot , Lower Extremity , Ankle Joint
4.
J Appl Biomech ; 39(4): 237-245, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37419494

ABSTRACT

There are relatively few running studies that have attempted to prospectively identify biomechanical risk factors associated with Achilles tendon (AT) injuries. Therefore, the aim was to prospectively determine potential running biomechanical risk factors associated with the development of AT injuries in recreational, healthy runners. At study entry, 108 participants completed a set of questionnaires. They underwent an analysis of their running biomechanics at self-selected running speed. The incidence of AT running-related injuries (RRI) was assessed after 1-year using a weekly questionnaire standardized for RRI. Potential biomechanical risk factors for the development of AT RRI injury were identified using multivariable logistic regression. Of the 103 participants, 25% of the sample (15 males and 11 females) reported an AT RRI on the right lower limb during the 1-year evaluation period. A more flexed knee at initial contact (odds ratio = 1.146, P = .034) and at the midstance phase (odds ratio = 1.143, P = .037) were significant predictors for developing AT RRI. The results suggested that a 1-degree increase in knee flexion at initial contact and midstance was associated with a 15% increase in the risk of an AT RRI, thus causing a limitation of training or a stoppage of running in runners.


Subject(s)
Achilles Tendon , Ankle Injuries , Running , Male , Female , Humans , Prospective Studies , Lower Extremity , Knee , Running/injuries , Biomechanical Phenomena
5.
BMC Sports Sci Med Rehabil ; 15(1): 86, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452424

ABSTRACT

BACKROUND: Foot strike pattern (FSP) is defined by the way the foot makes initial ground contact and is influenced by intrinsic and extrinsic factors. This study investigated the effect of running speed on asymmetries of FSP. METHODS: Seventeen female and nineteen male soccer players performed an incremental running test on an instrumented treadmill starting at 2.0 m/s until complete exhaustion. Force plate data were used to categorize foot strikes into rearfoot (RFS) and non-rearfoot strikes. Additionally, peak vertical ground reaction force (peakGRF) and stride time were calculated. The symmetry index (SI) was used to quantify lateral asymmetries between legs. RESULTS: The SI indicated asymmetries of the rate of RFS (%RFS) of approximately 30% at slow running speed which decreased to 4.4% during faster running speed (p = 0.001). There were minor asymmetries in peakGRF and stride time at each running stage. Running speed influenced %RFS (p < 0.001), peakGRF (p < 0.001) and stride time (p < 0.001). Significant interaction effects between running speed and sex were shown for %RFS (p = 0.033), peakGRF (p < 0.001) and stride time (p = 0.041). CONCLUSION: FSP of soccer players are asymmetric at slower running speed, but symmetry increases with increasing speed. Future studies should consider that FSP are non-stationary and influenced by running speed but also differ between legs.

6.
Bioengineering (Basel) ; 10(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36829758

ABSTRACT

As a crucial and vulnerable component of the lower extremities, the medial gastrocnemius-Achilles tendon unit (gMTU) plays a significant role in sport performance and injury prevention during long-distance running. However, how habitual foot strike patterns influence the morphology of the gMTU remains unclear. Therefore, this study aimed to explore the effects of two main foot strike patterns on the morphological and mechanical characteristics of the gMTU. Long-distance male runners with habitual forefoot (FFS group, n = 10) and rearfoot strike patterns (RFS group, n = 10) and male non-runners (NR group, n = 10) were recruited. A Terason uSmart 3300 ultrasonography system was used to image the medial gastrocnemius (MG) and Achilles tendon, Image J software to analyze the morphology, and a dynamometer to determine plantar flexion torque during maximal voluntary isometric contractions. The participants first performed a 5-minute warm up; then, the morphological measurements of MG and AT were recorded in a static condition; finally, the MVICs test was conducted to investigate the mechanical function of the gMTU. One-way ANOVA and nonparametric tests were used for data analysis. The significance level was set at a p value of <0.05. The muscle fascicle length (FL) (FFS: 67.3 ± 12.7, RFS: 62.5 ± 7.6, NRs: 55.9 ± 2.0, η2 = 0.187), normalized FL (FFS: 0.36 ± 0.48, RFS: 0.18 ± 0.03, NRs: 0.16 ± 0.01, η2 = 0.237), and pennation angle (PA) (FFS: 16.2 ± 1.9, RFS: 18.9 ± 2.8, NRs: 19.3 ± 2.4, η2 = 0.280) significantly differed between the groups. Specifically, the FL and normalized FL were longer in the FFS group than in the NR group (p < 0.05), while the PA was smaller in the FFS group than in the NR group (p < 0.05). Conclusion: Long-term running with a forefoot strike pattern could significantly affect the FL and PA of the MG. A forefoot strike pattern could lead to a longer FL and a smaller PA, indicating an FFS pattern could protect the MG from strain under repetitive high loads.

7.
Rev. esp. podol ; 34(2): 121-131, 2023. ilus
Article in Spanish | IBECS | ID: ibc-229381

ABSTRACT

Este artículo examina la relación entre los patrones de pisada de corredores de larga distancia (Rearfoot Strike [RFS] y Non Rearfoot Strike [NRFS]) y varios aspectos como lesiones, rendimiento y biomecánica. A pesar de que correr se ha establecido como una actividad popular con beneficios cardiovasculares, respiratorios y psicológicos, conlleva un riesgo significativo de lesiones. Se encontró que la mayoría de los corredores adoptan un patrón RFS, que tiende a aumentar con la distancia recorrida, la fatiga y el uso de calzado amortiguado. Aunque algunos estudios sugieren una relación entre ciertos patrones de pisada y lesiones específicas, no hay suficiente evidencia para recomendar cambios en el patrón de pisada para la prevención de lesiones. Los corredores de élite tienden a usar un patrón NRFS más que los amateurs, pero la relación entre el patrón de pisada, el rendimiento y las variables biomecánicas es compleja y varía según el individuo. Se concluye que los profesionales de la salud y entrenadores deben considerar estas variaciones al asesorar a los corredores sobre técnicas y estrategias de entrenamiento, prevención, tratamiento y readaptación de lesiones (AU)


This paper examines the relationship between long-distance runners’ foot strike patterns (Rearfoot Strike [RFS] and Non Rearfoot Strike [NRFS]) and various aspects such as injuries, performance, and biomechanics. While running has established itself as a popular activity with cardiovascular, respiratory, and psychological benefits, it carries a significant risk of injuries. It was found that most runners adopt an RFS pattern, which tends to increase with distance covered and the use of cushioned footwear. Although some studies suggest a relationship between certain foot strike patterns and specific injuries, there is insufficient evidence to recommend changes in foot strike patterns for injury prevention. Elite runners tend to use an NRFS pattern more than amateurs, but the relationship between foot strike patterns, performance, and biomechanical variables is complex and varies indivually. It concludes that health professionals and coaches should consider these variations when advising runners on training techniques and strategies, prevention, treatment, and rehabilitation of injuries (AU)


Subject(s)
Humans , Athletic Injuries/etiology , Biomechanical Phenomena , Running/injuries
8.
Biology (Basel) ; 11(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35741339

ABSTRACT

Running is a physical activity and the investigation of its biomechanical aspects is crucial both to avoid injuries and enhance performance. Recreational runners may be liable to increased stress over the body, particularly to lower limb joints. This study investigates the different running patterns of recreational runners by analyzing characteristics of the footwear impact peak, spatiotemporal, and kinematic parameters among those that present with a peak impact and those that do not, with a 3D markerless system. Thirty recreational runners were divided into two groups: impact peak group (IP) (n = 16) and no impact peak group (n = 14) (n-IP). Kinematic and spatiotemporal parameters showed a large Cohen's d effect size between the groups. The mean hip flexion was IP 40.40° versus n-IP 32.30° (d = -0.82). Hip extension was IP 30.20° versus n-IP 27.70° (d = -0.58), and ankle dorsiflexion was IP 20.80°, versus n-IP 13.37° (d = -1.17). Stride length was IP 117.90 cm versus n-IP 105.50 cm (d = -0.84). Steps per minute was IP group 170 spm, versus n-IP 163 spm (d = -0.51). The heel-to-toe drop was mainly 10-12 mm for the IP group and 4-6 mm for the n-IP group. Recreational runners whose hip extension is around 40°, ankle dorsiflexion around 20°, and initial foot contact around 14°, may be predisposed to the presence of an impact peak.

9.
J Sports Sci ; 40(12): 1343-1350, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35634797

ABSTRACT

A simple and accurate method of determining foot strike angle (FSA) during running can simplify data collections and validations of wearable sensors. The purpose of this study was to determine the validity of two simplified methods for estimating FSA and foot angle (throughout the ground contact) from three-dimensional kinematics. Markers were placed on the heel and head of the second metatarsal (HEEL-TOE) or on the lateral side of the head of the fifth metatarsal (HEEL-MET5). When compared to the reference foot segment, the HEEL-TOE method performed similarly with a minimal mean difference (0.28° [0.19°,0.36°], p < 0.001), a high Pearson's r (r = 0.994; p < 0.001), and low bias (-0.20°±1.05°). Alternatively, the HEEL-MET5 method underestimated FSA: mean difference = 4.28° [4.07°,4.91°] (p < 0.001), Pearson's r = 0.968 (p < 0.001), and bias = -4.58°±2.61°. Throughout the contact phase, significant SPM cluster regions were identified, indicating that the HEEL-MET5 method underestimated the angle of the foot for all foot strike patterns in the first 23-34% of the stance (p < 0.025). This study supports the idea that the HEEL-TOE method can be used as a simplified method for determining FSA from 3D kinematics. Researchers should proceed with caution when employing the HEEL-MET5 method, as it is likely underestimating FSA due to foot inversion in the early stance phase.


Subject(s)
Foot , Running , Biomechanical Phenomena , Gait , Heel , Humans
10.
Front Sports Act Living ; 4: 1048655, 2022.
Article in English | MEDLINE | ID: mdl-36726397

ABSTRACT

Gait modifications are commonly advocated to decrease knee forces and pain in runners with patellofemoral pain (PFP). However, it remains unknown if clinicians can expect immediate effects on symptoms. Our objectives were (1) to compare the immediate effects of gait modifications on pain and kinetics of runners with PFP; (2) to compare kinetic changes in responders and non-responders; and (3) to compare the effects between rearfoot strikers (RFS) and non-RFS. Sixty-eight runners with PFP (42 women, 26 men) ran normally on a treadmill before testing six modifications: 1- increase step rate by 10%; 2- 180 steps per minute; 3- decrease step rate by 10%; 4- forefoot striking; 5- heel striking; 6- running softer. Overall, there were more responders (pain decreased ≥1/10 compared with normal gait) during forefoot striking and increasing step rate by 10% (both 35%). Responders showed greater reductions in peak patellofemoral joint force than non-responders during all conditions except heel striking. When compared with non-RFS, RFS reduced peak patellofemoral joint force in a significant manner (P < 0.001) during forefoot striking (partial η 2 = 0.452) and running softer (partial η 2 = 0.302). Increasing step rate by 10% reduced peak patellofemoral joint force in both RFS and non-RFS. Forty-two percent of symptomatic runners reported immediate reductions in pain during ≥1 modification, and 28% had reduced pain during ≥3 modifications. Gait modifications leading to decreased patellofemoral joint forces may be associated with immediate pain reductions in runners with PFP. Other mechanisms may be involved, given that some runners reported decreased symptoms regardless of kinetic changes.

11.
Sensors (Basel) ; 23(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36616928

ABSTRACT

Motion sensors are widely used for gait analysis. The validity of commercial gait analysis systems is of great interest because calculating position/angle-level gait parameters potentially produces an error in the integration process of the motion sensor data; moreover, the validity of ORPHE ANALYTICS, a motion-sensor-based gait analysis system, has not yet been examined. We examined the validity of the gait parameters calculated using ORPHE ANALYTICS relative to those calculated using conventional optical motion capture. Nine young adults performed gait tasks on a treadmill at speeds of 2−12 km/h. The three-dimensional position data and acceleration and angular velocity data of the feet were collected. The gait parameters were calculated from motion sensor data using ORPHE ANALYTICS, and optical motion capture data. Intraclass correlation coefficients [ICC(2,1)] were calculated for relative validities. Eight items, namely, stride duration, stride length, stride frequency, stride speed, vertical height, stance phase duration, swing phase duration, and sagittal angleIC exhibited excellent relative validities [ICC(2,1) > 0.9]. In contrast, sagittal angleTO and frontal angleIC demonstrated good [ICC(2,1) = 0.892−0.833] and moderate relative validity [ICC(2,1) = 0.566−0.627], respectively. ORPHE ANALYTICS was found to exhibit excellent relative validities for most gait parameters. These results suggest its feasibility for gait analysis outside the laboratory setting.


Subject(s)
Gait Analysis , Running , Humans , Young Adult , Reproducibility of Results , Gait , Walking , Biomechanical Phenomena , Spatio-Temporal Analysis
12.
Sports Med Open ; 7(1): 75, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34674077

ABSTRACT

BACKGROUND: Biomechanical factors affecting horizontal-plane hip and knee kinetic chain and anterior cruciate ligament (ACL) injury risk during cutting maneuvers remain unclear. This study aimed to examine whether different foot strike patterns alter horizontal-plane hip and knee kinetics and kinematics during a cutting maneuver in female athletes and clarify the individual force contribution for producing high-risk hip and knee loadings. Twenty-five healthy female athletes performed a 60° cutting task with forefoot and rearfoot first strike conditions. Horizontal-plane hip and knee moment components, angles, and angular velocities were calculated using synchronized data of the marker positions on the body landmarks and ground reaction forces (GRFs) during the task. The one-dimensional statistical parametric mapping paired t test was used to identify the significant difference in kinetic and kinematic time-series data between foot strike conditions. RESULTS: In the rearfoot strike condition, large hip and knee internal rotation loadings were produced during the first 5% of stance due to the application of GRFs, causing a significantly larger hip internal rotation excursion than that of the forefoot strike condition. Dissimilarly, neither initial hip internal rotation displacement nor knee internal rotation GRF loadings were observed in the forefoot strike condition. CONCLUSIONS: Rearfoot strike during cutting appears to increase noncontact ACL injury risk as the GRF tends to produce combined hip and knee internal rotation moments and the high-risk lower limb configuration. Conversely, forefoot strike during cutting appears to be an ACL-protective strategy that does not tend to produce the ACL-harmful joint loadings and lower extremity configurations. Thus, improving foot strike patterns during cutting should be incorporated in ACL injury prevention programs.

13.
Sensors (Basel) ; 21(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34502672

ABSTRACT

(1) Background: Research into foot strike patterns (FSP) has increased due to its potential influence on performance and injury reduction. The purpose of this study was to evaluate changes in FSP throughout a maximal 800-m run using a conformable inertial measurement unit attached to the foot; (2) Methods: Twenty-one subjects (14 female, 7 male; 23.86 ± 4.25 y) completed a maximal 800-m run while foot strike characteristics were continually assessed. Two measures were assessed across 100-m intervals: the percentage of rearfoot strikes (FSP%RF), and foot strike angle (FSA). The level of significance was set to p ≤ 0.05; (3) Results: There were no differences in FSP%RF throughout the run. Significant differences were seen between curve and straight intervals for FSAAVE (F [1, 20] = 18.663, p < 0.001, ηp2 = 0.483); (4) Conclusions: Participants displayed decreased FSA, likely indicating increased plantarflexion, on the curve compared to straight intervals. The analyses of continuous variables, such as FSA, allow for the detection of subtle changes in foot strike characteristics, which is not possible with discrete classifiers, such as FSP%RF.


Subject(s)
Running , Biomechanical Phenomena , Female , Foot , Gait , Humans , Male
14.
J Appl Biomech ; 37(3): 240-247, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33771942

ABSTRACT

The present study aimed to clarify the effect of the foot strike pattern on muscle-tendon behavior and kinetics of the gastrocnemius medialis during treadmill running. Seven male participants ran with 2 different foot strike patterns (forefoot strike [FFS] and rearfoot strike [RFS]), with a step frequency of 2.50 Hz and at a speed of 2.38 m/s for 45 seconds on a treadmill with an instrumented force platform. The fascicle behavior of gastrocnemius medialis was captured using a B-mode ultrasound system with a sampling rate of 75 Hz, and the mechanical work done and power exerted by the fascicle and tendon were calculated. At the initial contact, the fascicle length was significantly shorter in the FFS than in the RFS (P = .001). However, the fascicular velocity did not differ between strike patterns. Higher tendon stretch and recoil were observed in the FFS (P < .001 and P = .017, respectively) compared with the RFS. The fascicle in the positive phase performed the same mechanical work in both the FFS and RFS; however, the fascicle in the negative phase performed significantly greater work in the FFS than in the RFS (P = .001). RFS may be advantageous for requiring less muscular work and elastic energy in the series elastic element compared with the FFS.


Subject(s)
Achilles Tendon , Running , Biomechanical Phenomena , Gait , Humans , Kinetics , Male , Muscle, Skeletal/diagnostic imaging
15.
J Sports Sci ; 39(4): 421-429, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32951516

ABSTRACT

Running while minimizing sound volume can reduce vertical impact loading, potentially reducing injury risks. Fatigue can increase the vertical loading rate during running, but it is unknown whether fatigue influences silent running similarly. This study aimed to explore the differences in vertical impact properties during normal and silent running following a fatiguing task. Seventeen participants performed overground running (normal and silent) before and after a fatiguing running protocol. Running footfall sounds were collected using four microphones surrounding a force platform on the track. Peak impact sound, vertical impact peak force (IPF), instantaneous (VILR), and average vertical loading rate (VALR) were compared from Pre- to Post-fatigue. Peak impact sounds were significantly greater for fatigued runners during normal running when compared to silent running (p < 0.005), without changes in force parameters. Moreover, peak impact sounds, IPF, VILR, and VALR from normal running were greater when compared to silent running (p < 0.001), both fresh or fatigued. Our results suggest that fatigue may not compromise silent running technique, which may be relevant to reduce early vertical impact loading. Therefore, runners seeking to modify running style towards the reduction of impact loading may benefit from including silent running drills in their training sessions.


Subject(s)
Biomechanical Phenomena/physiology , Muscle Fatigue/physiology , Running/physiology , Sound , Adult , Football , Heart Rate , Humans , Isometric Contraction/physiology , Kinetics , Running/injuries , Torque
16.
J Sports Sci ; 39(3): 267-274, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32892713

ABSTRACT

This study investigated whether the use of multi-directional sound recordings could provide sound amplitudes of superior quality for the assessment of vertical impact properties during running. Thirty-four young adults performed overground running at the preferred speed (HS) and while intentionally reducing volume of footfalls (LS). Ground reaction forces and sounds from four microphones surrounding the force platform were recorded. Vertical loading rate, foot strike pattern and peak sound amplitudes from anterior, posterior, medial, and lateral recordings were analysed. Peak vertical force(a), peak propulsion force(b) and running speed(c) showed significant correlations with peak sounds from anterior microphones during HS (ra = 0.35, rb = -0.49, rc = 0.61). Conversely, these variables were correlated with peak sounds from posterior microphones during LS (ra = 0.39, rb = -0.50, rc = 0.70). Moreover, the sensitivity in determining changes in peak sounds vary across microphone locations, as reductions in peak sounds during LS varied from 31% and 49% across locations. Therefore, the relationships between running sounds and force parameters can be highly influenced by the number and location of microphones. Furthermore, anterior and posterior sound perspectives reveal the most significant interactions between sound and force parameters.


Subject(s)
Foot/physiology , Running/physiology , Sound , Sports Equipment , Adult , Biomechanical Phenomena , Gait Analysis , Humans
17.
Sports Health ; 13(1): 71-77, 2021.
Article in English | MEDLINE | ID: mdl-32813597

ABSTRACT

CONTENT: Distance running is one of the most popular physical activities, and running-related injuries (RRIs) are also common. Foot strike patterns have been suggested to affect biomechanical variables related to RRI risks. OBJECTIVE: To determine the effects of foot strike techniques on running biomechanics. DATA SOURCES: The databases of Web of Science, PubMed, EMBASE, and EBSCO were searched from database inception through November 2018. STUDY SELECTION: The initial electronic search found 723 studies. Of these, 26 studies with a total of 472 participants were eligible for inclusion in this meta-analysis. STUDY DESIGN: Systematic review and meta-analysis. LEVEL OF EVIDENCE: Level 4. DATA EXTRACTION: Means, standard deviations, and sample sizes were extracted from the eligible studies, and the standard mean differences (SMDs) were obtained for biomechanical variables between forefoot strike (FFS) and rearfoot strike (RFS) groups using a random-effects model. RESULTS: FFS showed significantly smaller magnitude (SMD, -1.84; 95% CI, -2.29 to -1.38; P < 0.001) and loading rate (mean: SMD, -2.1; 95% CI, -3.18 to -1.01; P < 0.001; peak: SMD, -1.77; 95% CI, -2.21 to -1.33; P < 0.001) of impact force, ankle stiffness (SMD, -1.69; 95% CI, -2.46 to -0.92; P < 0.001), knee extension moment (SMD, -0.64; 95% CI, -0.98 to -0.3; P < 0.001), knee eccentric power (SMD, -2.03; 95% CI, -2.51 to -1.54; P < 0.001), knee negative work (SMD, -1.56; 95% CI, -2.11 to -1.00; P < 0.001), and patellofemoral joint stress (peak: SMD, -0.71; 95% CI, -1.28 to -0.14; P = 0.01; integral: SMD, -0.63; 95% CI, -1.11 to -0.15; P = 0.01) compared with RFS. However, FFS significantly increased ankle plantarflexion moment (SMD, 1.31; 95% CI, 0.66 to 1.96; P < 0.001), eccentric power (SMD, 1.63; 95% CI, 1.18 to 2.08;P < 0.001), negative work (SMD, 2.60; 95% CI, 1.02 to 4.18; P = 0.001), and axial contact force (SMD, 1.26; 95% CI, 0.93 to 1.6; P < 0.001) compared with RFS. CONCLUSION: Running with RFS imposed higher biomechanical loads on overall ground impact and knee and patellofemoral joints, whereas FFS imposed higher biomechanical loads on the ankle joint and Achilles tendon. The modification of strike techniques may affect the specific biomechanical loads experienced on relevant structures or tissues during running.


Subject(s)
Foot/physiology , Running/physiology , Achilles Tendon/physiology , Ankle/physiology , Biomechanical Phenomena , Gait Analysis , Humans , Knee/physiology , Risk Factors , Running/injuries , Stress, Mechanical
18.
Gait Posture ; 83: 147-151, 2021 01.
Article in English | MEDLINE | ID: mdl-33152609

ABSTRACT

BACKGROUND: The purpose of this study was to analyse the effects of ten weeks of different running-retraining programmes on rearfoot strike (RFS) prevalence in adolescents. RESEARCH QUESTION: it is possible to change foot strike pattern in adolescents? METHODS: A total of 180 children (45.3% girls), aged 13-16 years, participated in this intervention study. The children were randomly assigned to one of three experimental groups (EGs) that each carried out a different retraining programme, based on running technique (n = 39), a 15% increased step frequency (SF) (n = 37) and barefoot training (n = 30), performed for three days each week. A control group (CG) (n = 43) did not perform any retraining. A 2D video-based analysis (240 Hz) was used to determine the RFS. RESULTS: At baseline, no significant differences in RFS prevalence were found between the EGs and the CG in either the left (χ2 = 2.048; p = 0.559) or the right foot (χ2 = 0.898; p = 0.825). In the post-test, no significant differences were found for the left foot (χ2 = 7.102; p = 0.069), but there were significant differences for the right foot (χ2 = 9.239; p = 0.025) were observed. In the re-test, no significant differences were found for either the left foot (χ2 = 2.665; p = 0.273) or the right foot (χ2 = 2.182; p = 0.325). In addition, no group displayed significant changes in RFS prevalence from the pre-test to the re-test. There was a trend towards a reduction in the RFS prevalence in both the increased SF group and the barefoot group. MEANING: The main finding of this study was that certain running-retraining programmes performed three times per week for ten weeks are not enough to modify the adolescent foot strike pattern (FSP).


Subject(s)
Biomechanical Phenomena/physiology , Foot Injuries/etiology , Foot/physiopathology , Running/physiology , Adolescent , Female , Foot Injuries/physiopathology , Humans , Longitudinal Studies , Male , Time Factors
19.
Gait Posture ; 83: 9-14, 2021 01.
Article in English | MEDLINE | ID: mdl-33035819

ABSTRACT

BACKGROUND: The acute changes of running biomechanics in habitually shod children when running barefoot have been demonstrated. However, the long-term effects of barefoot running on sprinting biomechanics in children is not well understood. RESEARCH QUESTION: How does four years of participation in a daily school barefoot running program influence sprint biomechanics and stretch-shortening cycle jump ability in children? METHODS: One hundred and one children from barefoot education school (age, 11.2 ±â€¯0.7 years-old) and 93 children from a control school (age, 11.1 ±â€¯0.7 years-old) performed 50 m maximal shod and barefoot sprints and counter movement jump and five repeated-rebound jumping. To analyse sprint kinematics, a high-speed camera (240 fps) was used. In addition, foot strike patterns were evaluated by using three high-speed cameras (300 fps). Jump heights for both jump types and the contact times for the rebound jump were measured using a contact mat system. Two-way mixed ANOVA was used to examine the effect of school factor (barefoot education school vs control school) and footwear factor (barefoot vs shod) on the sprinting biomechanics. RESULTS: Sprinting biomechanics in barefoot education school children was characterised by significantly shorter contact times (p = 0.003) and longer flight times (p = 0.005) compared to control school children regardless of footwear condition. In shod sprinting, a greater proportion of barefoot education school children sprinted with a fore-foot or mid-foot strike compared to control school children (p < 0.001). Barefoot education school children also had a significantly higher rebound jump height (p = 0.002) and shorter contact time than control school children (p = 0.001). SIGNIFICANCE: The results suggest that school-based barefoot running programs may improve aspects of sprint biomechanics and develop the fast stretch-shortening cycle ability in children. In order to confirm this viewpoint, adequately powered randomised controlled trials should be conducted.


Subject(s)
Foot/physiology , Running/physiology , Biomechanical Phenomena , Case-Control Studies , Child , Female , Humans , Male
20.
Article in English | MEDLINE | ID: mdl-32825222

ABSTRACT

Runners strike their feet with three different patterns during running: forefoot, midfoot, and rearfoot. This study aimed to investigate whether runners maintain consistent patterns while running speed and foot condition change. The foot strike patterns of runners when running on a treadmill at paces ranging from slow to fast were recorded from twenty healthy male regular runners, with and without shoes, in random order. A high-speed camera was used to observe the strike patterns, which were then categorized by an experienced physical therapist. Linear-log and Pearson chi-square analysis with a significance level of α = 0.05 was performed to examine the correlation between foot strike pattern, running speed, and shoe conditions. The results suggest that runners strike with different patterns when running with and without shoes (χ2 = 99.07, p < 0.01); runners preferred to adopt heel strike regardless of running speeds when running with shoes. While running barefoot, only 23.8% of landing strikes were rearfoot, and the strike pattern distribution did not change significantly with the running speed (χ2 = 2.26, p = 0.89). In summary, the foot strike preference of runners is correlated with the foot condition (barefoot or shod) rather than running speed. For runners who intend to change their strike patterns for any reason, we recommend that they consider adjusting their footwear, which may naturally help with the foot strike adjustment. Future studies should attempt to use advanced techniques to observe further foot biomechanics in order to discover if changing strike pattern is directly correlated with lower limb injuries.


Subject(s)
Gait , Running , Shoes , Biomechanical Phenomena , Exercise Test , Foot , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...