Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 934
Filter
1.
BMC Res Notes ; 17(1): 187, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970104

ABSTRACT

OBJECTIVE: This study assesses the accuracy of the IrisPlex system, a genetic eye color prediction tool for forensic analysis, in the Kazakh population. The study compares previously published genotypes of 515 Kazakh individuals from varied geographical and ethnohistorical contexts with phenotypic data on their eye color, introduced for the first time in this research. RESULTS: The IrisPlex panel's effectiveness in predicting eye color in the Kazakh population was validated. It exhibited slightly lower accuracy than in Western European populations but was higher than in Siberian populations. The sensitivity was notably high for brown-eyed individuals (0.99), but further research is needed for blue and intermediate eye colors. This study establishes IrisPlex as a useful predictive tool in the Kazakh population and provides a basis for future investigations into the genetic basis of phenotypic variations in this diverse population.


Subject(s)
Eye Color , Humans , Eye Color/genetics , Kazakhstan , Genetic Variation/genetics , Phenotype , Genotype , Genetics, Population/methods , Asian People/genetics
2.
Genes (Basel) ; 15(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38927680

ABSTRACT

DNA quantification is a crucial step in the STR typing workflow for human identification purposes. Given the reaction's nature, qPCR assays may be subjected to the same stochastic effects of traditional PCR for low-input concentrations. The study aims to evaluate the precision of the PowerQuant® (Promega) kit assay measurements and the degree of variability for DNA templates falling below the optimal threshold of the PowerPlex® ESX-17 Fast STR typing kit (Promega). Five three-fold dilutions of the 2800 M control DNA (Promega) were set up. Each dilution (concentrations: 0.05, 0.0167, 0.0055, 0.00185, and 0.000617 ng/µL) was quantified and amplified in four replicates. Variability for qPCR results, STR profile completeness, and EPGs' peak height were evaluated. The qPCR-estimated concentration of casework samples was correlated with profile completeness and peak intensity, to assess the predictive value of qPCR results for the successful STR typing of scarce samples. qPCR was subjected to stochastic effects, of which the degree was inversely proportional to the initial input template. Quantitation results and the STR profile's characteristics were strongly correlated. Due to the intrinsic nature of real casework samples, a qPCR-derived DNA concentration threshold for correctly identifying probative STR profiles may be difficult to establish. Quantitation data may be useful in interpreting and corroborating STR typing results and for clearly illustrating them to the stakeholders.


Subject(s)
Microsatellite Repeats , Real-Time Polymerase Chain Reaction , Humans , Microsatellite Repeats/genetics , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , DNA Fingerprinting/methods , Forensic Genetics/methods , DNA/genetics
3.
Forensic Sci Int Genet ; 72: 103086, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38897164

ABSTRACT

Significant progress has been made in recent years in the development of techniques for Next Generation Sequencing (NGS), or Massively Parallel Sequencing (MPS), of forensically relevant short tandem repeat (STR) loci. However, as these technologies are investigated and adopted by forensic laboratories, new challenges unfold that require further scrutiny. In the analysis of DNA profiles generated using the MiSeq FGx sequencing system, we have observed noise sequences with relatively high readcounts that are challenging to distinguish from genuine alleles. These high read count noise sequences appear as allele sequences with one or a few substituted bases compared to a known allele sequence within the profile. An examination of ForenSeq DNA Signature Prep Kit STR noise sequences revealed that the substituted base of a parent allele can align to the same position on the sequence across noise sequences. This suggests that these substitution events occur at specific positions within the amplicon, resulting in multiple noise reads with substitutions at the same position. Mapping of the noise events onto the original raw read positions revealed a high number of events, or "noise spikes", occurring at specific positions within a given sequencing run. These noise spikes affected reads across the entire run, agnostic of locus or sample, while the position, occurrence, and amplitude of the spikes differed across runs. The majority of noise sequences with high read counts in a DNA profile were generated from base changes at these spike positions, and could be classified as "noise spike artefacts". In this paper we present evidence of the noise spike artefacts and their genesis during the sequencing process in the sequencing-by-synthesis (SBS) cycles, as well as the methods developed to detect them. The information and methods will assist laboratories with detecting noise spikes in MiSeq FGx sequencing runs, differentiating authentic allele sequences from noise spike artefacts, and developing protocols for analyst review and handling of MiSeq FGx data.

4.
Front Genet ; 15: 1401898, 2024.
Article in English | MEDLINE | ID: mdl-38903754

ABSTRACT

Kinship analysis is a crucial aspect of forensic genetics. This study analyzed 1,222 publications on kinship analysis from 1960 to 2023 using bibliometric analysis techniques, investigating the annual publication and citation patterns, most productive countries, organizations, authors and journals, most cited documents and co-occurrence of keywords. The initial publication in this field occurred in 1960. Since 2007, there has been a significant increase in publications, with over 30 published annually except for 2010. China had the most publications (n = 213, 17.43%), followed by the United States (n = 175, 14.32%) and Germany (n = 89, 7.28%). The United States also had the highest citation count. Sichuan University in China has the largest number of published articles. The University of Leipzig and the University of Cologne in Germany exhibit the highest total citation count and average citation, respectively. Budowle B was the most prolific author and Kayser M was the most cited author. In terms of publications, Forensic Science International- Genetics, Forensic Science International, and International Journal of Legal Medicine were the most prolific journals. Among them, Forensic Science International-Genetics boasted the highest h-index, citation count, and average citation rate. The most frequently cited publication was "Van Oven M, 2009, Hum Mutat", with a total of 1,361 citations. The most frequent co-occurrence keyword included "DNA", "Loci", "Paternity testing", "Population", "Markers", and "Identification", with recent interest focusing on "Kinship analysis", "SNP" and "Inference". The current research is centered around microhaplotypes, forensic genetic genealogy, and massively parallel sequencing. The field advanced with new DNA analysis methods, tools, and genetic markers. Collaborative research among nations, organizations, and authors benefits idea exchange, problem-solving efficiency, and high-quality results.

5.
J Forensic Sci ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940006

ABSTRACT

DNA typing of latent fingerprints is highly desirable to increase chances of individualization. We recovered DNA from Cyanoacrylate (CA) fumed fingerprints and used both GlobalFiler™ and ForenSeq™ DNA Signature Prep kits for DNA typing. For GlobalFiler™, samples were processed using a protocol modified for Low Template (LT)-DNA samples (half-volume reactions, 30 cycles) while for ForenSeq™ DNA Signature Prep, samples were processed using a standard protocol and fluorometer-based library quantitation. We evaluated genotyping success and quality of profiles in terms of completeness, Peak Height Ratio/Allele Coverage Ratio, presence of PCR artifacts and drop-in alleles. With GlobalFiler™, average autosomal STR (aSTR) profile completeness was 44.4% with 2-20 pg, 54.3% with 22-60 pg, and 95% with 64-250 pg DNA input. CODIS uploadable profiles were obtained in 2/10, 3/11, and 11/12 samples in these ranges. With ForenSeq™ DNA Signature Prep, average aSTR profile completeness was 19.7% with 1-20 pg and 45.2% with 22-47 pg but increased to 78.3% with 68-122 pg and 86.7% with 618-1000 pg DNA input. Uploadable profiles were obtained in 0/12, 4/11, 4/7, and 3/3 samples for these ranges. Results show very high sensitivity using both kits. Half-volume reactions and 30 cycles had minimal negative effect on Globalfiler™ profile quality, providing support for wider use after validation experiments to routinely improve results from LT samples. A standard protocol for the ForenSeq™ DNA Signature Prep kit was also highly successful with LT DNA obtained from CA-fumed fingerprints with additional information from isometric STR alleles and other markers.

6.
Genes (Basel) ; 15(5)2024 05 14.
Article in English | MEDLINE | ID: mdl-38790251

ABSTRACT

The assessment of degradation is crucial for the analysis of human DNA samples isolated from forensic specimens. Forensic quantitative PCR (qPCR) assays can include multiple targets of varying amplicon size that display differential amplification efficiency, and thus different concentrations, in the presence of degradation. The possibility of deriving information on DNA degradation was evaluated in a forensic qPCR assay not specifically designed to detect DNA fragmentation, the Plexor HY (Promega), by calculating the ratio between the estimated concentrations of autosomal (99 bp) and Y-chromosomal (133 bp) targets ("[Auto]/[Y]"). The [Auto]/[Y] ratio measured in 57 formalin-fixed, paraffin-embedded samples was compared to a quality score (QS) calculated for corresponding STR profiles using quantitative data (allele peak height). A statistically significant inverse correlation was observed between [Auto]/[Y] and QS (R = -0.65, p < 0.001). The [Auto]/[Y] values were highly correlated (R = 0.75, p < 0.001) with the "[Auto]/[D]" values obtained using the PowerQuant (Promega) assay, expressly designed to detect DNA degradation through simultaneous quantification of a short (Auto) and a long (D) autosomal target. These results indicate that it is possible to estimate DNA degradation in male samples through Plexor HY data and suggest an alternative strategy for laboratories lacking the equipment required for the assessment of DNA integrity through dedicated qPCR assays.


Subject(s)
Chromosomes, Human, Y , DNA , Real-Time Polymerase Chain Reaction , Humans , Male , DNA/genetics , Chromosomes, Human, Y/genetics , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Forensic Genetics/methods , Microsatellite Repeats/genetics , DNA Degradation, Necrotic , DNA Fragmentation , DNA Fingerprinting/methods
7.
Forensic Sci Int Genet ; 71: 103062, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795552

ABSTRACT

Microhaplotypes (MHs) were first recommended by Prof. Kidd for use in forensics because they can improve human identification, kinship analysis, mixture deconvolution, and ancestry prediction. Since their introduction, extensive research has demonstrated the advantages of MHs in forensic applications and provided useful data for different populations. Currently, two databases, ALFRED (ALlele FREquency Database) and MicroHapDB (MicroHaplotype DataBase), house the published MH information and population data. We previously constructed a single nucleotide polymorphism SNP-SNP MH database (D-SNPsDB) of MHs within 50 bp on the whole human genome for 26 populations integrating basic data such as physical genome positions, mapping of variant identifiers (rsIDs), allele frequencies, and basic variant information. Building upon the previous research, we further selected MHs containing at least two variants (SNPs and/or insertions/deletions [InDels]) within a short DNA fragment (≤ 50 bp) in 26 populations based on the 1000 Genomes Project dataset (Phase 3) to construct a more comprehensive database. Subsequently, we established a user-friendly website that allows users to search the MH database (MHBase) based on their research objectives and study population to find suitable loci and provides other functions such as querying reported loci, performing online calculations using the PHASE software, and calculating ancestral-related parameters. The loci in the database are classified as SNP-based MHs, which include only SNPs, and InDel-including MHs, which contain at least one InDel. Here, we provide a detailed overview of the MHBase and an analysis of shared loci at the global and continental levels, ancestral markers, the genetic distance within loci, and mapping with the genome annotation file. The website is an accessible and useful tool for researchers engaged in marker discovery, population studies, assay development, and panel design.


Subject(s)
Databases, Nucleic Acid , Forensic Genetics , Gene Frequency , Haplotypes , Polymorphism, Single Nucleotide , Humans , Forensic Genetics/methods , Genetics, Population , INDEL Mutation , Databases, Genetic , Internet , Software
8.
Ann Hum Genet ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766954

ABSTRACT

INTRODUCTION: Multiple insertion-deletion (multi-InDel) has greater potential in forensic genetics than InDel, and its efficacy in kinship testing, individual identification, DNA mixture detection and ancestry inference remains to be explored. METHODS: Consequently, we designed an efficient and robust system consisting of 41 multi-InDels to evaluate its efficacy in forensic applications in Chinese Hezhou Han (HZH) and Southern Shaanxi Han (SNH) populations and explore the genetic relationships between the SNH, HZH, and 26 reference populations. RESULTS AND CONCLUSION: The obtained results showed that 38 out of the 41 multi-InDels had fairly high genetic variations. The the cumulative probability of discrimination and exclusion values of the multi-InDels (except MI38) in HZH and SNH populations both exceeded 1-e-25 and 1-e-6, correspondingly. The genetic compositions of HZH and SNH individuals were similar to that of East Asians and the Naive Bayes model could well distinguish East Asians, Africans and Americans. These results indicated that the multi-InDel systerm can serve as an effective tool to provide important evidence for the development of multi-InDels in forensic practice and better analyse the genetic background of the Han Chinese populations.

9.
Front Oncol ; 14: 1297135, 2024.
Article in English | MEDLINE | ID: mdl-38715774

ABSTRACT

Variations in the tumor genome can result in allelic changes compared to the reference profile of its homogenous body source on genetic markers. This brings a challenge to source identification of tumor samples, such as clinically collected pathological paraffin-embedded tissue and sections. In this study, a probabilistic model was developed for calculating likelihood ratio (LR) to tackle this issue, which utilizes short tandem repeat (STR) genotyping data. The core of the model is to consider tumor tissue as a mixture of normal and tumor cells and introduce the incidence of STR variants (φ) and the percentage of normal cells (Mxn) as a priori parameters when performing calculations. The relationship between LR values and φ or Mxn was also investigated. Analysis of tumor samples and reference blood samples from 17 colorectal cancer patients showed that all samples had Log 10(LR) values greater than 1014. In the non-contributor test, 99.9% of the quartiles had Log 10(LR) values less than 0. When the defense's hypothesis took into account the possibility that the tumor samples came from the patient's relatives, LR greater than 0 was still obtained. Furthermore, this study revealed that LR values increased with decreasing φ and increasing Mxn. Finally, LR interval value was provided for each tumor sample by considering the confidence interval of Mxn. The probabilistic model proposed in this paper could deal with the possibility of tumor allele variability and offers an evaluation of the strength of evidence for determining tumor origin in clinical practice and forensic identification.

10.
Forensic Sci Res ; 9(2): owad052, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38765700

ABSTRACT

Insertion/Deletion (InDel) polymorphisms, characterized by their smaller amplicons, reduced mutation rates, and compatibility with the prevalent capillary electrophoresis (CE) platforms in forensic laboratories, significantly contribute to the advancement and application of genetic analysis. Guizhou province in China serves as an important region for investigating the genetic structure, ethnic group origins, and human evolution. However, DNA data and the sampling of present-day populations are lacking, especially about the InDel markers. Here, we reported data on 47 autosomal InDels from 592 individuals from four populations in Guizhou (Han, Dong, Yi, and Chuanqing). Genotyping was performed with the AGCU InDel 50 kit to evaluate their utility for forensic purposes and to explore the population genetic structure. Our findings showed no significant deviations from Hardy-Weinberg and linkage equilibriums. The combined power of discrimination (CPD) and the combined power of exclusion (CPE) for each population demonstrated that the kit could be applied to forensic individual identification and was an effective supplement for parentage testing. Genetic structure analyses, including principal component analysis, multidimensional scaling, genetic distance calculation, STRUCTURE, and phylogenetic analysis, highlighted that the genetic proximity of the studied populations correlates with linguistic, geographical, and cultural factors. The observed genetic variances within four research populations were less pronounced than those discerned between populations across different regions. Notably, the Guizhou Han, Dong, and Chuanqing populations showed closer genetic affiliations with linguistically similar groups than the Guizhou Yi. These results underscore the potential of InDel markers in forensic science and provide insights into the genetic landscape and human evolution in multi-ethnic regions like Guizhou. Key points: InDel markers show promise for forensic individual identification and parentage testing via the AGCU InDel 50 kit.Genetic analysis of Guizhou populations reveals correlations with linguistic, geographical, and cultural factors.Guizhou Han, Dong, and Chuanqing populations showed closer genetic affiliations with linguistically similar groups than the Guizhou Yi.

11.
Forensic Sci Res ; 9(2): owae027, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774862

ABSTRACT

In paternity testing, when there are Mendelian errors in the alleles between the child and the parents, a slippage mutation, or silent allele may not fully explain the phenomenon. Sometimes, it is attributed to chromosomal abnormalities, such as uniparental disomy (UPD). Here, we present the investigation of two cases of suspected UPD in paternity testing based on short tandem repeat (STR) detection (capillary electrophoresis platform). Case 1 involves a trio, where all genotypes detected on chromosome 6 in the child are homozygous and found in the father. Case 2 is a duo (mother and child), where all genotypes on chromosome 3 in the child are homozygous and not always found in the mother. At the same time, Mendelian error alleles were also observed at specific loci in these two chromosomes. Furthermore, we used the MGIEasy Signature Identification Library Prep Kit for sequencing on the massively parallel sequencing platform, which included common autosomal, X and Y chromosomes, and mitochondrial genetic markers used in forensic practice. The results showed that the genotypes of shared STRs on the two platforms were consistent, and STRs and single nucleotide polymorphisms (SNPs) on these two chromosomes were homozygous. All other genetic markers followed the laws of inheritance. A comprehensive analysis supported the parent-child relationship between the child and the alleged parent, and the observed genetic anomalies can be attributed to UPD. UPD occurrences are rare, and ignoring its presence can lead to erroneous exclusions in paternity testing, particularly when multiple loci on a chromosome exhibit homozygosity.

12.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791155

ABSTRACT

DNA analysis plays a crucial role in forensic investigations, helping in criminal cases, missing persons inquiries, and archaeological research. This study focuses on the DNA concentration in different skeletal elements to improve human identification efforts. Ten cases of unidentified skeletal remains brought to the Institute of Forensic Medicine in Timisoara, Romania, underwent DNA analysis between 2019 and 2023. The results showed that teeth are the best source for DNA extraction as they contain the highest concentration of genetic material, at 3.68 ng/µL, compared to the petrous temporal bone (0.936 ng/µL) and femur bone (0.633 ng/µL). These findings highlight the significance of teeth in forensic contexts due to their abundant genetic material. Combining anthropological examination with DNA analysis enhances the understanding and precision of identifying human skeletal remains, thus advancing forensic science. Selecting specific skeletal elements, such as the cochlea or teeth, emerges as crucial for reliable genetic analyses, emphasizing the importance of careful consideration in forensic identification procedures. Our study concludes that automated DNA extraction protocols without liquid nitrogen represent a significant advancement in DNA extraction technology, providing a faster, more efficient, and less labor-intensive method for extracting high-quality DNA from damaged bone and tooth samples.


Subject(s)
DNA , Tooth , Humans , Tooth/chemistry , DNA/isolation & purification , DNA/genetics , Bone and Bones/chemistry , Body Remains/chemistry , Forensic Genetics/methods , Male , Romania , Female
13.
Genes (Basel) ; 15(4)2024 04 18.
Article in English | MEDLINE | ID: mdl-38674444

ABSTRACT

The inference of biogeographical ancestry (BGA) can assist in police investigations of serious crime cases and help to identify missing people and victims of mass disasters. In this study, we evaluated the typing performance of 56 ancestry-informative SNPs in 177 samples using the ForenSeq™ DNA Signature Prep Kit on the MiSeq FGx system. Furthermore, we compared the prediction accuracy of the tools Universal Analysis Software v1.2 (UAS), the FROG-kb, and GenoGeographer when inferring the ancestry of 503 Europeans, 22 non-Europeans, and 5 individuals with co-ancestry. The kit was highly sensitive with complete aiSNP profiles in samples with as low as 250pg input DNA. However, in line with others, we observed low read depth and occasional drop-out in some SNPs. Therefore, we suggest not using less than the recommended 1ng of input DNA. FROG-kb and GenoGeographer accurately predicted both Europeans (99.6% and 91.8% correct, respectively) and non-Europeans (95.4% and 90.9% correct, respectively). The UAS was highly accurate when predicting Europeans (96.0% correct) but performed poorer when predicting non-Europeans (40.9% correct). None of the tools were able to correctly predict individuals with co-ancestry. Our study demonstrates that the use of multiple prediction tools will increase the prediction accuracy of BGA inference in forensic casework.


Subject(s)
DNA Fingerprinting , Polymorphism, Single Nucleotide , Humans , DNA/genetics , DNA Fingerprinting/methods , Forensic Genetics/methods , Genetics, Population/methods , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA/methods , Software , White People/genetics , Europe
14.
BMC Genomics ; 25(1): 332, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566001

ABSTRACT

The current study aimed to evaluate Y chromosome haplotypes obtained from 1353 unrelated Iranian males using the AmpFlSTRTM YfilerTM kit; 1353 out of the 1353 identified haplotypes were unique. The haplotype diversity (HD) and discriminating capacity (DC) values were 1.00000 and 0.997, respectively. Analysis of genetic distance was performed using molecular variance (AMOVA) and multidimensional scaling plots (MDS), revealing a statistically significant difference between the study population and previous data reported for other Iranian populations and other neighboring countries. The present findings are likely to be useful for forensic casework analyses and kinship investigations.


Subject(s)
Genetics, Population , Microsatellite Repeats , Male , Humans , Haplotypes , Iran , Chromosomes, Human, Y/genetics , China
15.
BMC Genomics ; 25(1): 329, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566035

ABSTRACT

BACKGROUND: Previously, a novel multiplex system of 64 loci was constructed based on capillary electrophoresis platform, including 59 autosomal insertion/deletions (A-InDels), two Y-chromosome InDels, two mini short tandem repeats (miniSTRs), and an Amelogenin gene. The aim of this study is to evaluate the efficiencies of this multiplex system for individual identification, paternity testing and biogeographic ancestry inference in Chinese Hezhou Han (CHH) and Hubei Tujia (CTH) groups, providing valuable insights for forensic anthropology and population genetics research. RESULTS: The cumulative values of power of discrimination (CDP) and probability of exclusion (CPE) for the 59 A-InDels and two miniSTRs were 0.99999999999999999999999999754, 0.99999905; and 0.99999999999999999999999999998, 0.99999898 in CTH and CHH groups, respectively. When the likelihood ratio thresholds were set to 1 or 10, more than 95% of the full sibling pairs could be identified from unrelated individual pairs, and the false positive rates were less than 1.2% in both CTH and CHH groups. Biogeographic ancestry inference models based on 35 populations were constructed with three algorithms: random forest, adaptive boosting and extreme gradient boosting, and then 10-fold cross-validation analyses were applied to test these three models with the average accuracies of 86.59%, 84.22% and 87.80%, respectively. In addition, we also investigated the genetic relationships between the two studied groups with 33 reference populations using population statistical methods of FST, DA, phylogenetic tree, PCA, STRUCTURE and TreeMix analyses. The present results showed that compared to other continental populations, the CTH and CHH groups had closer genetic affinities to East Asian populations. CONCLUSIONS: This novel multiplex system has high CDP and CPE in CTH and CHH groups, which can be used as a powerful tool for individual identification and paternity testing. According to various genetic analysis methods, the genetic structures of CTH and CHH groups are relatively similar to the reference East Asian populations.


Subject(s)
Genetics, Population , Siblings , Humans , Phylogeny , China , INDEL Mutation , Microsatellite Repeats , Forensic Genetics/methods , Gene Frequency
16.
Forensic Sci Res ; 9(1): owad055, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38567377

ABSTRACT

Human age estimation from trace samples may give important leads early in a police investigation by contributing to the description of the perpetrator. Several molecular biomarkers are available for the estimation of chronological age, and currently, DNA methylation patterns are the most promising. In this study, a QIAGEN age protocol for age estimation was tested by five forensic genetic laboratories. The assay comprised bisulfite treatment of the extracted DNA, amplification of five CpG loci (in the genes of ELOVL2, C1orf132, TRIM59, KLF14, and FHL2), and sequencing of the amplicons using the PyroMark Q48 platform. Blood samples from 49 individuals with ages ranging from 18 to 64 years as well as negative and methylation controls were analyzed. An existing age estimation model was applied to display a mean absolute deviation of 3.62 years within the reference data set. Key points: Age determination as an intelligence tool during investigations can be a powerful tool in forensic genetics.In this study, five laboratories ran 49 samples and obtained a mean absolute deviation of 3.62 years.Five markers were analyzed on a PyroMark Q48 platform.

17.
Electrophoresis ; 45(9-10): 867-876, 2024 May.
Article in English | MEDLINE | ID: mdl-38651903

ABSTRACT

Short tandem repeat analysis is challenging when dealing with unbalanced mixtures in forensic cases due to the presence of stutter peaks and large amplicons. In this research, we propose a novel genetic marker called DIP-TriSNP, which combines deletion/insertion polymorphism (DIP) with tri-allelic single nucleotide polymorphism in less than 230 bp length of human genome. Based on multiplex PCR and SNaPShot, a panel, including 14 autosomal DIP-TriSNPs and one Y chromosomal DIP-SNP, had been developed and applied to genotyping 102 unrelated Han Chinese individuals in Sichuan of China and simulated a mixture study. The panel sensitivity can reach as low as 0.1 ng DNA template, and the minor contributor of DNA can be detected with the highest ratio of 19:1, as indicated by the obtained results. In the Sichuan Han population, the cumulative probability of informative genotypes reached 0.997092, with a combined power of discrimination of 0.999999998801. The panel was estimated to detect more than two alleles in at least one locus in 99.69% of mixtures of the Sichuan Han population. In conclusion, DIP-TriSNPs have shown promising as an innovative DNA marker for identifying the minor contributor in unbalanced DNA mixtures, offering advantages such as short amplifications, increased polymorphism, and heightened sensitivity.


Subject(s)
DNA , Forensic Genetics , Multiplex Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Humans , Multiplex Polymerase Chain Reaction/methods , Forensic Genetics/methods , Genetic Markers/genetics , DNA/genetics , DNA/analysis , China , Asian People/genetics , Genotype , Reproducibility of Results , INDEL Mutation , Microsatellite Repeats/genetics , Male , Genotyping Techniques/methods
18.
Leg Med (Tokyo) ; 69: 102447, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38640874

ABSTRACT

This study aimed to estimate A-STR mutation rates in 2,317 Korean parent-child trios by examining 20 Combined DNA Index System (CODIS) core loci (D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, CSF1PO, FGA, TH01, TPOX, vWA, D1S1656, D2S441, D2S1338, D10S1248, D12S391, D19S433, and D22S1045) and three non-CODIS loci (Penta E, Penta D, and SE33). Locus-specific mutation rate estimates varied from 0.00 to 8.63 × 10-3 per generation, with an average mutation rate of 1.62 × 10-3 (95 % CI, 1.39-1.88 × 10-3). We also combined data from previous studies to obtain comprehensive genetic values for the Korean population, and the average mutation rate was 1.59 × 10-3 (95 % CI, 1.38-1.82 × 10-3). Single-step mutations (95.69 %) and double-step mutations (3.35 %) were observed in the mutation pattern analysis, and cases expected to have multi-step mutations (0.96 %) were also observed. Large-sized alleles exhibited more loss mutations than gain mutations, and paternal mutations (62.68 %) were more frequently observed than maternal mutations (19.62 %). The calculated values and features of the 23 A-STRs explored in this study are expected to play a crucial role in establishing criteria for forensic genetic interpretation.

19.
Article in English | MEDLINE | ID: mdl-38568352

ABSTRACT

There may be cases where malignant tumor samples can be used for forensic DNA profiling studies. STRs are the first systems preferred in forensic science laboratories for identification purposes. However, genetic instability in tumoral tissues causes STR polymorphism to change, leading to erroneous results. On the other hand, insertion/deletion polymorphism (InDels) are used as genetic markers in forensic science, as they have features that make both STR and SNPs preferable. Although previous studies approved that STR instability is observed in many different tumors, there are only a few studies that have displayed the instability of InDels in tumoral tissues before. In this study, it was aimed to determine whether instability is observed in formalin-fixed paraffin-embedded breast and thyroid tumoral tissues at 36plex InDel Panel. A total of 47 cases, 26 of which were diagnosed as breast cancer and 21 as thyroid cancer, were included in the study. In 21 of 26 (80.76%) breast cancers mutational changes were observed, however only 6 of 21 (28.57%) thyroid carcinoma cases displayed instability.Moreover, in these six cases, mutations were detected at only 1 or 2 loci. The most common change in both tissues was loss of heterozygosity. These findings suggest that paraffin embedded tissues of thyroid tumor can be used in cases of forensic genetic identification, however paraffin embedded breast cancer tissues should be examined with care. In conclusion, low InDel mutation rates compared to STR instability, make InDel analysis from paraffin blocks suitable for forensic genetic identification. However, researchers should keep in mind that there may be differences between the profiles of the tumoral tissues taken as reference and the actual case. In addition, by incorporating additional markers such as SNPs and microhaplotypes with low mutation rates into the study alongside Indels, researchers can significantly enhance the discrimination power in identification processes.

20.
Forensic Sci Res ; 9(2): owae020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38617445

ABSTRACT

The goal of the following study is to clarify whether the skeletal remains over 70 years old from missing persons and their alleged relatives shared identical Y-STR loci. Nowadays, advances in ancient DNA extraction techniques and approaches of using multiple different Y-STRs have significantly increased the possibility of obtaining DNA profiles from highly degraded skeletal remains. Given the ages and conditions of the skeletal remains, ancient DNA extraction methods can be used to maximize the probability of DNA recovery. Considering that information about distant relatives is more relevant for long-term missing persons and alleged family members are male, Y-STR loci analysis is considered the most appropriate and informative approach for determining paternal lineage relationship. In this study, Y-STR genotypes obtained from these alleged relatives were identical to each other and to the alleles of missing persons' consensus profiles at more than 22 loci examined, whilst not being found in Y-STR population database from Y-Chromosome STR Haplotype Reference Database. Therefore, Missing Person No.7 and Missing Person No.18 have a patrilineal relationship with reference samples from Family1 and Family2, respectively. In addition, the fact that Y-STR haplotypes obtained from skeletal remains of missing persons and reference samples are not found in the Han Chinese people from East Asian demonstrates its rarity and further supports a paternal lineage relationship amongst them.

SELECTION OF CITATIONS
SEARCH DETAIL
...