Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Biol ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39305897

ABSTRACT

Central European forests have been shaped by complex human interactions throughout the Holocene, with significant changes following the introduction of domesticated animals in the Neolithic (∼7.5-6.0 ka before present [BP]). However, understanding early pastoral practices and their impact on forests is limited by methods for detecting animal movement across past landscapes. Here, we examine ancient sedimentary DNA (sedaDNA) preserved at the Velký Mamuták rock shelter in northern Bohemia (Czech Republic), which has been a forested enclave since the early Holocene. We find that domesticated animals, their associated microbiomes, and plants potentially gathered for fodder have clear representation by the Late Neolithic, around 6.0 ka BP, and persist throughout the Bronze Age into recent times. We identify a change in dominant grazing species from sheep to pigs in the Bronze Age (∼4.1-3.0 ka BP) and interpret the impact this had in the mid-Holocene retrogressions that still define the structure of Central European forests today. This study highlights the ability of ancient metagenomics to bridge archaeological and paleoecological methods and provide an enhanced perspective on the roots of the "Anthropocene."

2.
Ecol Evol ; 12(4): e8786, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35386880

ABSTRACT

Cattle grazing profoundly affects abiotic and biotic characteristics of ecosystems. While most research has been performed on grasslands, the effect of large managed ungulates on forest ecosystems has largely been neglected. Compared to a baseline seminatural state, we investigated how long-term cattle grazing of birch forest patches affected the abiotic state and the ecological community (microbes and invertebrates) of the soil subsystem. Grazing strongly modified the soil abiotic environment by increasing phosphorus content, pH, and bulk density, while reducing the C:N ratio. The reduced C:N ratio was strongly associated with a lower microbial biomass, mainly caused by a reduction of fungal biomass. This was linked to a decrease in fungivorous nematode abundance and the nematode channel index, indicating a relative uplift in the importance of the bacterial energy-channel in the nematode assemblages. Cattle grazing highly modified invertebrate community composition producing distinct assemblages from the seminatural situation. Richness and abundance of microarthropods was consistently reduced by grazing (excepting collembolan richness) and grazing-associated changes in soil pH, Olsen P, and reduced soil pore volume (bulk density) limiting niche space and refuge from physical disturbance. Anecic earthworm species predominated in grazed patches, but were absent from ungrazed forest, and may benefit from manure inputs, while their deep vertical burrowing behavior protects them from physical disturbance. Perturbation of birch forest habitat by long-term ungulate grazing profoundly modified soil biodiversity, either directly through increased physical disturbance and manure input or indirectly by modifying soil abiotic conditions. Comparative analyses revealed the ecosystem engineering potential of large ungulate grazers in forest systems through major shifts in the composition and structure of microbial and invertebrate assemblages, including the potential for reduced energy flow through the fungal decomposition pathway. The precise consequences for species trophic interactions and biodiversity-ecosystem function relationships remain to be established, however.

3.
J Environ Manage ; 295: 113053, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34175510

ABSTRACT

The high nature conservation value of floodplain ecosystems is severely threatened by invasive alien species. Besides adversely affecting native biodiversity, these species also pose a major threat from a wider socio-ecological perspective (e.g. 'roughness' increases flood risk). Finding options to control dense shrub layers consisting of invasive alien species is therefore of high priority for multipurpose management. We studied cattle grazing impacts on the cover, composition and diversity of the herb and shrub layers in floodplain poplar plantations along the Tamis river, Serbia. Non-grazed, moderately grazed, intensively grazed and resting place stands were sampled in five locations in three sampling points. Non-grazed stands had substantially higher cover of invasive alien shrub species (on average 65%) than moderately and intensively grazed stands, and resting places (5.17, 0.02 and 0.00%, respectively), but without considerable differences between the grazing intensity categories. The number of invasive alien species in the shrub layer decreased considerably from non-grazed to intensively grazed stands. Species composition in the herb layer changed from non-grazed to intensively grazed stands, while resting places differed substantially from the other categories. Total species richness, richness of native generalist herbaceous grassland species, and the cover of palatable grasses were the highest in moderately and intensively grazed stands. Our results suggest that cattle grazing in floodplains is effective at controlling invasive alien shrub species. Furthermore, continuous moderate or intensive grazing would contribute to multifunctional management of invaded floodplains by enhancing local biodiversity, reducing flood risk, and providing additional grazing areas for the local community.


Subject(s)
Ecosystem , Introduced Species , Animals , Biodiversity , Cattle , Floods , Serbia
4.
Anim Sci J ; 87(2): 209-16, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26270936

ABSTRACT

Forest-grazing enables the intake of high total antioxidant capacity (TAC) plants that might be beneficial for the TAC status of cattle. This study evaluated the relation between the seasonal foraging patterns of forest-grazing Japanese Black (JB) heifers or the TAC levels in shrubs and trees and the changes of plasma TAC. We examined 12 JB heifers, four each of which were allocated to forest-grazing (F), pasture-grazing, and pen-housed groups. The plasma TAC level in F heifers on July 26, August 13, 30 and September 17 were significantly higher than those on April 27 and June 4 (P < 0.05). In F group, the mean rates of foraging frequency (FF) of shrubs and trees during July 5-8 and September 13-16 were much higher than that during May 31-June 3 (P < 0.05). The rate of FF of grass significantly decreased later in the season (P < 0.05). The mean TAC levels in these shrubs and trees were higher than those in grasses, concentrates, and timothy hay. Results suggest that an important factor in the increase of plasma TAC in forest-grazing cattle might be the increased foraging of TAC-rich shrubs and trees during summer-fall.


Subject(s)
Antioxidants/metabolism , Cattle/blood , Forests , Herbivory/physiology , Poaceae , Trees , Animals , Female , Poaceae/chemistry , Seasons , Trees/chemistry
5.
Anim Sci J ; 85(2): 135-42, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23905879

ABSTRACT

Blood total antioxidant capacity (TAC) has become a key bio-marker for animal health. Forest-grazing cattle are known to forage various native plants that have high TAC. This study evaluated differences of plasma TAC between forest-grazing (FG) and pasture-grazing cattle (PG). Experiment 1 monitored the plasma TAC levels of 32 Japanese Black cattle. The level in PG did not change throughout the grazing period. However, that in FG, which increased from summer, was significantly higher than that in PG through fall (P < 0.05). In experiment 2, we used nine Japanese Black heifers and investigated their blood antioxidant parameters and the TAC in plants that the cattle consumed in late June and September. The plasma TAC levels in FG were significantly higher than those in PG in both periods (P < 0.05). Plasma levels of lipid peroxidation in FG tended to be lower than that in PG (P = 0.098). Furthermore, the TAC levels in various species of shrubs and trees consumed by FG were higher than those in pasture grasses. Results of this study show that plasma TAC of grazing Japanese Black cattle in forestland increase from summer through fall.


Subject(s)
Antioxidants/analysis , Herbivory/physiology , Plants, Edible , Trees , Animal Nutritional Physiological Phenomena/physiology , Animals , Antioxidants/metabolism , Biomarkers/blood , Cattle , Female , Japan , Lipid Peroxidation , Male , Poaceae , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL