Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
Ecol Evol ; 14(8): e70116, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39114160

ABSTRACT

Improving our ability to monitor fragmented tropical ecosystems is a critical step in supporting the stewardship of these complex landscapes. We investigated the structural characteristics of vegetation classes in Ucayali, Peru, employing a co-production approach. The vegetation classes included three agricultural classes (mature oil palm, monocrop cacao, and agroforestry cacao plantations) and three forest regeneration classes (mature lowland forest, secondary lowland forest, and young lowland vegetation regrowth). We combined local knowledge with spaceborne lidar from NASA's Global Ecosystem Dynamics Investigation mission to classify vegetation and characterize the horizontal and vertical structure of each vegetation class. Mature lowland forest had consistently higher mean canopy height and lower canopy height variance than secondary lowland forest (µ = 29.40 m, sd = 6.89 m vs. µ = 20.82 m, sd = 9.15 m, respectively). The lower variance of mature forest could be attributed to the range of forest development ages in the secondary forest patches. However, secondary forests exhibited a similar vertical profile to mature forests, with each cumulative energy percentile increasing at similar rates. We also observed similar mean and standard deviations in relative height ratios (RH50/RH95) for mature forest, secondary forest, and oil palm even when removing the negative values from the relative height ratios and interpolating from above-ground returns only (mean RH50/RH95 of 0.58, 0.54, and 0.53 for mature forest, secondary forest, and oil palm, respectively) (p < .0001). This pattern differed from our original expectations based on local knowledge and existing tropical forest succession studies, pointing to opportunities for future work. Our findings suggest that lidar-based relative height metrics can complement local information and other remote sensing approaches that rely on optical imagery, which are limited by extensive cloud cover in the tropics. We show that characterizing ecosystem structure with a co-production approach can support addressing both the technical and social challenges of monitoring and managing fragmented tropical landscapes.

2.
Biotropica ; 56(1): 36-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38515454

ABSTRACT

Determining how fully tropical forests regenerating on abandoned land recover characteristics of old-growth forests is increasingly important for understanding their role in conserving rare species and maintaining ecosystem services. Despite this, our understanding of forest structure and community composition recovery throughout succession is incomplete, as many tropical chronosequences do not extend beyond the first 50 years of succession. Here, we examined trajectories of forest recovery across eight 1-hectare plots in middle and later stages of forest succession (40-120 years) and five 1-hectare old-growth plots, in the Barro Colorado Nature Monument (BCNM), Panama. We first verified that forest age had a greater effect than edaphic or topographic variation on forest structure, diversity and composition and then corroborated results from smaller plots censused 20 years previously. Tree species diversity (but not species richness) and forest structure had fully recovered to old-growth levels by 40 and 90 years, respectively. However, rare species were missing, and old-growth specialists were in low abundance, in the mid- and late secondary forest plots, leading to incomplete recovery of species composition even by 120 years into succession. We also found evidence that dominance early in succession by a long-lived pioneer led to altered forest structure and delayed recovery of species diversity and composition well past a century after land abandonment. Our results illustrate the critical importance of old-growth and old secondary forests for biodiversity conservation, given that recovery of community composition may take several centuries, particularly when a long-lived pioneer dominates in early succession. Abstract in Spanish is available with online material.


Determinar en que medida los bosques tropicales que se regeneran en tierras abandonadas recuperan las características de los bosques primarios es cada vez más importante para comprender su papel en la conservación de especies raras y el mantenimiento de los servicios ecosistémicos. A pesar de ello, nuestro entendimiento sobre la recuperación de la estructura del bosque y la composición de la comunidad a lo largo de la sucesión es incompleta, ya que muchas cronosecuencias tropicales no van más allá de los primeros 50 años de sucesión. En este estudio, investigamos las trayectorias de recuperación del bosque en ocho parcelas de 1 hectárea en estadíos medios y tardíos de la sucesión forestal (40­120 años) y cinco parcelas de 1 hectárea de bosque primario, en el Monumento Natural Barro Colorado (MNBC), Panamá. En primer lugar, verificamos que la edad del bosque tenía un mayor efecto que la variación edáfica o topográfica en la estructura, diversidad y composición del bosque y luego corroboramos los resultados de parcelas más pequeñas estudiadas 20 años antes. La diversidad de especies arbóreas, pero no la riqueza de especies, y la estructura forestal se habían recuperado completamente hasta alcanzar los niveles de bosque primario a los 40 y 90 años, respectivamente. Sin embargo, los bosques secundarios carecían de especies raras y presentaban una escasa abundancia de especies especialistas del bosque antiguo, lo que condujo a una recuperación incompleta de la composición de especies, incluso a 120 años de sucesión. También encontramos pruebas de que el predominio de un pionero longevo en las primeras etapas de la sucesión provocó una alteración de la estructura forestal y retrasó la recuperación de la diversidad y composición de especies más allá de un siglo después el abandono de las tierras. Nuestros resultados ilustran la importancia crítica de los bosques primarios y secundarios más antiguos para la conservación de la biodiversidad, dado que la recuperación de la composición de la comunidad puede llevar varios siglos, especialmente cuando un pionero longevo domina en la sucesión temprana.

3.
Sci Total Environ ; 821: 153403, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35101503

ABSTRACT

The UN Decade on Ecosystem Restoration is focussing attention and resources on restoration globally. Nowhere is this more crucial than in tropical forests that harbor immense biodiversity, but have also undergone widespread deforestation over the past few decades. We performed a meta-analysis to investigate how biodiversity features respond to forest restoration across the Brazilian Atlantic Forest (BAF), one of the most threatened biodiversity hotspots in the world. We assembled biodiversity in different metrics of structure and diversity features of three taxonomic groups (vascular plants, soil microorganisms, and invertebrates), generating a dataset with 2370 observations from 76 primary studies. We quantified the incomplete recovery of biodiversity (i.e., the rate of recovery to a pre-disturbance state) occurring during the restoration process, which we called the 'recovery gap'. Our results revealed that forests undergoing restoration in the BAF show a recovery gap of 34% for structure features and 22% for diversity features in comparison to reference reforests, considering all taxonomic groups investigated. For vascular plants, soil microorganisms, and invertebrates the recovery gap ranged between 46 and 47%, 16-26%, and 4-7%, respectively. Overall, the recovery gap was influenced by the interaction of restoration actions (i.e., the past land use, restoration age and restoration approach - active and passive restoration), however, structure features responded more sensitively to the time elapsed since restoration started, while the recovery gap for diversity features depended more on the past land-use. Our study can help guide the prioritization of the aforenamed taxonomic groups in restoration, the regulation of potential biodiversity offsetting policies in the BAF, and understanding how coupled biodiversity features respond to the interaction of environmental conditions and restoration actions in a high fragmented tropical landscape.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Forests , Soil
4.
Ecol Lett ; 25(5): 1126-1138, 2022 May.
Article in English | MEDLINE | ID: mdl-35128774

ABSTRACT

Tree mortality is a major control over tropical forest carbon stocks globally but the strength of associations between abiotic drivers and tree mortality within forested landscapes is poorly understood. Here, we used repeat drone photogrammetry across 1500 ha of forest in Central Panama over 5 years to quantify spatial variation in canopy disturbance rates and its predictors. We identified 11,153 canopy disturbances greater than 25 m2 in area, including treefalls, large branchfalls and standing dead trees, affecting 1.9% of area per year. Soil type, forest age and topography explained up to 46%-67% of disturbance rate variation at spatial grains of 58-64 ha, with higher rates in older forests, steeper slopes and local depressions. Furthermore, disturbance rates predicted the proportion of low canopy area across the landscape, and mean canopy height in old growth forests. Thus abiotic factors drive variation in disturbance rates and thereby forest structure at landscape scales.


Subject(s)
Forests , Soil , Carbon , Panama , Trees , Tropical Climate
5.
Ecol Appl ; 32(2): e2495, 2022 03.
Article in English | MEDLINE | ID: mdl-34783406

ABSTRACT

The process of forest degradation, along with deforestation, is the second greatest producer of global greenhouse gas emissions. A key challenge that remains unresolved is how to quantify the critical threshold that distinguishes a degraded from a non-degraded forest. We determined the critical threshold of forest degradation in mature stands belonging to the temperate evergreen rain forest of southern Chile by quantifying key forest stand factors characterizing the forest degradation status. Forest degradation in this area is mainly caused by high grading, harvesting of fuelwood, and sub-canopy grazing by livestock. We established 160 500-m2 plots in forest stands that represented varied degrees of alteration (from pristine conditions to obvious forest degradation), and measured several variables related to the structure and composition of the forest stands, including exotic and native species richness, soil nutrient levels, and other landscape-scale variables. In order to identify classes of forest degradation, we applied multivariate and machine-learning analyses. We found that richness of exotic species (including invasive species) with a diameter at breast height (DBH) < 10 cm and tree density (N, DBH > 10 cm) were the two composition and structural variables that best explained the forest degradation status, e.g., forest stands with five or more exotic species were consistently found more associated with degraded forest and stands with N < 200 trees/ha represented degraded forests, while N > 1,000 trees/ha represent pristine forests. We introduced an analytical methodology, mainly based on machine learning, that successfully identified the forest degradation status that can be replicated in other scenarios. In conclusion, here by providing an extensive data set quantifying forest and site attributes, the results of this study are undoubtedly useful for managers and decision makers in classifying and mapping forests suffering various degrees of degradation.


Subject(s)
Forests , Rainforest , Machine Learning , Soil , Trees
6.
Integr Zool ; 17(3): 408-419, 2022 May.
Article in English | MEDLINE | ID: mdl-33876575

ABSTRACT

Nestling growth parameters are integral components of avian life-history strategies as they are crucial determinants of individual survival. Although many factors impact on nestling growth, the relative contribution of each one is still debated in the literature. Most studies rely on the assumption that each factor directly affects nestling growth, but indirect effects mediated by other factors are usually the rule in nature. In this study, we present a comprehensive view of both direct and indirect factors affecting nestling growth using the Red-crested Cardinal (Paroaria coronata) as model system. We evaluated the relative importance of different habitat (forest structure), biotic interactions (botfly larvae ectoparasitism, number of siblings, hatching order), and temporal factors (time of breeding) on nestling growth parameters in 278 nestlings of 128 nests by using piecewise structural equation models. We found that botfly ectoparasitism had the strongest direct effect on nestling growth and, in turn, forest structure increased the probability of botfly occurrence. Besides, the interaction between the number of siblings and hatching order influenced nestling growth, indicating that the first and second nestlings had disproportionately higher growth rates in large than in small clutches. Time of breeding also showed a strong positive indirect effect on botfly occurrence, as well as a weak direct positive effect on nestling growth. Our results demonstrate that, under natural conditions, nestling growth is driven by different factors acting not only directly, but also indirectly on this essential life history trait, and that these factors weave a complex web of interrelated variables.


Subject(s)
Passeriformes , Animals , Ecosystem
7.
Am J Primatol ; 82(12): e23210, 2020 12.
Article in English | MEDLINE | ID: mdl-33124052

ABSTRACT

All Neotropical primates are arboreal and thus depend on forests for their survival. Arboreality puts many Neotropical primates at risk of extinction due to the high rates of deforestation in the tropics. We assessed the influence of vegetation structure and forest patch attributes on the occurrence of the threatened red-handed howler monkey (Alouatta belzebul) in an Amazonian savanna. Using a sample of 38 forest patches in a region of approximately 2000 km2 in the state of Amapá, northern Brazil, we used logistic regression to find the best predictors of the occurrence of A. belzebul. We assessed patch area, patch isolation, the proportion of seasonally flooded forest in the patch, the density of flooded area palms, forest height, canopy cover, and diameter at breast height of trees. Patch area and palm density were the best predictors of the occurrence of A. belzebul in forest patches, both having a positive effect on the probability of occurrence. Our results indicate that areas of flooded forest in forest patches may be keystone habitats for A. belzebul living in Amazonian savannas. The observed effect of palm density on A. belzebul suggests that this variable is useful for planning conservation actions, including the selection of areas for protection and management strategies for areas inhabited by this primate.


Subject(s)
Alouatta/physiology , Animal Distribution , Arecaceae/physiology , Grassland , Brazil , Floods , Forests , Plant Dispersal , Population Density
8.
Rev. biol. trop ; Rev. biol. trop;68(supl 2)set. 2020.
Article in English | LILACS, SaludCR | ID: biblio-1507623

ABSTRACT

Introduction: Islands are essential for world biodiversity. Isla del Coco National Park is an oceanic island in which a tropical rain forest grows; however, its ecology and the effect of introduced species are poorly understood. Objective: To evaluate the mortality, recruitment, regeneration, and growth of forest canopy species. Methods: We measured 15 permanent sampling plots (PSP), nine in the Premontane Pluvial Rainforest (PPR), and six in the Cloud Forest (CF); trees with DBH > 5 cm (diameter at breast height) were measured. The sampling regeneration was done within every PSP, along two transects of 1 X 50 m. Data analyses were performed using data obtained in 2006 and 2012 as baseline. Results: In the period 2012-2017, the annual mortality rate in the PPR was 5.75 % and for CF 6.31 %. The yearly recruitment rate in the PPR was 5.38 %, and 5.90 % for CF. For the PPR the total registered regeneration was 5 656 individuals and 8 700 for the CF. Sacoglottis holdridgei reported the highest mortality and the lowest values of recruitment and regeneration. Forest structure fits the inverted J model for most of the tropical forests. Sacoglottis holdridgei define the forest population structure above DBH > 20 cm. But, diameters under 20 cm are strongly influenced byH. succosa , because it reported the highest abundance of regeneration and recruitment. The annual average increase in diameter between forest was statically different (p = 0.0414; N = 15), 0.36 cm/year in the PPR, and 0.33 cm/year the in CF. Conclusions: The PPR and CF differ in the patterns of mortality, recruitment, and regeneration, confirming the uniqueness of these ecosystems. More successful regeneration ofH. succosawill lead to changes in structure and composition of forests, mainly PPR. The changes in forest structure will have a strong impact on epiphytic flora, microclimate conditions, and bird nesting such asGygis alba(White Tern) due to the loss of mature trees ofSacoglottis. The low regeneration ofS. holdridgeiis associated with the presence of introduced herbivores,their management is needed for restoring the forest.


Introducción: Las islas son esenciales para la biodiversidad mundial. El Parque Nacional Isla del Coco es una isla oceánica cubierta de bosques lluviosos tropicales; sin embargo, su ecología y el efecto de las especies introducidas son poco conocidos. Objetivo: Evaluar la mortalidad, el reclutamiento, la regeneración y el crecimiento de las especies arbóreas. Métodos: Se midieron 15 parcelas permanentes de muestreo (PPM), nueve en el bosque pluvial premontano (BPP) y seis en el bosque nuboso (BN); Se midieron árboles con DAP > 5 cm. El muestreo regeneración se realizó dentro de cada PPM, mediante dos transectos de 1 x 50 m. Los datos se analizaron tomando como línea base las mediciones del 2006, 2012 y 2017. Resultados: En el período 2012-2017, la tasa de mortalidad anual en el BPP fue de 5,75 % y para el BN de 6,31 %. La tasa de reclutamiento anual en el BPP fue de 5.38 % y 5.90 % para BN. Para el BPP, la regeneración total registrada fue de 5 656 individuos y 8 700 para el BN. Sacoglottis holdridgeituvo la mortalidad más alta y los valores más bajos de reclutamiento y regeneración. La estructura del bosque se ajusta al modelo J invertido para la mayoría de los bosques tropicales.Sacoglottis holdridgeidefine la estructura del bosque sobre diámetros > 20 cm. Pero, en diámetros < 20 cm está fuertemente influenciado porH. succosa , especie que reportó la mayor abundancia de regeneración y reclutamiento. El aumento promedio anual del diámetro entre bosques fue estadísticamente diferente (p = 0.0414; N = 15), 0.36 cm/año en el PPR y 0.33 cm/año en el CF. Conclusiones: El BPP y el BN difieren en los patrones de mortalidad, reclutamiento y regeneración, lo que confirma la singularidad de estos ecosistemas. Una regeneración más exitosa deH. Succosa provocará cambios en la estructura y composición de los bosques, principalmente BPP. Los cambios en la estructura del bosque tendrán un fuerte impacto en la flora epífita, las condiciones de microclima y la anidación de aves como Gygis alba(Palomita del Espíritu Santo) debido a la pérdida de árboles maduros de Sacoglottis . La baja regeneración deS. holdridgeiestá asociada con la presencia de herbívoros introducidos, para restaurar el bosque es necesario su manejo.


Subject(s)
Forests , Tropical Ecosystem , Regeneration , Costa Rica
9.
Am J Primatol ; 81(8): e23032, 2019 08.
Article in English | MEDLINE | ID: mdl-31318082

ABSTRACT

Habitat loss is one of the main threats to wildlife. Therefore, knowledge of habitat use and preference is essential for the design of conservation strategies and identification of priority sites for the protection of endangered species. The yellow-tailed woolly monkey (Lagothrix flavicauda Humboldt, 1812), categorized as Critically Endangered on the IUCN Red List, is endemic to montane forests in northern Peru where its habitat is greatly threatened. We assessed how habitat use and preference in L. flavicauda are linked to forest structure and composition. The study took place near La Esperanza, in the Amazonas region, Peru. Our objective was to identify characteristics of habitat most utilized by L. flavicauda to provide information that will be useful for the selection of priority sites for conservation measures. Using presence records collected from May 2013 to February 2014 for one group of L. flavicauda, we classified the study site into three different use zones: low-use, medium-use, and high-use. We assessed forest structure and composition for all use zones using 0.1 ha Gentry vegetation transects. Results show high levels of variation in plant species composition across the three use zones. Plants used as food resources had considerably greater density, dominance, and ecological importance in high-use zones. High-use zones presented similar structure to medium- and low-use zones; thus it remains difficult to assess the influence of forest structure on habitat preference. We recommend focusing conservation efforts on areas with a similar floristic composition to the high-use zones recorded in this study and suggest utilizing key alimentation species for reforestation efforts.


Subject(s)
Animal Distribution , Atelinae/physiology , Ecosystem , Animals , Behavior, Animal , Diet , Endangered Species , Female , Forests , Male , Peru , Plants
10.
Chemosphere ; 210: 320-333, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30005354

ABSTRACT

A geochemical-environmental mapping was carried for a low polluted forest in North-western Mexico (Santiago Papasquiaro mining area), as part of the North American forests accounting for environmental behavior of arsenic (As), lead (Pb), zinc (Zn) and copper (Cu) in soil and tree components (stem wood and aciculums). Spectroscopic and microscopic techniques along with standard protocols were used to determine the mineralogical phases containing these elements, and their corresponding spatial distributions in soil and forests and mobility. In soil, total As, Pb, Zn and Cu ranged from 4.9 to 98.3, 19.6 to 768.6, 19.6 to 407.1, and 1.6 to 63.8 mg kg-1, respectively. Ultrafine particles (<5-10 µm) of arsenopyrite and sphalerite (and complex Zn-Fe phase) were the main As and Zn-bearing phases determined by SEM-EDS, respectively. Complex Pb-Cu-Fe and Cu-O oxide-like phases were the only ones containing Pb and Cu, respectively. Mobility was low for Pb, Zn and Cu, whereas a significant mobility was assessed for As. Concentrations vs. depth profiles suggested progressive accumulations of As, Pb, Zn and Cu in top soil. Total As, Pb, Zn and Cu in pine stem wood varied from 11.5 to 184.5, 98.9 to 7359.8, 3242.7 to 22197.3, 689.2 to 7179.6 µg kg-1, respectively. The respective concentrations in the pine needles ranged from 50 to 624.2, 100 to 16353.1, 120 to 46440.9 and 720 to 7200 µg kg-1, indicating an active bioaccumulation of As, Pb, Zn and Cu. A prospective environmental behavior was discussed for As, Pb, Zn and Cu in the low-polluted forest.


Subject(s)
Arsenic/analysis , Copper/analysis , Ecosystem , Lead/analysis , Soil Pollutants/analysis , Soil/chemistry , Zinc/analysis , Arsenic/metabolism , Biological Availability , Copper/metabolism , Environmental Monitoring , Forests , Lead/metabolism , Mexico , Soil Pollutants/metabolism , Zinc/metabolism
11.
Primates ; 59(4): 395-404, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29525834

ABSTRACT

Integration between ecology and biogeography provides insights into how niche specialization affects the geographical distribution of species. Given that rivers are not effective barriers to dispersal in three parapatric species of squirrel monkeys (Saimiri vanzolinii, S. cassiquiarensis and S. macrodon) inhabiting floodplain forests of Central Amazonia, we tested whether forest structure and tree diversity may explain species differences in niche specialization and spatial segregation. We sampled 6617 trees of 326 species in three habitats (high várzea, low várzea and chavascal) used by three Saimiri species, and estimated tree species richness in each of them. For each tree, we measured variables known to influence habitat use in primates, such as crown area and presence of lianas, epiphytes and hemi-epiphytes. We used ANOVA to compare these variables and performed multivariate analyses (NMDS, ANOSIM and SIMPER) to evaluate dissimilarities in forest structure among each habitat inhabited by the three Saimiri species. We identified differences in the tree species richness, crown area and presence of lianas, epiphytes and hemi-epiphytes between the three habitats for all Saimiri species. NMDS demonstrated that areas of high and low várzeas occupied by S. vanzolinii were clearly separated from the other species. We also found that different plant species contributed to dissimilarity among Saimiri ranges. Our findings support the hypothesis that tree community structure may promote niche specialization and spatial segregation among primates. We discuss how these patterns could have been favored by historical changes in forest flood patterns, the evolutionary history of Saimiri spp., and past competition.


Subject(s)
Animal Distribution , Ecosystem , Forests , Saimiri/physiology , Animals , Brazil , Sympatry , Trees/physiology
12.
Glob Chang Biol ; 24(2): 758-772, 2018 02.
Article in English | MEDLINE | ID: mdl-29080261

ABSTRACT

Tropical montane cloud forests (TMCFs) harbour high levels of biodiversity and large carbon stocks. Their location at high elevations make them especially sensitive to climate change, because a warming climate is enhancing upslope species migration, but human disturbance (especially fire) may in many cases be pushing the treeline downslope. TMCFs are increasingly being affected by fire, and the long-term effects of fire are still unknown. Here, we present a 28-year chronosequence to assess the effects of fire and recovery pathways of burned TMCFs, with a detailed analysis of carbon stocks, forest structure and diversity. We assessed rates of change of carbon (C) stock pools, forest structure and tree-size distribution pathways and tested several hypotheses regarding metabolic scaling theory (MST), C recovery and biodiversity. We found four different C stock recovery pathways depending on the selected C pool and time since last fire, with a recovery of total C stocks but not of aboveground C stocks. In terms of forest structure, there was an increase in the number of small stems in the burned forests up to 5-9 years after fire because of regeneration patterns, but no differences on larger trees between burned and unburned plots in the long term. In support of MST, after fire, forest structure appears to approximate steady-state size distribution in less than 30 years. However, our results also provide new evidence that the species recovery of TMCF after fire is idiosyncratic and follows multiple pathways. While fire increased species richness, it also enhanced species dissimilarity with geographical distance. This is the first study to report a long-term chronosequence of recovery pathways to fire suggesting faster recovery rates than previously reported, but at the expense of biodiversity and aboveground C stocks.


Subject(s)
Fires , Forests , Trees , Biodiversity , Carbon , Climate Change , Peru , Time Factors , Tropical Climate
13.
An. acad. bras. ciênc ; 89(4): 2687-2695, Oct.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-886825

ABSTRACT

ABSTRACT Seasonally dry tropical forest is one of the highly threatened biome. However, studies on the effect of fire on these tree communities are still scarce. In this context, a floristic and structural survey in three forest areas in the southeast of Brazil that were affected by fire between 14 and 25 years ago was performed with the objective of evaluating post-fire regeneration. In each site, five systematically placed plots (25 m x 25 m each) were established. The more recently burnt site had significantly lower values of richness and diversity than the other two sites. However, the sites did not differ in density and basal area. Annona dolabripetala, Astronium concinnum, Joannesia princeps and Polyandrococos caudescens were within the 10 most important species for the three sites. Comparing these data with adjacent mature forests, the results indicated differences both in structural and floristic aspects, suggesting that the time after fire was not sufficient for recuperation of these areas. The recovery process indicate at least 190 years for areas return to basal area values close to those observed in mature forests nearby.


Subject(s)
Regeneration , Forests , Fires , Tropical Climate , Brazil , Biodiversity
14.
Acta amaz. ; 46(2): 133-150, abr.-jun. 2016. tab, graf
Article in English | VETINDEX | ID: vti-16559

ABSTRACT

The analysis of changes in species composition and vegetation structure in chronosequences improves knowledge on the regeneration patterns following land abandonment in the Amazon. Here, the objective was to perform floristic-structural analysis in mature forests (with/without timber exploitation) and secondary successions (initial, intermediate and advanced vegetation regrowth) in the Tapajós region. The regrowth age and plot locations were determined using Landsat-5/Thematic Mapper images (1984-2012). For floristic analysis, we determined the sample sufficiency and the Shannon-Weaver (H'), Pielou evenness (J), Value of Importance (VI) and Fisher's alpha (α) indices. We applied the Non-metric Multidimensional Scaling (NMDS) for similarity ordination. For structural analysis, the diameter at the breast height (DBH), total tree height (Ht), basal area (BA) and the aboveground biomass (AGB) were obtained. We inspected the differences in floristic-structural attributes using Tukey and Kolmogorov-Smirnov tests. The results showed an increase in the H', J and α indices from initial regrowth to mature forests of the order of 47%, 33% and 91%, respectively. The advanced regrowth had more species in common with the intermediate stage than with the mature forest. Statistically significant differences between initial and intermediate stages (p<0.05) were observed for DBH, BA and Ht. The recovery of carbon stocks showed an AGB variation from 14.97 t ha-1 (initial regrowth) to 321.47 t ha-1 (mature forests). In addition to AGB, Ht was also important to discriminate the typologies.(AU)


A análise de mudanças na composição de espécies e estrutura da vegetação em cronosseqüências aprimora o conhecimento sobre os padrões de regeneração após o abandono das terras na Amazônia. Nosso objetivo foi realizar análise florístico-estrutural em florestas maduras (com / sem exploração madeireira) e em sucessões secundárias (inicial, intermediária e avançada) na região do Tapajós. A idade da regeneração e os locais das parcelas foram determinados usando imagens Landsat-5 TM (1984-2012). Na análise florística, foi determinada a suficiência amostral e os índices de Shannon-Weaver (H'), uniformidade de Pielou (J), Valor de Importância (VI) e alfa de Fisher (α). Foi aplicada análise de escalonamento multidimensional não-métrico (NMDS) para ordenação de similaridade. Na análise estrutural, o diâmetro à altura do peito (DAP), altura total da árvore (Ht), área basal (BA) e biomassa acima do solo (AGB) foram obtidos. As diferenças entre tipologias dos atributos florísticos-estruturais foram verificadas utilizando os testes de Tukey e Kolmogorov-Smirnov. Os resultados mostraram aumento dos índices H', J e alfa a partir da sucessão inicial até as florestas maduras da ordem de 47%, 33% e 91%, respectivamente. O estágio avançado apresentou mais espécies em comum com o estágio intermediário do que com a floresta madura. Foram observadas diferenças estatisticamente significativas entre os estágios iniciais e intermediários (p <0,05) para o DAP, BA e Ht. O retorno dos estoques de carbono mostrou uma variação de AGB de 14,97 t ha-1 (estágio inicial) para 321,47 t ha-1(florestas maduras). Além de AGB, Ht também foi um atributo importante para discriminar as tipologias.(AU)


Subject(s)
Forests , Environmental Restoration and Remediation/methods , Conservation of Natural Resources , Biomass
15.
Acta amaz ; Acta amaz;46(2): 133-150, abr.-jun. 2016. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1455299

ABSTRACT

The analysis of changes in species composition and vegetation structure in chronosequences improves knowledge on the regeneration patterns following land abandonment in the Amazon. Here, the objective was to perform floristic-structural analysis in mature forests (with/without timber exploitation) and secondary successions (initial, intermediate and advanced vegetation regrowth) in the Tapajós region. The regrowth age and plot locations were determined using Landsat-5/Thematic Mapper images (1984-2012). For floristic analysis, we determined the sample sufficiency and the Shannon-Weaver (H'), Pielou evenness (J), Value of Importance (VI) and Fisher's alpha (α) indices. We applied the Non-metric Multidimensional Scaling (NMDS) for similarity ordination. For structural analysis, the diameter at the breast height (DBH), total tree height (Ht), basal area (BA) and the aboveground biomass (AGB) were obtained. We inspected the differences in floristic-structural attributes using Tukey and Kolmogorov-Smirnov tests. The results showed an increase in the H', J and α indices from initial regrowth to mature forests of the order of 47%, 33% and 91%, respectively. The advanced regrowth had more species in common with the intermediate stage than with the mature forest. Statistically significant differences between initial and intermediate stages (p<0.05) were observed for DBH, BA and Ht. The recovery of carbon stocks showed an AGB variation from 14.97 t ha-1 (initial regrowth) to 321.47 t ha-1 (mature forests). In addition to AGB, Ht was also important to discriminate the typologies.


A análise de mudanças na composição de espécies e estrutura da vegetação em cronosseqüências aprimora o conhecimento sobre os padrões de regeneração após o abandono das terras na Amazônia. Nosso objetivo foi realizar análise florístico-estrutural em florestas maduras (com / sem exploração madeireira) e em sucessões secundárias (inicial, intermediária e avançada) na região do Tapajós. A idade da regeneração e os locais das parcelas foram determinados usando imagens Landsat-5 TM (1984-2012). Na análise florística, foi determinada a suficiência amostral e os índices de Shannon-Weaver (H'), uniformidade de Pielou (J), Valor de Importância (VI) e alfa de Fisher (α). Foi aplicada análise de escalonamento multidimensional não-métrico (NMDS) para ordenação de similaridade. Na análise estrutural, o diâmetro à altura do peito (DAP), altura total da árvore (Ht), área basal (BA) e biomassa acima do solo (AGB) foram obtidos. As diferenças entre tipologias dos atributos florísticos-estruturais foram verificadas utilizando os testes de Tukey e Kolmogorov-Smirnov. Os resultados mostraram aumento dos índices H', J e alfa a partir da sucessão inicial até as florestas maduras da ordem de 47%, 33% e 91%, respectivamente. O estágio avançado apresentou mais espécies em comum com o estágio intermediário do que com a floresta madura. Foram observadas diferenças estatisticamente significativas entre os estágios iniciais e intermediários (p <0,05) para o DAP, BA e Ht. O retorno dos estoques de carbono mostrou uma variação de AGB de 14,97 t ha-1 (estágio inicial) para 321,47 t ha-1(florestas maduras). Além de AGB, Ht também foi um atributo importante para discriminar as tipologias.


Subject(s)
Forests , Environmental Restoration and Remediation/methods , Biomass , Conservation of Natural Resources
16.
J Environ Manage ; 155: 97-105, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25776798

ABSTRACT

We examined the spatial distribution, occurrence, and socioecological predictors of woody invasive plants (WIP) in two subtropical, coastal urban ecosystems: San Juan, Puerto Rico and Miami-Dade, United States. These two cities have similar climates and ecosystems typical of subtropical regions but differ in socioeconomics, topography, and urbanization processes. Using permanent plot data, available forest inventory protocols and statistical analyses of geographic and socioeconomic spatial predictors, we found that landscape level distribution and occurrence of WIPs was not clustered. We also characterized WIP composition and occurrence using logistic models, and found they were strongly related to the proportional area of residential land uses. However, the magnitude and trend of increase depended on median household income and grass cover. In San Juan, WIP occurrence was higher in areas of high residential cover when incomes were low or grass cover was low, whereas the opposite was true in Miami-Dade. Although Miami-Dade had greater invasive shrub cover and numbers of WIP species, San Juan had far greater invasive tree density, basal area and crown cover. This study provides an approach for incorporating field and available census data in geospatial distribution models of WIPs in cities throughout the globe. Findings indicate that identifying spatial predictors of WIPs depends on site-specific factors and the ecological scale of the predictor. Thus, mapping protocols and policies to eradicate urban WIPs should target indicators of a relevant scale specific to the area of interest for their improved and proactive management.


Subject(s)
Ecosystem , Trees/classification , Cities , Florida , Humans , Introduced Species , Models, Theoretical , Puerto Rico , Spatial Analysis , Tropical Climate , Urbanization
17.
Front Plant Sci ; 5: 194, 2014.
Article in English | MEDLINE | ID: mdl-24847343

ABSTRACT

We studied tree height in stands of high-Andean Polylepis forests in two cordilleras near Cuzco (Peru) with respect to variations in human impact and climatic conditions, and compared air and soil temperatures between qualitatively defined dry and humid slopes. We studied 46 forest plots of 100 m(2) of five Polylepis species at 3560-4680 m. We measured diameter at breast height (dbh) and tree height in the stands (1229 trees in total), as well as air and soil temperatures in a subset of plots. The data was analyzed combining plots of given species from different sites at the same elevation (±100 m). There was no elevational decrease of mean maximum tree height across the entire data set. On humid slopes, tree height decreased continuously with elevation, whereas on dry slopes it peaked at middle elevations. With mean maximum tree heights of 9 m at 4530 m on the humid slopes and of 13 m at 4650 m on the dry slopes, we here document the tallest high-elevation forests found so far worldwide. These highest stands grow under cold mean growing season air temperatures (3.6 and 3.8°C on humid vs. dry slopes) and mean growing season soil temperatures (5.1 vs. 4.6°C). Mean annual air and soil temperature both decreased with elevation. Dry slopes had higher mean and maximum growing season air temperatures than humid slopes. Mean annual soil temperatures did not significantly differ and mean annual air temperatures only slightly differed between slopes. However, maximum air temperatures differed on average by 6.6 K between dry and humid slopes. This suggests that the differences in tree height between the two slopes are most likely due to differences in solar radiation as reflected by maximum air temperatures. Our study furthermore provides evidence that alpine Polylepis treelines grow under lower temperature conditions than global high-elevation treelines on average, suggesting that Polylepis species may have evolved special physiological adaptations to low temperatures.

18.
Rev. biol. trop ; Rev. biol. trop;62(1): 308-318, ene.-mar. 2014. ilus, tab
Article in English | LILACS | ID: lil-715431

ABSTRACT

The factors that determine the existence of tropical forests dominated by a single species (monodominated forests) have been the subject of debate for a long time. It has been hypothesized that the low frequency of disturbances in monodominated forests and the tolerance to shade of the monodominant species are two important factors explaining the prolonged dominance of a single species. We determined the role of these two factors by examining the effects of logging activities on the floristic composition and seedling dynamics in a Prioria copaifera dominated forest in Southeastern Costa Rica. We determined the floristic composition for trees ≥2.5cm DBH and the associated recruitment, survival and mortality of tree canopy seedlings in two sites logged two (L-02) and 12 years (L-12) prior to sampling and an unlogged forest (ULF). Our results showed that L-02 stands had lower species richness (25 species) than the L-12 and ULF stands (49 and 46 species, respectively). As expected, we found significant logging effects on the canopy structure of the altered forests, particularly when comparing the L-02 and the ULF stands. Seedling density was higher in ULF (0.96 seedlings/m²) than in the L-02and L-12 stands (0.322 and 0.466 seedlings/m², respectively). However, seedling mortality was higher in the ULF stands (54%) than in the L-02 (26%) and L-12 (15%) stands. P. macroloba in L-02 was the only species with abundant regeneration under P. copaifera in L-02 stand, where it accounted for 35% of the seedlings. Despite the reduction in seedling abundance observed after logging, P. copaifera seems to maintain large seedling populations in these forests, suggesting that this species maintains its dominance after logging disturbances. Our findings challenge the hypothesis that the regeneration of monodominant species is not likely to occur under heavily disturbed canopy conditions. Rev. Biol. Trop. 62 (1): 347-357. Epub 2014 March 01.


La determinación de los factores responsables de la existencia de bosques tropicales dominados por una sola especie (bosques monodominados) ha sido motivo de debate por largo tiempo. Se ha propuesto que la baja frecuencia de alteraciones en esos bosques y la tolerancia a la sombra de las plántulas de la especie monodominante son dos de los factores que contribuyen a explicar la prolongada dominancia de una sola especie en estos bosques. Se estudió el rol de estos dos factores evaluando el efecto de la extracción de madera sobre la composición florística y la supervivencia y crecimiento de plántulas en un bosque dominado por Prioria copaifera en la región sureste de Costa Rica. Para ello se determinó la composición florística de los árboles con un diámetro a la altura de pecho (DAP) ≥2.5cm y el reclutamiento, supervivencia y mortalidad de las plántulas de especies arbóreas en sitios donde se extrajo madera dos (L-02) y doce años (L-12) antes de este estudio y un sitio del que nunca se ha extraído madera (ULF). Nuestros resultados muestran que los bosques L-02 tienen una riqueza de especies menor (25 especies) que los bosques L-12 y ULF (49 y 46 especies, respectivamente). Como era de esperar, la extracción de madera tuvo efectos significativos en la estructura del dosel del bosque, particularmente al comparar los bosques L-02 y ULF. La densidad de plántulas fue mayor en bosques ULF (0.96 plántulas/m²) que en L-02 y L-12 (0.322 and 0.466 plántulas/m², respectivamente). Sin embargo, la mortalidad de plántulas fue mayor en ULF (54%) que en L-02 (26%) y L-12 (15%). Pentachletra macroloba fue la única especie que mostró abundante regeneración bajo P. copaifera en parcelas L-02, representando el 35% las plántulas encontradas. A pesar de la reducción de la abundancia de plántulas observada después de la extracción de madera, P. copaifera parece capaz de mantener grandes poblaciones de plántulas en estos bosques. Estos resultados sugieren que P. copaifera puede mantener su dominancia después de las alteraciones causadas por la extracción de madera. Nuestros resultados no apoyan la hipótesis de que la regeneración de las especies monodominates es menos probable cuando el dosel del bosque sufre fuertes alteraciones.


Subject(s)
Fabaceae/classification , Seedlings , Trees , Biodiversity , Costa Rica , Forestry , Tropical Climate , Trees/anatomy & histology
19.
Acta amaz. ; 42(2): 185-194, 2012. ilus, tab
Article in Portuguese | VETINDEX | ID: vti-1987

ABSTRACT

Avaliou-se a fitossociologia de floresta manejada em lotes de comunitários da Comunidade Santo Antônio no Assentamento Moju I e II, município de Santarém, Amazônia brasileira. Foram instaladas 12 parcelas de 50 m x 200 m (1 por lote) anotando-se indivíduos com CAP ≥ 157,1 cm (nível 3 de inclusão); 12 sub-parcelas de 50 m x 50 m, para os indivíduos com 94,2 cm ≤ CAP < 157,1 cm (nível 2 de inclusão) e 12 sub-parcelas de 50 m x 25 m, para os indivíduos com 31,4cm ≤ CAP < 94,2 cm (nível 1 de inclusão). Foram amostrados 1.227 indivíduos, distribuídos em 175 espécies e 38 famílias botânicas. A família Fabaceae apresentou maior número de espécies e o gênero mais rico foi Inga. O Índice de Diversidade de Shannon (H') foi 4,39 e o Índice de Equabilidade de Pielou (J) de 0,85. A avaliação do Valor de Importância Ampliado (VIA) das espécies da amostra revelou o estoque de espécies com potencial madeireiro e não madeireiro. Carapa guianensis, Caryocar villosum, Brosimum parinarioides, Aniba canellila, Bowdichia virgilioides e Andira surinamensis podem ser aproveitadas como produtos florestais não madeireiros e serem removidas da lista de espécies de corte para fins madeireiros, melhorando assim o retorno econômico comunitário. Manilkara huberi e Carapa guianensis foram espécies com utilização madeireira e não madeireira mais expressivas, considerando o mercado atual e potencial de usos conhecidos; portanto, tais características devem ser consideradas no planejamento e execução do manejo da floresta.(AU)


The forest potential was evaluated in the logged area in the Moju I and II Settlement, located at a secondary road near km 124 of the BR 163 highway, in the municipality of Santarém, Brazilian Amazonia. Twelve 50 m x 200 m plots were established in a 12 ha sample area, in which all trees CPH (circumference 1.3 m above ground) > 157.5 cm were recorded; twelve 50 m x 50 m subplots in which individuals 94.2 cm ≤ CAP < 157.1 cm were recorded; and twelve 50 m x 25 m subplots for measuring individuals 31.4 cm ≤ CAP < 94.2 cm. A total of 1227 trees from 175 species and 38 families were recorded in the forest sample. Higher number of species was found in Fabaceae and genus Inga was the richest. Diversity Shannon index (H') was 4.39 and Evenness index (J) was 0,85. The analysis of VIA showed that remain forest keeps a stock of timber and non-timber potential species for using by the community. Carapa guianensis, Caryocar villosum, Brosimum parinarioides, Aniba canellila, Bowdichia virgilioides and Andira surinamensis can be suggested to be removed from the timber harvesting list, thus improving community economic return. Manilkara huberi and Carapa guianensis were the species with more expressive timber and non-timber uses, respectively, according to the present market and the potential of known uses; so it will be very interesting that these characteristics can be taking into consideration during the elaboration of plans and management of the forest.(AU)


Subject(s)
Amazonian Ecosystem
20.
Acta amaz ; Acta amaz;42(2): 185-194, June 2012. ilus, tab
Article in Portuguese | LILACS | ID: lil-616879

ABSTRACT

Avaliou-se a fitossociologia de floresta manejada em lotes de comunitários da Comunidade Santo Antônio no Assentamento Moju I e II, município de Santarém, Amazônia brasileira. Foram instaladas 12 parcelas de 50 m x 200 m (1 por lote) anotando-se indivíduos com CAP ≥ 157,1 cm (nível 3 de inclusão); 12 sub-parcelas de 50 m x 50 m, para os indivíduos com 94,2 cm ≤ CAP < 157,1 cm (nível 2 de inclusão) e 12 sub-parcelas de 50 m x 25 m, para os indivíduos com 31,4cm ≤ CAP < 94,2 cm (nível 1 de inclusão). Foram amostrados 1.227 indivíduos, distribuídos em 175 espécies e 38 famílias botânicas. A família Fabaceae apresentou maior número de espécies e o gênero mais rico foi Inga. O Índice de Diversidade de Shannon (H') foi 4,39 e o Índice de Equabilidade de Pielou (J) de 0,85. A avaliação do Valor de Importância Ampliado (VIA) das espécies da amostra revelou o estoque de espécies com potencial madeireiro e não madeireiro. Carapa guianensis, Caryocar villosum, Brosimum parinarioides, Aniba canellila, Bowdichia virgilioides e Andira surinamensis podem ser aproveitadas como produtos florestais não madeireiros e serem removidas da lista de espécies de corte para fins madeireiros, melhorando assim o retorno econômico comunitário. Manilkara huberi e Carapa guianensis foram espécies com utilização madeireira e não madeireira mais expressivas, considerando o mercado atual e potencial de usos conhecidos; portanto, tais características devem ser consideradas no planejamento e execução do manejo da floresta.


The forest potential was evaluated in the logged area in the Moju I and II Settlement, located at a secondary road near km 124 of the BR 163 highway, in the municipality of Santarém, Brazilian Amazonia. Twelve 50 m x 200 m plots were established in a 12 ha sample area, in which all trees CPH (circumference 1.3 m above ground) > 157.5 cm were recorded; twelve 50 m x 50 m subplots in which individuals 94.2 cm ≤ CAP < 157.1 cm were recorded; and twelve 50 m x 25 m subplots for measuring individuals 31.4 cm ≤ CAP < 94.2 cm. A total of 1227 trees from 175 species and 38 families were recorded in the forest sample. Higher number of species was found in Fabaceae and genus Inga was the richest. Diversity Shannon index (H') was 4.39 and Evenness index (J) was 0,85. The analysis of VIA showed that remain forest keeps a stock of timber and non-timber potential species for using by the community. Carapa guianensis, Caryocar villosum, Brosimum parinarioides, Aniba canellila, Bowdichia virgilioides and Andira surinamensis can be suggested to be removed from the timber harvesting list, thus improving community economic return. Manilkara huberi and Carapa guianensis were the species with more expressive timber and non-timber uses, respectively, according to the present market and the potential of known uses; so it will be very interesting that these characteristics can be taking into consideration during the elaboration of plans and management of the forest.


Subject(s)
Amazonian Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL