Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 326
Filter
1.
Heliyon ; 10(11): e32262, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38912512

ABSTRACT

Simultaneous inhibition of soluble epoxide hydrolase (sEH) and fatty acid amide hydrolase (FAAH) with a single small molecule represents a novel therapeutic approach in treating inflammatory pain, since both targets are involved in pain and inflammation processes. In this study using multi-target directed ligands methodology we designed and synthesized 7 quinolinyl-based dual sEH/FAAH inhibitors, using an optimized microwave-assisted Suzuki-Miyaura coupling reaction and tested their potency in human FAAH and human, rat, and mouse sEH inhibition assays. The structure-activity relationship study showed that quinolinyl moiety is well tolerated in the active sites of both enzymes, yielding several very potent dual sEH/FAAH inhibitors with the IC50 values in the low nanomolar range. The most potent dual inhibitor 4d was further evaluated in stability assay in human and rat plasma where it performed better than the standard Warfarin while in vivo study revealed that 1 mg/kg 4d can inhibit acute inflammatory pain in male rats to a similar degree as the traditional nonsteroidal anti-inflammatory drug ketoprofen (30 mg/kg) after intraperitoneal injection. ADMET prediction studies for this dual inhibitor show favorable pharmacokinetic properties which will guide the future in vivo evaluations.

2.
Biochem Biophys Res Commun ; 720: 150077, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38759303

ABSTRACT

Hericenone C is one of the most abundant secondary metabolites derived from Hericium erinaceus, under investigation for medicinal properties. Here, we report that Hericenone C inhibits the second phase of formalin-induced nociceptive behavior in mice. As the second phase is involved in inflammation, in a mechanistic analysis on cultured cells targeting NF-κB response element (NRE): luciferase (Luc)-expressing cells, lipopolysaccharide (LPS)-induced NRE::Luc luciferase activity was found to be significantly inhibited by Hericenone C. Phosphorylation of p65, which is involved in the inflammatory responses of the NF-κB signaling pathway, was also induced by LPS and significantly reduced by Hericenone C. Additionally, in mice, the number of CD11c-positive cells increased in the paw during the peak of the second phase of the formalin test, which decreased upon Hericenone C intake. Our findings confirm the possibility of Hericenone C as a novel therapeutic target for pain-associated inflammation.


Subject(s)
Epidermis , Formaldehyde , Animals , Phosphorylation/drug effects , Mice , Male , Epidermis/metabolism , Epidermis/drug effects , Transcription Factor RelA/metabolism , CD11 Antigens/metabolism , Nociception/drug effects , Humans
3.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612817

ABSTRACT

Diverse chemical and pharmacological strategies are currently being explored to minimize the unwanted side effects of currently used opioid analgesics while achieving effective pain relief. The use of multitarget ligands with activity at more than one receptor represents a promising therapeutic approach. We recently reported a bifunctional peptide-based hybrid LENART01 combining dermorphin and ranatensin pharmacophores, which displays activity to the mu-opioid receptor (MOR) and dopamine D2 receptor (D2R) in rat brains and spinal cords. In this study, we investigated the in vitro binding and functional activities to the human MOR and the in vivo pharmacology of LENART01 in mice after subcutaneous administration. In vitro binding assays showed LENART01 to bind and be selective to the human MOR over the other opioid receptor subtypes and delta, kappa and nociceptin receptors. In the [35S]GTPγS binding assay, LENART01 acted as a potent and full agonist to the human MOR. In mice, LENART01 produced dose-dependent antinociceptive effects in formalin-induced inflammatory pain, with increased potency than morphine. Antinociceptive effects were reversed by naloxone, indicating MOR activation in vivo. Behavioral studies also demonstrated LENART01's properties to induce less adverse effects without locomotor dysfunction and withdrawal syndrome compared to conventional opioid analgesics, such as morphine. LENART01 is the first peptide-based MOR-D2R ligand known to date and the first dual MOR-dopamine D2R ligand for which in vivo pharmacology is reported with antinociceptive efficacy and reduced opioid-related side effects. Our current findings may pave the way to new pain therapeutics with limited side effects in acute and chronic use.


Subject(s)
Analgesics, Opioid , Oligopeptides , Pyrrolidonecarboxylic Acid/analogs & derivatives , Receptors, Opioid , Humans , Rats , Animals , Mice , Analgesics, Opioid/pharmacology , Ligands , Morphine , Opioid Peptides/pharmacology , Pain/drug therapy
4.
Neurosci Lett ; 828: 137741, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38521401

ABSTRACT

Itaconate has been found to have potent anti-inflammatory effects and is being explored as a potential treatment for inflammatory diseases. However, its ability to relieve nociception and the mechanisms behind it are not yet understood. Our research aims to investigate the nociception-relieving properties of dimethyl itaconate (DMI) in the formalin test and writhing test. In male Wistar rats, Itaconic acid was injected intraperitoneally (i.p.). The formalin test and writhing test were conducted to determine the nociceptive behaviors. The spinal cords were removed from the rats and analyzed for c-fos protein expression. The study found that administering DMI 10 and 20 mg/kg reduced nociception in formalin and writhing tests. Injection of formalin into the periphery of the body led to an increase in the expression of c-fos in the spinal cord, which was alleviated by DMI 20 mg/kg. Similarly, acetic acid injection into the peritoneal cavity caused an increase in c-fos expression in the spinal cord, which was then reduced by 20 mg/kg. According to our findings, DMI reduced nociception in rats during the formalin and writhing tests. One possible explanation for this outcome is that the decrease in c-fos protein expression may be attributed to the presence of DMI.


Subject(s)
Pain , Proto-Oncogene Proteins c-fos , Succinates , Animals , Male , Rats , Formaldehyde/pharmacology , Pain/drug therapy , Pain/metabolism , Proto-Oncogene Proteins c-fos/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Rats, Wistar , Spinal Cord/metabolism , Succinates/metabolism , Succinates/pharmacology
5.
Behav Brain Res ; 463: 114914, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38368953

ABSTRACT

Previous studies have shown that various receptors, including dopamine receptors, are expressed in the hippocampal dentate gyrus (DG). Besides, indicatively, dopamine receptors play an essential role in the modulation of pain perception. On the other hand, stressful experiences can produce analgesia, termed stress-induced analgesia (SIA). The current study examined the probable role of dopamine receptors within the DG in antinociception induced by restraint stress (RS). Ninety-seven male albino Wistar rats were unilaterally implanted with a cannula in the DG. Animals received intra-DG microinjections of SCH23390 or Sulpiride (0.25, 1, and 4 µg/rat) as D1-and D2-like dopamine receptor antagonists, respectively, five minutes before RS. Ten minutes after the end of the induction of RS for three hours, 50 µl 2.5% formalin was injected subcutaneously into the plantar surface of the hind paw to induce persistent inflammatory pain. Pain scores were evaluated at 5-minute intervals for 60 minutes. These findings showed that; exposure to RS for three hours produced SIA in both phases of the formalin test, while this RS-induced analgesia was attenuated in the early and late phases of the formalin test by intra-DG microinjection of SCH23390 and Sulpiride. The results of the present study suggested that both D1- and D2-like dopamine receptors in the DG have a considerable role in the induced analgesia by RS.


Subject(s)
Receptors, Dopamine , Sulpiride , Rats , Male , Animals , Sulpiride/pharmacology , Pain Measurement , Receptors, Dopamine/physiology , Analgesics/adverse effects , Pain/chemically induced , Rats, Wistar , Dentate Gyrus/metabolism , Hippocampus/metabolism , Receptors, Dopamine D1/metabolism , Benzazepines/pharmacology
6.
J Neurosci Res ; 102(1): e25274, 2024 01.
Article in English | MEDLINE | ID: mdl-38284848

ABSTRACT

Comparative studies using reptiles as experimental animals in pain research could expand our knowledge on the evolution and adaptation of pain mechanisms. Currently, there are no data reported on the involvement of voltage-gated sodium ion channels on nociception in reptiles. The aim of this study was to investigate the involvement of Nav1.3, Nav1.7, and Nav1.8 ion channels in nociception in Speke's hinge-back tortoise. ICA 121341 (selective blocker for Nav1.1/Nav1.3), NAV 26 (selective blocker for Nav1.7), and A803467 (selective blocker for Nav1.8) were used to investigate the involvement of Nav1.3, Nav1.7, and Nav1.8, respectively. The chemicals were administered intracoelomically thirty minutes before the start of nociceptive tests. ICA 121341 did not cause a significant decrease in the time spent in pain-related behavior in all the nociceptive tests. NAV 26 and A8034667 caused a statistically significant decrease in the mean time spent in pain-related behavior in the formalin and capsaicin tests. Only A803467 caused a statistically significant increase in the mean latency to pain-related behavior in the hot plate test. NAV 26 and A803467 had no observable side effects. In conclusion, Nav1.7 and Nav1.8 are involved in the processing of chemically induced inflammatory pain in Speke's hinge back tortoise. In addition, Nav1.8 are also significantly involved in the development of thermal-induced pain-related behavior in this species of reptile. However, our results do not support the involvement of Nav1.3 on the development of chemical or thermal induced pain-related behavior in the Speke's hinge back tortoise.


Subject(s)
Turtles , Animals , Aniline Compounds , Furans , Pain/chemically induced , Pain/drug therapy
7.
Neurosci Res ; 198: 30-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37392833

ABSTRACT

Repeated cold stress (RCS) can trigger the development of fibromyalgia (FM)-like symptoms, including persistent deep-tissue pain, although nociceptive changes to the skin have not been fully characterized. Using a rat RCS model, we investigated nociceptive behaviors induced by noxious mechanical, thermal, and chemical stimuli applied to plantar skin. Neuronal activation in the spinal dorsal horn was examined using the formalin pain test. In rats exposed to RCS, nociceptive behavioral hypersensitivity was observed in all modalities of cutaneous noxious stimuli: the mechanical withdrawal threshold was decreased, and the heat withdrawal latency was shortened one day after the cessation of stress. The duration of nocifensive behaviors in the formalin test was prolonged in phase II but not in phase I. The number of c-Fos-positive neurons increased in the entire dorsal horn laminae I-VI, ipsilateral, but not contralateral, to formalin injection at the L3-L5 segments. The duration of nocifensive behavior in phase II was significantly and positively correlated with the number of c-Fos-positive neurons in laminae I-II. These results demonstrate that cutaneous nociception is facilitated in rats exposed to RCS for a short time and that the spinal dorsal horn neurons are hyperactivated by cutaneous formalin in the RCS model.


Subject(s)
Cold-Shock Response , Nociception , Rats , Animals , Rats, Sprague-Dawley , Pain Measurement/methods , Pain/metabolism , Spinal Cord/metabolism , Spinal Cord Dorsal Horn/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Formaldehyde
8.
IBRO Neurosci Rep ; 16: 51-56, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38145175

ABSTRACT

Introduction: Plenty evidences suggests that neuroinflammation and oxidative stress augmented the neural sensitivity specifying that neuro-immune response is involved in the pathophysiology of pain. Ferulic acid (FA), a natural antioxidant found in various fruits, has various pharmacological properties. The purpose of the current study was to assess the antinociceptive effect of FA in a mouse model of formalin test with focus on its anti-neuroinflammatory and antioxidative stress effects. Methods: The injection of FA (40 mg/kg), piroxicam (2 mg/kg), and saline (0.9% NaCl) (1 ml/kg) was done intraperitoneally and after one hour, formalin injected into the plantar surface of the hind paw of mice. Then pain behavior was documented during 60 min. Then mice were euthanized and prefrontal cortex (PFC) samples were taken. Malondialdehyde (MDA) level, antioxidant capacity and expression of inflammatory genes, counting tumor necrosis factor (TNF-) and interleukine 1 (IL-1) evaluated in the PFC. Results: exhibited that FA declined the pain behavior following injection of formalin. Besides, FA significantly diminished the MDA level and increased the antioxidant capacity in the PFC. We revealed that FA diminished the expression of TNF-α and IL-1ß genes in the PFC. Conclusion: We conclude that FA exerted antinociceptive effects in the formalin test in mice, at least partially, by reducing oxidative stress and neuroimmune response in the PFC.

9.
Front Neurol ; 14: 1271655, 2023.
Article in English | MEDLINE | ID: mdl-37928139

ABSTRACT

Acute pain-related pathology is a significant challenge in clinical practice, and the limitations of traditional pain-relief drugs have made it necessary to explore alternative approaches. Photobiomodulation (PBM) therapy using CO2 laser has emerged as a promising option. In this study, we aimed to identify the optimal parameters of CO2 laser irradiation for acute pain relief through in vivo and in vitro experiments. First, we validated the laser intensity used in this study through bone marrow mesenchymal stem cells (BMSCs) experiments to ensure it will not adversely affect stem cell viability and morphology. Then we conducted a detailed evaluation of the duty cycle and frequency of CO2 laser by the hot plate and formalin test. Results showed a duty cycle of 3% and a frequency of 25 kHz produced the best outcomes. Additionally, we investigated the potential mechanisms underlying the effects of CO2 laser by immunohistochemical staining, and found evidence to suggest that the opioid receptor may be involved in its analgesic effect. In conclusion, this study provides insights into the optimal parameters and underlying mechanisms of CO2 laser therapy for effective pain relief, thereby paving the way for future clinical applications.

10.
IBRO Neurosci Rep ; 15: 270-280, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37860709

ABSTRACT

B-vitamins have been evaluated as a useful adjuvant therapy to treat pain. In spite of clinical and experimental evidence indicating the analgesic effect of B-vitamins, few studies have investigated their effect on aspects of the inflammatory pain response. In the present study, we investigated the analgesic effect of chronic application of B-complex vitamins (Neurobion) using an inflammatory experimental pain model in rats. Nociceptive behavioral responses were evaluated in male Wistar rats after plantar injection of formalin, comparing the treatment group (TG) with Neurobion pretreatment to the control group (CG) without the pretreatment. In addition, neuronal activity in the central pain pathway was evaluated using c-Fos immunohistochemical reactivity and NADPH-d histochemistry. A highly significant reduction of painful behaviors such as licking and flinching were observed in TG, especially during the secondary phase of the formalin test compared to CG. Results suggest that long-term pre-treatment using Neurobion can have a beneficial effect in reducing the chronic phase of pain. In addition, we observed a downregulation of c-Fos and NADPH-d in dorsal spinal neurons, suggesting that the antinociceptive effect induced by Neurobion could be due to a suppression of nociceptive transmission at the spinal level, particularly in the afferent regions of the dorsal spinal horn, which these neurons utilizing nitric oxide at least as one of their pain neurotransmitters.

11.
Brain Res Bull ; 203: 110774, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37793595

ABSTRACT

Alpha-pinene (α- pinene), an essential oil that falls under the category of monoterpenes, has various advantages. This research delves into the potential benefits of α-pinene in alleviating nociception caused by the formalin test and the molecular mechanisms involved. Alpha-pinene (1, 5, or 10 mg/kg/day, i.p.) was administrated for 7 days before the formalin test. Observations of nociceptive behaviors were made during the formalin test. We examined the levels of TNF-α and IL-1ß, as well as the expression of COX-1 in the spinal cord. Additionally, we evaluated the levels of TNF-α, IL-1ß, SOD, GSH, CAT, and MDA in the skin of the hind paw that received a formalin injection. The peripheral injection of formalin triggered nociceptive behaviors, which was notably diminished by α-pinene 5 or 10 mg/kg. The biochemical evaluation revealed that α-pinene significantly moderated the evaluation in TNF-α and IL-1ß in the spinal cord induced by formalin injection. Additionally, it was found that α-pinene had a decreasing effect on the expression of COX-1 protein in the spinal cord. Also, α-pinene 5 or 10 mg/kg caused a decrease of TNF-α, IL-1ß, and MDA and an increase of SOD, GSH, and CAT at the formalin injection site. The study discovered that doses of 5 or 10 mg/ml of α-pinene can effectively relieve nociceptive response in the formalin test. Alpha-pinene pretreatment reduced the presence of pro-inflammatory cytokines. It also improved the oxidative stress condition by enhancing antioxidant factors and reducing oxidant factors.


Subject(s)
Oxidative Stress , Tumor Necrosis Factor-alpha , Pain Measurement , Tumor Necrosis Factor-alpha/metabolism , Formaldehyde/pharmacology , Superoxide Dismutase/metabolism
12.
Exp Neurobiol ; 32(4): 247-258, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37749926

ABSTRACT

Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1), also known as growth differentiation factor-15 (GDF-15), is associated with cancer, diabetes, and inflammation, while there is limited understanding of the role of NAG-1 in nociception. Here, we examined the nociceptive behaviors of NAG-1 transgenic (TG) mice and wild-type (WT) littermates. Mechanical sensitivity was evaluated by using the von Frey filament test, and thermal sensitivity was assessed by the hot-plate, Hargreaves, and acetone tests. c-Fos, glial fibrillary acidic protein (GFAP), and ionized calcium binding adaptor molecule-1 (Iba-1) immunoreactivity was examined in the spinal cord following observation of the formalin-induced nociceptive behaviors. There was no difference in mechanical or thermal sensitivity for NAG-1 TG and WT mice. Intraplantar formalin injection induced nociceptive behaviors in both male and female NAG-1 TG and WT mice. The peak period in the second phase was delayed in NAG-1 TG female mice compared with that of WT female mice, while there was no difference in the cumulative time of nociceptive behaviors between the two groups of mice. Formalin increased spinal c-Fos immunoreactivity in both TG and WT female mice. Neither GFAP nor Iba-1 immunoreactivity was increased in the spinal cord of TG and WT female mice. These findings indicate that NAG-1 TG mice have comparable baseline sensitivity to mechanical and thermal stimulation as WT mice and that NAG-1 in female mice may have an inhibitory effect on the second phase of inflammatory pain. Therefore, it could be a novel target to inhibit central nervous system response in pain.

13.
Life (Basel) ; 13(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37763204

ABSTRACT

The present work continues our recent series of articles that aim to elucidate the ligand-receptor binding mechanism of short cationic peptides to the NaV1.8 channel in the nociceptive neuron. The applied methodological approach has involved several methods: the patch-clamp experimental evaluation of the effective charge of the NaV1.8 channel activation gating system, the organotypic tissue culture method, the formalin test, and theoretical conformational analysis. The lysine-containing short peptide Ac-KEKK-NH2 has been shown to effectively modulate the NaV1.8 channel activation gating system. As demonstrated by the organotypic tissue culture method, the studied short peptide does not trigger the downstream signaling cascades controlling neurite outgrowth and should not be expected to evoke adverse side effects. Conformational analysis of the Ac-KEKK-NH2 molecule has revealed that the distances between the positively charged amino groups of the lysine side chains are equal to 11-12 Å. According to the previously suggested mechanism of ligand-receptor binding of short peptides to the NaV1.8 channel molecule, Ac-KEKK-NH2 should exhibit an analgesic effect, which has been confirmed by the formalin test. The data obtained unequivocally indicate that the studied lysine-containing short peptide is a promising candidate for the role of a novel analgesic medicinal substance.

14.
Curr Res Neurobiol ; 4: 100093, 2023.
Article in English | MEDLINE | ID: mdl-37397816

ABSTRACT

Pain is a common symptom associated with disorders involving the orofacial structures. Most acute orofacial painful conditions are easily recognized, but the pharmacological treatment may be limited by the adverse events of current available drugs and/or patients' characteristics. In addition, chronic orofacial pain conditions represent clinical challenges both, in terms of diagnostic and treatment. There is growing evidence that specialized pro-resolution lipid mediators (SPMs) present potent analgesic effects, in addition to their well characterized role in the resolution of inflammation. Maresins (MaR-1 and MaR-2) were the last described members of this family, and MaR-2 analgesic action has not yet been reported. Herein the effect of MaR-2 in different orofacial pain models was investigated. MaR-2 (1 or 10 ng) was always delivered via medullary subarachnoid injection, which corresponds to the intrathecal treatment. A single injection of MaR-2 caused a significant reduction of phases I and II of the orofacial formalin test in rats. Repeated injections of MaR-2 prevented the development of facial heat and mechanical hyperalgesia in a model of post-operative pain in rats. In a model of trigeminal neuropathic pain (CCI-ION), repeated MaR-2 injections reversed facial heat and mechanical hyperalgesia in rats and mice. CCI-ION increased c-Fos positive neurons and CGRP+ activated (nuclear pNFkB) neurons in the trigeminal ganglion (TG), which were restored to sham levels by MaR-2 repeated treatment. In conclusion, MaR-2 showed potent and long-lasting analgesic effects in inflammatory and neuropathic pain of orofacial origin and the inhibition of CGRP-positive neurons in the TG may account for MaR-2 action.

15.
Biochem Biophys Rep ; 34: 101467, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37125080

ABSTRACT

The formalin test has been established as a method for evaluating mouse models of pain. Although there have been numerous reports of formalin-pain-induced behavior, few reports of a detailed histochemical analysis of the central nervous system focus on behavioral biphasic properties. To investigate the alternation of spinal neuronal activity with formalin-induced pain, we performed immunofluorescent staining with c-Fos antibodies as neuronal activity markers using acute pain model mice induced by 2% formalin stimulation. As a result, phase-specific expression patterns were observed. In the spinal dorsal horn region, there were many neural activities in the deep region (layers V-VII) in the behavioral first phase and those in the surface region (layers I-III) in the behavioral second phase. Furthermore, we conducted comparative studies using low concentrations (0.25%) of formalin and capsaicin, which did not show distinct behavioral biphasic properties. Neural activity was observed only in the spinal dorsal horn surface region for both stimuli. Our study suggested that the histochemical biphasic nature of formalin-induced pain was attributable to the activity of the deep region of the spinal cord. In the future, treatment strategies focusing on the deep region neuron will lead to the development of effective treatments for allodynia and intractable chronic pain.

16.
Article in English | MEDLINE | ID: mdl-36861796

ABSTRACT

BACKGROUND: A series of phthalimides related to thalidomide have been studied for analgesic activity in the formalin test. The formalin test was performed in mice in a nociceptive pattern to evaluate analgesic activity. METHODS: In this study, nine derivatives of phthalimides were evaluated in terms of exerting analgesic effects in mice. They exerted significant analgesic effects compared to indomethacin and negative control. These compounds were synthesized and characterized by TLC, followed by IR and H1NMR in the previous studies. Two distinct periods of high licking activity were used to analyze both acute and chronic pain. All compounds were compared with indomethacin and carbamazepine as positive control and vehicle as a negative control. RESULTS: All of the tested compounds exhibited significant analgesic activity in both the first and second phases of the test compared to the control group (DMSO), although they did not show more activity than the reference drug (indomethacin) but were comparable to indomethacin. CONCLUSION: This information may be useful in the development of a more potent phthalimide as an analgesic agent that acts as a sodium channel blocker and COX inhibitor.


Subject(s)
Analgesics , Indomethacin , Mice , Animals , Analgesics/pharmacology , Indomethacin/pharmacology , Cyclooxygenase Inhibitors , Pain Measurement , Phthalimides/pharmacology
17.
P R Health Sci J ; 42(1): 35-42, 2023 03.
Article in English | MEDLINE | ID: mdl-36941097

ABSTRACT

OBJECTIVE: Evidence supports the local application of non-steroidal antiinflammatory drugs such as dexketoprofen trometamol (DXT) for pain management, but little is known about the potential antinociceptive effect of chlorhexidine gluconate (CHX) and its possible synergistic effect when combined with DXT. The aim of this study was to evaluate the local effect of a DXT-CHX combination using isobolographic analysis in a formalin pain model in rats. MATERIALS AND METHODS: Briefly, 60 female Wistar rats were used for the formalin test. Individual dose effect curves were obtained using linear regression. For each drug, the percentage of antinociception and median effective dose (ED50; 50% of antinociception) were calculated, and drug combinations were prepared using the ED50s for DXT (phase 2) and CHX (phase 1). The ED50 of the DXT-CHX combination was determined, and an isobolographic analysis was performed for both phases. RESULTS: The ED50 of local DXT was 5.3867 mg/mL in phase 2 and for CHX was 3.9233 mg/mL in phase 1. When the combination was evaluated, phase 1 showed an interaction index (II) of less than 1, indicating synergism but without statistical significance. For phase 2, the II was 0.3112, with a reduction of 68.88% in the amounts of both drugs to obtain the ED50; this interaction was statistically significant (P < .05). CONCLUSION: DXT and CHX had a local antinociceptive effect and exhibited synergistic behavior when combined in phase 2 of the formalin model.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Chlorhexidine , Female , Rats , Animals , Pain Measurement , Chlorhexidine/pharmacology , Drug Synergism , Rats, Wistar , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Formaldehyde , Dose-Response Relationship, Drug
18.
Curr Drug Discov Technol ; 20(3): e270323215003, 2023.
Article in English | MEDLINE | ID: mdl-36974415

ABSTRACT

BACKGROUND: Nanoemulsions are promising drug delivery systems for topical application owing to the high transdermal penetration. OBJECTIVE: Due to the side effects of existing anti-inflammatory drugs, much attention has been paid to natural products such as flavonoids. The aim of this work was to formulate luteolin nanoemulsion (LNE) and to evaluate its anti-inflammatory effect. METHODS: LNE was prepared using the low-energy spontaneous emulsion method and characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and dynamic light scattering (DLS). The anti-inflammatory effect of LNE was assessed in formalin and acetic acid-induced inflammation methods (Whittle test). Treatment with LNE (i.p, 4 consecutive days, 40 mg/kg) was compared with diclofenac 25 mg/kg and normal saline. In the formalin test, data were recorded at 1, 2 and 4 hours after formalin injection and in the Wittle test, the extent of Evans blue leakage in the peritoneal cavity was considered as vascular permeability. RESULTS: Formalin-induced edema decreased in the LNE group, but this reduction was not significant (p > 0.05), however, in Whittle test, both LNE and diclofenac significantly reduced Evans blue leakage compared with the group treated with acetic acid alone (p < 0.05). CONCLUSION: Our results confirm the anti-inflammatory effect of LNE and give up a new platform for the design and development of bio-based carriers for more successful drug delivery.


Subject(s)
Diclofenac , Nanoparticles , Animals , Diclofenac/pharmacology , Diclofenac/therapeutic use , Luteolin/pharmacology , Luteolin/therapeutic use , Evans Blue , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Models, Animal , Emulsions/chemistry
19.
Neuropeptides ; 98: 102323, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36736068

ABSTRACT

Stress suppresses the sense of pain, a physiological phenomenon known as stress-induced analgesia (SIA). Brain orexin peptides regulate many physiological functions, including wakefulness and nociception. The contribution of the orexinergic system within the nucleus accumbens (NAc) in the modulation of antinociception induced by forced swim stress (FSS) remains unclear. The present study addressed the role of intra-accumbal orexin receptors in the antinociceptive responses induced by FSS during the persistent inflammatory pain model in the rat. Stereotaxic surgery was performed unilaterally on 106 adult male Wistar rats weighing 250-305 g. Different doses (1, 3, 10, and 30 nmol/ 0.5 µl DMSO) of orexin-1 receptor (OX1r) antagonist (SB334867) or OX2 receptor antagonist (TCS OX2 29) were administered into the NAc five minutes before exposure to FSS for a 6-min period. The formalin test was carried out using formalin injection (50 µl; 2.5%) into the rat's hind paw plantar surface, which induces biphasic pain-related responses. The first phase begins immediately after formalin infusion and takes 3-5 min. Subsequently, the late phase begins 15-20 min after formalin injection and takes 20-40 min. The findings demonstrated that intra-accumbal microinjection of SB334867 or TCS OX2 29 attenuated the FSS-induced antinociception in both phases of the formalin test, with the TCS OX2 29 showing higher potency. Moreover, the effect of TCS OX2 29 was more significant during the early phase of the formalin test. The results suggest that OX1 and OX2 receptors in the NAc might modulate the antinociceptive responses induced by the FSS.


Subject(s)
Nucleus Accumbens , Pain , Rats , Male , Animals , Orexin Receptors/metabolism , Orexins/pharmacology , Rats, Wistar , Pain/drug therapy , Pain/chemically induced , Analgesics/pharmacology , Analgesics/therapeutic use , Formaldehyde/pharmacology , Orexin Receptor Antagonists/pharmacology
20.
Behav Brain Res ; 443: 114307, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36764008

ABSTRACT

It has been declared that dopamine receptors within the hippocampal formation are involved in emotion, memory, and pain processing. Remarkably, both CA1 and dentate gyrus (DG) areas of the hippocampal formation are involved in persistent peripheral nociceptive perception. A prior study showed that dopamine receptors within the hippocampal DG have a critical role in antinociception induced by forced swim stress (FSS), as a physical stressor, in the presence of formalin irritation. The present experiments were designed to assess whether dopaminergic receptors within the CA1 have any role in antinociceptive responses induced by restraint stress (RS) as a psychological stressor after applying the formalin test as an animal model of persistent inflammatory pain. The D1- and D2-like dopamine receptor antagonists, SCH23390 and Sulpiride (0.25, 1, and 4 µg/0.5 µl), were injected into the CA1 areas of ninety-six male albino Wistar rats 5 min before a 3-h period of restraint stress. Ten min after stress termination, a 50-µl formalin 2.5 % was subcutaneously injected into the plantar surface of the rat's hind paw to induce persistent inflammatory pain. Nociceptive behaviors in both phases of the formalin test were analyzed in the 5-min blocks for a 60-min period. The obtained results demonstrate that although RS could induce an antinociceptive response in both phases of the formalin test, microinjection of D1- and D2-like dopamine receptors, antagonists attenuated RS-induced analgesia. These results support the hypothesis that acute restraint stress could induce analgesia via dopaminergic projection to the CA1 region of the hippocampal formation.


Subject(s)
Hippocampus , Receptors, Dopamine , Rats , Male , Animals , Hippocampus/metabolism , Pain/chemically induced , Rats, Wistar , Sulpiride/pharmacology , Formaldehyde/pharmacology , Models, Animal , Analgesics/pharmacology , Receptors, Dopamine D1/metabolism , Benzazepines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...