Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Asthma Allergy ; 17: 983-1000, 2024.
Article in English | MEDLINE | ID: mdl-39411425

ABSTRACT

Background: Asthma onset or worsening of the disease in adulthood may be associated with occupational asthma (OA) or work-exacerbated asthma (WEA). Oscillometry and respiratory modeling offer insight into the pathophysiology and contribute to the early diagnosis of respiratory abnormalities. Purpose: This study aims to compare the changes due to OA and WEA and evaluate the diagnostic accuracy of this method. Patients and Methods: Ninety-nine volunteers were evaluated: 33 in the control group, 33 in the OA group, and 33 in the WEA group. The area under the receiver operator characteristic curve (AUC) was used to describe diagnostic accuracy. Results: Oscillometric analysis showed increased resistance at 4 hz (R4, p<0.001), 20 hz (R20, p<0.05), R4-R20 (p<0.0001), and respiratory work (p<0.001). Similar analysis showed reductions in dynamic compliance (p<0.001) and ventilation homogeneity, as evaluated by resonance frequency (Fr, p<0.0001) and reactance area (p<0.0001). Respiratory modeling showed increased peripheral resistance (p<0.0001), hysteresivity (p<0.0001), and damping (p<0.0001). No significant changes were observed comparing OA with WEA in any parameter. For OA, the diagnostic accuracy analyses showed Fr as the most accurate among oscillometric parameters (AUC=0.938), while the most accurate from respiratory modeling was hysteresivity (AUC=0.991). A similar analysis for WEA also showed that Fr was the most accurate among traditional parameters (AUC=0.972), and hysteresivity was the most accurate from modeling (AUC=0.987). The evaluation of differential diagnosis showed low accuracy. Conclusion: Oscillometry and modeling have advanced our understanding of respiratory abnormalities in OA and WEA. Furthermore, our study presents evidence suggesting that these models could aid in the early diagnosis of these diseases. Respiratory oscillometry examinations necessitate only tidal breathing and are straightforward to conduct. Collectively, these practical considerations, coupled with the findings of our study, indicate that respiratory oscillometry in conjunction with respiratory modeling, may enhance lung function assessments in OA and WEA.

2.
Int J Chron Obstruct Pulmon Dis ; 15: 3273-3289, 2020.
Article in English | MEDLINE | ID: mdl-33324050

ABSTRACT

Purpose: This research examines the emerging role of respiratory oscillometry associated with integer (InOr) and fractional order (FrOr) respiratory models in the context of groups of patients with increasing severity. The contributions to our understanding of the respiratory abnormalities along the course of increasing COPD severity and the diagnostic use of this method were also evaluated. Patients and Methods: Forty-five individuals with no history of smoking or pulmonary diseases (control group) and 141 individuals with diagnoses of COPD were studied, being classified into 45 mild, 42 moderate, 36 severe and 18 very severe cases. Results: This study has shown initially that the course of increasing COPD severity was adequately described by the model parameters. This resulted in significant and consistent correlations among these parameters and spirometric indexes. Additionally, this evaluation enhanced our understanding of the respiratory abnormalities in different COPD stages. The diagnostic accuracy analyses provided evidence that hysteresivity, obtained from FrOr modeling, allowed a highly accurate identification in patients with mild changes [area under the receiver operator characteristic curve (AUC)= 0.902]. Similar analyses in groups of moderate and severe patients showed that peripheral resistance, derived from InOr modeling, provided the most accurate parameter (AUC=0.898 and 0.998, respectively), while in very severe patients, traditional, InOr and FrOr parameters were able to reach high diagnostic accuracy (AUC>0.9). Conclusion: InOr and FrOr modeling improved our knowledge of the respiratory abnormalities along the course of increasing COPD severity. In addition, the present study provides evidence that these models may contribute in the diagnosis of COPD. Respiratory oscillometry exams require only tidal breathing and are easy to perform. Taken together, these practical considerations and the results of the present study suggest that respiratory oscillometry associated with InOr and FrOr models may help to improve lung function tests in COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Oscillometry , Pulmonary Disease, Chronic Obstructive/diagnosis , Respiration , Respiratory Function Tests , Respiratory Mechanics , Spirometry
SELECTION OF CITATIONS
SEARCH DETAIL