Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 13: 1052377, 2022.
Article in English | MEDLINE | ID: mdl-36504766

ABSTRACT

Ganoderma lucidum is a traditional Chinese medicine and its major active ingredients are ganoderma triterpenoids (GTs). To screen for transcription factors (TFs) that involved in the biosynthetic pathway of GTs in G. lucidum, the chemical composition in mycelia, primordium and fruiting body were analyzed, and the transcriptomes of mycelia induced by methyl jasmonate (MeJA) were analyzed. In addition, the expression level data of MeJA-responsive TFs in mycelia, primordia and fruiting body were downloaded from the database, and the correlation analysis was carried out between their expression profiles and the content of total triterpenoids. The results showed that a total of 89 components were identified, and the content of total triterpenoids was the highest in primordium, followed by fruiting body and mycelia. There were 103 differentially expressed TFs that response to MeJA-induction including 95 upregulated and 8 downregulated genes. These TFs were classified into 22 families including C2H2 (15), TFII-related (12), HTH (9), fungal (8), bZIP (6), HMG (5), DADS (2), etc. Correlation analysis showed that the expression level of GL23559 (MADS), GL26472 (HTH), and GL31187 (HMG) showed a positive correlation with the GTs content, respectively. While the expression level of GL25628 (fungal) and GL26980 (PHD) showed a negative correlation with the GTs content, respectively. Furthermore, the over expression of the Glmhr1 gene (GL25628) in Pichia pastoris GS115 indicated that it might be a negative regulator of GT biosynthesis through decreasing the production of lanosterol. This study provided useful information for a better understanding of the regulation of TFs involved in GT biosynthesis and fungal growth in G. lucidum.

2.
Zhongguo Zhong Yao Za Zhi ; 44(18): 3967-3973, 2019 Sep.
Article in Chinese | MEDLINE | ID: mdl-31872732

ABSTRACT

Lanosterol synthase( LS) is a key enzyme involving in the mevalonate pathway( MVA pathway) to produce lanosterol,which is a precursor of ganoderma triterpenoid. And the transcriptional regulation of LS gene directly affects the content of triterpenes in Ganoderma lucidum. In order to study the transcriptional regulation mechanism of LS gene,yeast one-hybrid technique was used to screen the transcription regulators which interact withthe promoter of LS. The bait vector was constructed by LS promoter,then the vector was transformed yeast cells to construct bait yeast strain. One-hybrid c DNA library was constructed via SMART technology. Then the c DNA and p GADT7-Rec vector were co-transformed into the bait yeast strain to screen the upstream regulatory factors of the promoter region of LS by homologous recombination. Total of 23 positive clones were screened. After sequencing,blast was performed against the whole-genome sequence of G. lucidum. As a result,8 regulatory factors were screened out including the transcription initiation TFIIB,the alpha/beta hydrolase super family,ALDH-SF superfamily,60 S ribosomal protein L21,ATP synthase ß-subunit,microtubule associated protein Cript,prote asome subunit ß-1,and transaldolase. Until now,the regulation effect of these 8 regulatory factors in G.lucidum has not been reported. This study provides candidate proteins for in-depth study on the expression regulation of LS.


Subject(s)
Intramolecular Transferases/metabolism , Reishi/enzymology , Transcription Factors/metabolism , Gene Library , Intramolecular Transferases/genetics , Reishi/genetics , Saccharomyces cerevisiae
3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008313

ABSTRACT

Lanosterol synthase( LS) is a key enzyme involving in the mevalonate pathway( MVA pathway) to produce lanosterol,which is a precursor of ganoderma triterpenoid. And the transcriptional regulation of LS gene directly affects the content of triterpenes in Ganoderma lucidum. In order to study the transcriptional regulation mechanism of LS gene,yeast one-hybrid technique was used to screen the transcription regulators which interact withthe promoter of LS. The bait vector was constructed by LS promoter,then the vector was transformed yeast cells to construct bait yeast strain. One-hybrid c DNA library was constructed via SMART technology. Then the c DNA and p GADT7-Rec vector were co-transformed into the bait yeast strain to screen the upstream regulatory factors of the promoter region of LS by homologous recombination. Total of 23 positive clones were screened. After sequencing,blast was performed against the whole-genome sequence of G. lucidum. As a result,8 regulatory factors were screened out including the transcription initiation TFIIB,the alpha/beta hydrolase super family,ALDH-SF superfamily,60 S ribosomal protein L21,ATP synthase β-subunit,microtubule associated protein Cript,prote asome subunit β-1,and transaldolase. Until now,the regulation effect of these 8 regulatory factors in G.lucidum has not been reported. This study provides candidate proteins for in-depth study on the expression regulation of LS.


Subject(s)
Gene Library , Intramolecular Transferases/metabolism , Reishi/genetics , Saccharomyces cerevisiae , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...