Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Carbohydr Polym ; 321: 121317, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37739541

ABSTRACT

Mango is the "king of tropical fruits" because of its attractive appearance, delicious taste, rich aroma, and high nutritional value. However, mango keeps fast metabolizing after harvest, leading to water loss, starch conversion into sugar, texture softening, and decay. Here, a gas barrier coating based on cellulose nanocrystals (CNCs) is proposed to control the post-harvest metabolism of mango. The results of gas barrier permeability show that CNCs enhance the barrier ability of the chitosan (CS) membrane on mango by 202 % and 63 % for oxygen and water vapor, respectively. The gas-barrier coating reduces the climb in pH and the decrease in firmness by 84.9 % and 45.8 %, respectively, decelerating the conversion process from starch to sugar. Besides, introducing clove essential oil (CEO), the CEO mainly adsorbs and crystalizes on the hydrophobic facets of CNCs, presenting high compatibility, increases the antibacterial rate to nearly 100 %. As a consequence, the preservation period of the mango coated by the CNC-based membrane is at least 7-day longer than the control group. Such a gas-barrier coating based on eco-friendly composites must have excellent potential in the preservation of mango, and even for other tropical fruits.


Subject(s)
Mangifera , Nanoparticles , Oils, Volatile , Cellulose , Clove Oil , Starch , Sugars
2.
Nanomaterials (Basel) ; 13(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446534

ABSTRACT

The flammability and gas barrier properties are essential for package material. Herein, a highly-oriented self-assembly nanocoating composed of polyvinyl alcohol (PVA) and montmorillonite (MMT) was prepared for endowing polyethylene terephthalate (PET) films with excellent flame retardancy and gas barrier properties. The specific regular nanosheet structure of the PVA/MMT composite nanocoating was confirmed by Fourier transform infrared (FTIR) and X-ray diffraction (XRD). Thermogravimetric analysis (TGA) and the vertical burning test (VBT) suggested that the thermal stability and flame-retardancy of the coated PET films were considerably improved with more pick-up of the resulting nanocoating. When reaching 650 °C, there was still 22.6% char residual left for coated PET film, while only 6% char residual left for pristine PET film. During the vertical burning test, the flame did not spread through the whole PET film with the protection of PVA/MMT nanocoating, and no afterflame was observed. Scanning electron microscopy (SEM) is consistent with vertical burning test, proving that the thermal stability and flame retardancy of coated PET films were considerably enhanced with the increment of PVA/MMT. Thanks to the multi-layer structure, PVA/MMT nanocoating could effectively improve the gas barrier properties of PET films, and the oxygen vapor transmittance rate and water vapor transmittance rate of PET films were more than four hundred times lower and 30% lower than those of neat PET film. Our work demonstrates that bi-functional flame retardant and gas barrier materials could be gained via constructing inorganic/organic highly-oriented self-assembly nanocoating, which is promising in the area of packaging.

3.
Polymers (Basel) ; 13(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34641264

ABSTRACT

As a bio-based counterpart of poly(butylene adipate-co-terephthalate) (PBAT), the well-known commercially available biodegradable aliphatic-aromatic copolyester, poly(butylene succinate-co-terephthalate) (PBST) has comparable physical and mechanical properties, but its gas barrier properties, which are very important for packaging material and mulch film applications, have not yet been reported in literature. In this paper, the O2, CO2 and water vapor barrier properties of PBST vs. PBAT were comparatively studied and reported for the first time. Theoretical calculation of O2 and CO2 permeation coefficients via group contribution method was also conducted. The barrier properties of PBST show clear copolymer composition dependence due to different contribution of BS and BT repeat units and composition-dependent crystallinity. Comparing with PBAT, PBST with close copolymer and three-phase (crystalline, amorphous, rigid amorphous) compositions shows 3.5 times O2 and CO2 and 1.5 times water vapor barrier properties. The slower segment movement and less free volume of PBST, and therefore slower gas diffusion in PBST, accounts for its superior O2 and CO2 barrier, while the better hydrophilicity of PBST counteracts partial contribution of slower segment movement so that the improvement in water vapor barrier is not as high as in O2 and CO2 barrier.

4.
Molecules ; 23(5)2018 05 03.
Article in English | MEDLINE | ID: mdl-29751551

ABSTRACT

To solve the drawbacks of poor dispersion and weak interface in gas barrier nanocomposites, a novel epoxy-diamine adduct (DDA) was synthesized by reacting epoxy monomer DGEBA with curing agent D400 to functionalize montmorillonite (MMT), which could provide complete compatibility and reactivity with a DGEBA/D400 epoxy matrix. Thereafter, sodium type montmorillonite (Na-MMT) and organic-MMTs functionalized by DDA and polyether amines were incorporated with epoxy to manufacture nanocomposites. The effects of MMT functionalization on the morphology and gas barrier property of nanocomposites were evaluated. The results showed that DDA was successfully synthesized, terminating with epoxy and amine groups. By simulating the small-angle neutron scattering data with a sandwich structure model, the optimal dispersion/exfoliation of MMT was observed in a DDA-MMT/DGEBA nanocomposite with a mean radius of 751 Å, a layer thickness of 30.8 Å, and only two layers in each tactoid. Moreover, the DDA-MMT/DGEBA nanocomposite exhibited the best N2 barrier properties, which were about five times those of neat epoxy. Based on a modified Nielsen model, it was clarified that this excellent gas barrier property was due to the homogeneously dispersed lamellas with almost exfoliated structures. The improved morphology and barrier property confirmed the superiority of the adduct, which provides a general method for developing gas barrier nanocomposites.


Subject(s)
Diamines/chemistry , Epoxy Resins/chemistry , Nanocomposites/chemistry , Silicates/chemistry , Bentonite/chemistry , Calorimetry, Differential Scanning , Nanocomposites/ultrastructure , Structure-Activity Relationship , Thermography , X-Ray Diffraction
5.
ACS Appl Mater Interfaces ; 9(38): 33149-33158, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28880069

ABSTRACT

Herein, we describe the preparation of flexible poly(vinyl chloride) (PVC) containing hyperbranched polyglycerol (HPG)-functionalized graphene oxide (HGO) as a reinforcing filler and reveal that the obtained composites exhibit greatly improved gas barrier properties. Moreover, we show that HGO, synthesized by surface-initiated ring-opening polymerization of glycidol followed by esterification with butyric anhydride, exists as individual exfoliated nanosheets possessing abundant functional groups capable of interacting with PVC. A comparative study of butyl-terminated graphene oxide (BGO) reveals that functionalization with HPG is of key importance for achieving a uniform dispersion of HGO in the PVC matrix and results in strong interfacial interactions between HGO and PVC. As a result, flexible PVC/HGO nanocomposite films exhibit significantly enhanced tensile strength and toughness compared to those of neat plasticized PVC while maintaining its inherent stretchability. Furthermore, the two-dimensional planar structure and homogeneous distribution of HGO in PVC/HGO nanocomposites make gas molecules follow a highly tortuous path, resulting in remarkably reduced oxygen permeability, which is more than 60% lower than that of neat plasticized PVC. Consequently, HGO is demonstrated to be promising component of flexible and gas-impermeable PVC films for a wide range of applications.

6.
ACS Appl Mater Interfaces ; 8(12): 8096-109, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26959220

ABSTRACT

Remarkable combination of excellent gas barrier performance, high strength, and toughness was realized in polylactide (PLA) composite films by constructing the supernetworks of oriented and pyknotic crystals with the assistance of ductile in situ nanofibrils of poly(butylene adipate-co-terephthalate) (PBAT). On the basis that the permeation of gas molecules through polymer materials with anisotropic structure would be more frustrated, we believe that oriented crystalline textures cooperating with inerratic amorphism can be favorable for the enhancement of gas barrier property. By taking full advantage of intensively elongational flow field, the dispersed phase of PBAT in situ forms into nanofibrils, and simultaneously sufficient row-nuclei for PLA are induced. After appropriate thermal treatment with the acceleration effect of PBAT on PLA crystallization, oriented lamellae of PLA tend to be more perfect in a preferential direction and constitute into a kind of network interconnecting with each other. At the same time, the molecular chains between lamellae tend to be more extended. This unique structure manifests superior ability in ameliorating the performance of PLA film. The oxygen permeability coefficient can be achieved as low as 2 × 10(-15) cm(3) cm cm(-2) s(-1) Pa(-1), combining with the high strength, modulus, and ductility (104.5 MPa, 3484 MPa, and 110.6%, respectively). The methodology proposed in this work presents an industrially scalable processing method to fabricate super-robust PLA barrier films. It would indeed push the usability of biopolymers forward, and certainly prompt wider application of biodegradable polymers in the fields of environmental protection such as food packaging, medical packaging, and biodegradable mulch.


Subject(s)
Membranes, Artificial , Nanofibers/chemistry , Oxygen/chemistry , Polyesters/chemistry , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL