Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Article in English | MEDLINE | ID: mdl-38923905

ABSTRACT

Vegetable fats and oils are prone to contamination by mineral oil hydrocarbons due to the lipophilic and ubiquitous character of the latter. As the aromatic fraction of these hydrocarbons, MOAH, is associated with carcinogenicity, mutagenicity, and detrimental effects on foetal development, finding strategies to limit or reduce their contamination is highly relevant. Deodorisation (i.e. a refining step) has shown the ability to remove MOAH < C25 in vegetable fats and oils, but there is little information about the structures removed. Therefore, the present study investigated the impact of deodorisation conditions on the removal of different structures of MOAH in spiked coconut oil. An inscribed central composite design was built with time and temperature as variables (0.5-4h, 150-240 °C), while pressure (3 mbar) and steam flow (1 g water/g oil per hour) were kept constant. The analysis of MOAH in the oil was performed using a fully automated liquid chromatography coupled with two parallel comprehensive two-dimensional gas chromatography systems with flame ionisation and time-of-flight mass spectrometric detection. Response surfaces plotting the MOAH loss according to time and temperature were built for different MOAH fractions. The latter were defined based on the number of aromatic rings (>3 or ≤3) and the number of carbon atoms present (C16-C20, C20-C24, C24-C35, C35-C40). It was found that at 200 °C, compounds < C24, including weakly alkylated triaromatics, could be reduced to below the limit of quantification, while at 230 °C, it was possible to remove >60% of the C24-C35 fraction, including pentaromatics of low alkylation.

2.
J Agric Food Chem ; 72(17): 10023-10030, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38630649

ABSTRACT

Some truffles are expensive and, therefore, are prone to food fraud. A particular problem is the differentiation of high-priced Tuber magnatum truffles from cheaper Tuber borchii truffles, both of which are white truffles with similar morphological characteristics. Using an untargeted approach, the volatiles isolated from samples of both species were screened for potential marker compounds by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) and statistical analysis of the obtained semiquantitative data. Results suggested bis(methylsulfanyl)methane and furan-2(5H)-one as compounds characterizing T. magnatum and T. borchii, respectively. Exact quantitation of both volatiles by conventional one-dimensional gas chromatography-mass spectrometry in combination with stable isotopologues of the target compounds as internal standards confirmed both as marker compounds. The method is suitable to be used in the routine analysis for the objective species differentiation of T. magnatum and T. borchii.


Subject(s)
Ascomycota , Furans , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds , Volatile Organic Compounds/chemistry , Furans/chemistry , Furans/analysis , Ascomycota/chemistry , Ascomycota/classification
3.
J Chromatogr A ; 1720: 464764, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38458137

ABSTRACT

The limit of detection (LOD) is a crucial measure in analytical methods, representing the smallest amount of a substance that can be distinguished from background noise. In the realm of gas chromatography (GC), however, determining LOD can be quite subjective, leading to significant variability among researchers. In this study, we validate the Hubaux-Vos method, an International Standards Organization(ISO)-approved approach for determining LOD in gas concentration measurements, using a GC equipped with a discharge ionization detector (DID) and a dynamic dilution system. We employ a gas mixture certified reference material (CRM) of CO, CH4, and CO2 at various concentrations to generate calibration curves for each gas. Subsequently, we estimate the LODs for each gas using the Hubaux-Vos method. Surprisingly, our findings indicate a notable difference between the LODs calculated using the Hubaux-Vos method and those confirmed through experiments. This highlights the importance of critically examining the theoretical foundations of LOD determination. We strongly recommend researchers to scrutinize the principles guiding LOD determination. The method proposed in this study offers an effective way to rigorously validate theoretical approaches for estimating LODs in gas concentration measurements using GC.


Subject(s)
Limit of Detection , Chromatography, Gas/methods , Calibration , Reference Standards , Indicator Dilution Techniques
4.
J Chromatogr A ; 1713: 464501, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-37979511

ABSTRACT

A quantitative analytical method capable of determining the concentrations of 81 aroma-relevant wine volatiles covering nine orders of magnitude was developed and validated in this study. The method is based on stir bar sorptive extraction (SBSE) of 200 µL of wine diluted with 1.8 mL NaCl brine with pH 3.5. Volatiles thermally desorbed from the stir bars were separated in two runs in a heart-cut multidimensional gas chromatographic system and quantified using either a flame ionization detector (FID) in the first dimension (27 aroma compounds) or a mass spectrometer in the second dimension (54 aroma compounds, transferred to 22 cuts). Typical limits of compound detection lay around 0.02 mg/L by FID or ranged from 0.001 to 0.30 µg/L by mass spectrometry detector, liying below the corresponding odor thresholds in all cases. Linearity, reproducibility, and recovery were considered satisfactory for most compounds, with typical R2 values of 0.989-0.999, relative standard deviation below 10 % for 37 compounds and between 10 and 20 % for 44 compounds, and recovery rates of approximately 100 % (85-109 %) for all but acetaldehyde. An analysis of 20 wine samples completed our validation of the method, showing that a single-sample preparation procedure combined with heart-cut multidimensional two-detector gas chromatography can determine wine volatile concentrations ranging from 350 mg/L of isoamyl alcohol to 3.8 ng/L of 3-isobutyl-2-methoxypyrazine.


Subject(s)
Wine , Wine/analysis , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Flame Ionization , Reproducibility of Results , Mass Spectrometry
5.
Se Pu ; 41(12): 1135-1140, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38093544

ABSTRACT

Chiral compounds play an important role in the pharmaceutical industry owing to their unique biological activities. The enantiomers must be separated because they can exhibit different pharmacological activities. Thus, the development of chiral separation methods is essential to determine the purity of enantiomers. 4-Chloromethyl-2,2-dimethyl-1,3-dioxolane is an important chiral pharmaceutical intermediate. In this context, a method based on chiral capillary gas chromatography was established for the separation and determination of the enantiomers of 4-chloromethyl-2,2-dimethyl-1,3-dioxolane. The separation of (R)- and (S)-4-chloromethyl-2,2-dimethyl-1,3-dioxolane was initially investigated using two conventional stationary-phase capillary columns: SH-I-5Sil MS and SH-WAX. The stationary phase of SH-I-5Sil MS consisted of 5% phenyl and 95% polymethylsiloxane, whereas the stationary phase of SH-WAX consisted of 100% crosslinked polyethylene glycol. Neither of the columns exhibited chiral selectivity, so they both were unable to separate the enantiomers of 4-chloromethyl-2,2-dimethyl-1,3-dioxolane. Subsequently, the separation of (R)- and (S)-4-chloromethyl-2,2-dimethyl-1,3-dioxolane was investigated using four chiral columns: Rt-bDEXm, Rt-bDEXsm, Rt-bDEXse, and InertCap CHIRAMIX. Among the chiral columns, Rt-bDEXse, which used a stationary phase composed of 2,3-di-O-ethyl-6-O-tert-butyl dimethylsilyl ß-cyclodextrin added to 14% cyanopropyl phenyl and 86% dimethyl polysiloxane, achieved the best separation of (R)- and (S)-4-chloromethyl-2,2-dimethyl-1,3-dioxolane. Thus, this column was selected as the analytical column for further method optimization. Detection was performed using a hydrogen flame ionization detector. The effects of various gas chromatographic parameters, such as linear velocity, initial column temperature, column heating rate, and solvent type, on the separation of (R)- and (S)-4-chloromethyl-2,2-dimethyl-1,3-dioxolane were investigated. The optimal chromatographic conditions included a linear velocity of 70 cm/s, an initial column temperature of 70 ℃, and a column heating rate of 2.0 ℃/min. The final column oven temperature was 150 ℃. Methanol, ethanol, ethyl acetate, n-hexane, dichloromethane, and dimethyl sulfoxide were selected as solvents. The results showed that dimethyl sulfoxide interfered with the peaks of the target compounds, whereas the other solvents had no significant effect on the peak shape and separation of (R)- and (S)-4-chloromethyl-2,2-dimethyl-1,3-dioxolane. Methanol was finally selected as the solvent in this study. Further experiments revealed that (R)- and (S)-4-chloromethyl-2,2-dimethyl-1,3-dioxolane could be rapidly separated within 10 min, with a resolution greater than 1.5. A good linear relationship was observed in the range of 0.5-50.0 mg/L, with a linear correlation coefficient greater than 0.998. The limits of detection for (R)- and (S)-4-chloromethyl-2,2-dimethyl-1,3-dioxolane were 0.07 and 0.08 mg/L, respectively, and the corresponding limits of quantification were 0.22 and 0.25 mg/L, respectively. Spiked recovery tests were performed at three spiked levels of 0.5, 2.0, and 10.0 mg/L using methanol as the blank to determine the accuracy of the proposed method. The recoveries for (R)- and (S)-4-chloromethyl-2,2-dimethyl-1,3-dioxolane were 94.0%-99.1% and 96.0%-98.8%, respectively, with relative standard deviations (RSDs) of 1.26%-4.87% and 1.51%-4.46%, respectively. The established method is efficient and reliable; thus, it can serve as a reference for the separation of the enantiomers of 4-chloromethyl-2,2-dimethyl-1,3-dioxolane. It can also potentially be applied to evaluate the enantiomeric purity of other chiral compounds in the pharmaceutical industry and produce chiral drugs and other related compounds.

6.
Phytochem Anal ; 34(8): 903-924, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37963411

ABSTRACT

INTRODUCTION: Cannabinoids are a group of compounds that bind to cannabinoid receptors. They possess pharmacological properties like that of the plant Cannabis sativa. Gas chromatography (GC) is one of the popular chromatographic techniques that has been routinely used in the analysis of cannabinoids in different matrices. OBJECTIVE: The article aims to review the literature on the application of GC-based analytical methods for the analysis of phytocannabinoids published during the period from January 2020 to August 2023. METHODOLOGY: A thorough literature search was conducted using different databases, like Web of Knowledge, PubMed, Google Scholar, and other relevant published materials including published books. The keywords used, in various combinations, with cannabinoids being present in all combinations, in the search were cannabinoids, Cannabis sativa, marijuana, analysis, GC, quantitative, qualitative, and quality control. From the search results, only the publications that incorporate the GC analysis of phytocannabinoids were reviewed, and papers on synthetic cannabinoids were excluded. RESULTS: Since the publication of the review article on GC analysis of phytocannabinoids in early 2020, several GC-based methods for the analysis of phytocannabinoids have appeared in the literature. While simple 1D GC-mass spectrometry (MS) and GC-flame ionisation detector (FID) methods are still quite common in phytocannabinoids analysis, 2D GC-MS and GC-MS/MS are increasingly becoming popular, as these techniques offer more useful data for identification and quantification of phytocannabinoids in various matrices. The use of automation in sample preparation and the utilisation of mathematical and computational models for optimisation of different protocols have become a norm in phytocannabinoids analysis. Pre-analyses have been found to incorporate different derivatisation techniques and environmentally friendly extraction protocols. CONCLUSIONS: GC-based analysis of phytocannabinoids, especially using GC-MS, remains one of the most preferred methods for the analysis of these compounds. New derivatisation methods, ionisation techniques, mathematical models, and computational approaches for method optimisation have been introduced.


Subject(s)
Cannabinoids , Cannabis , Hallucinogens , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/methods , Cannabinoids/analysis , Cannabis/chemistry
7.
Se Pu ; 41(10): 825-834, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37875405

ABSTRACT

Chromatographic column is the core of chromatographic separation, and chromatographic separation material is considered the soul of the chromatographic column. The type and characteristics of the chromatographic separation material directly determine the separation mode and performance of chromatographic columns. The development and preparation of separation materials with novel structures and good separation performance is an ongoing hotspot in chromatography research. Given rapid developments in nanoscience and technology, nanomaterials with unique surface functional groups and large specific surface areas have attracted extensive attention and great interest from researchers in the field of separation science. Carbon dots (CDs), a new type of zero-dimensional fluorescent carbon nanomaterials, have been widely used in bioimaging, light-emitting diodes, sensing, catalysis, drug delivery, and other applications since they were first reported in 2004. These nanomaterials present several advantages over other types of separation materials, including a simple preparation process, low toxicity, easy functionalization, excellent biocompatibility, and photobleaching resistance. In addition, compared with traditional carbon nanomaterials such as graphene and carbon nanotubes, CDs have abundant surface functional groups, nanoscale sizes, and moderate adsorption properties. Hence, when CDs-based new materials are applied as a stationary phase for column chromatography, they can provide rich reaction sites and ensure the uniformity of the chromatographic packing process. The use of CDs can effectively avoid the peak-tailing phenomenon caused by the strong interaction of large π-conjugated systems with some analytes and improve the efficiency of the chromatographic column. As such, these nanomaterials show good application prospects in the field of chromatographic separation. In this review, the development history, classification, and synthesis strategies of CDs are briefly described. We then focus on the development of CDs-based chromatographic separation materials by systematically reviewing the recent advances in the use of CDs-based materials as a stationary phase for high-performance liquid chromatography (including hydrophilic interaction, reversed-phase, mixed-mode, and chiral chromatography), gas chromatography, and capillary electrochromatography, with special emphasis on the preparation methods and applications of various stationary phases. Finally, the development prospects of CDs and future research efforts on these materials are also analyzed and discussed. This review can provide guidance on the rational design and application of new CDs-based chromatographic separation materials.

8.
Se Pu ; 41(10): 853-865, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37875408

ABSTRACT

Metal organic frameworks (MOFs) are assembled from metal ions or clusters and organic ligands. The high tunability of these components offers a solid structural foundation for achieving efficient gas chromatography (GC) separation. This review demonstrates that the design of high performance MOFs with suitable stationarity should consider both the thermodynamic interactions provided by these MOFs and the kinetic diffusion of analytes. Thermodynamic parameters are basic indicators for describing the interactions between various analytes and the stationary phase. Thermodynamic parameters such as retention factors, McReynolds constants, enthalpy changes, and entropy changes can reflect the relative intensity of thermodynamic interactions. For example, a larger enthalpy change indicates a stronger thermodynamic interaction between the analytes and stationary phase, whereas a smaller enthalpy change indicates a weaker interaction. In addition, the degree of entropy change reflects the relative degrees of freedom of analytes in the stationary phase. A larger entropy change indicates that the analytes have fewer degrees of freedom in the stationary phase. The higher the degree of restriction, the closer the adsorption of the analytes and, thus, the longer the retention time. Thermodynamic interactions, such as metal affinity, π-π interactions, polarity, and chiral sites, can be rationally introduced into MOF structures by pre- or post-modifications depending on the target analytes. These tailored thermodynamic interactions create a favorable environment with subtle differences for efficient analyte separation. For example, MOF stationarity may require large conjugation centers to provide specific π-π interactions to separate benzenes. Chiral groups may be required in the MOF structure to provide sufficient interactions to separate chiral isomers. The kinetic diffusion rate of the analytes is another critical factor that affects the separation performance of MOFs. The diffusion coefficients of analytes in the stationary phase (Ds) can be used to evaluate their diffusion rates. The chromatographic dynamics equation illustrates that the chromatographic peak of analytes tends to be sharper and more symmetrical when the Ds is large, whereas a wider trailing peak may appear when the Ds is small. The Van Deemter equation also proves that a low Ds may lead to a high theoretical plate height and low column efficiency, whereas a high Ds may lead to a low theoretical plate height and increased column efficiency. Analyte diffusion can be significantly influenced by the pore size, shape, particle size, and packing mode of MOFs. For instance, an excessively small pore size results in increased mass transfer resistance, which affects the diffusion of analytes in the stationary phase, probably leading to serious peak trailing. Thus, a suitable pore size is required to enhance the kinetic diffusion of analytes and improve the separation performance of MOFs. Theoretically, the design of a high performance MOF stationary phase requires the creation of routes for the rapid diffusion of analytes. However, the separation ability of an MOF is determined by not only the kinetic diffusion rate of the analytes but also the thermodynamic interactions it provides. An excessively fast diffusion rate may lead to insufficient interactions between the analytes and MOFs, compromising their ability to effectively separate different analytes. The thermodynamic interactions and kinetic diffusion of analytes are synergistic and mutually essential. Therefore, this review concludes with research on the influence of both the thermodynamic interactions and kinetic diffusion of analytes on the performance of MOF stationary phases. Based on the findings of this review, we propose that high performance MOF stationary phases can be achieved by balancing the thermodynamic interactions and kinetic diffusion of analytes in these phases through the rational design of the MOF structure. We believe that this review provides useful guidelines for the design of high performance MOF stationary phases.

9.
Se Pu ; 41(9): 789-798, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37712543

ABSTRACT

Most polycyclic aromatic hydrocarbons (PAHs), which are persistent organic pollutants, have strong carcinogenicity, teratogenicity, and mutagenicity, and pose serious threats to the ecological environment and human health. Owing to the complexity of the matrix and low PAH content of environmental samples, separating and enriching PAHs in environmental samples is necessary prior to their detection. Solid-phase microextraction (SPME) technology is commonly used to detect PAHs owing to its advantages of simple operation, online connection with other instruments, low solvent usage, and integrability of sampling separation, enrichment, and desorption. The extraction coating is the core of this technology, and the type and thickness of the coating are important factors affecting the sensitivity and accuracy of the analysis. Common commercial extraction coatings include polydimethylsiloxane and quartz fiber; however, these materials have a number of disadvantages, such as poor thermal stability and high cost. Several methods, including electrochemical, sol-gel, molecular imprinting, and other coating methods, have been developed to prepare SPME coatings. Electrochemical methods have attracted considerable attention because of their simplicity, short duration, and high coating stability. In the development of an electrochemical method, the selection of the conductive polymer is of particular importance. Polypyrroles (Ppy) are easily synthesized and have numerous advantages, such as good conductivity and stable chemical properties. Thus, their use as a substrate material for SPME coatings is beneficial for improving the overall stability of the coating. Copolymerization with other polymers can enhance the adsorption performance of such coatings via synergistic effects. When doped with inorganic materials with high thermal stability, the composite coating can exhibit high temperature resistance. In this study, a porous boron nitride-doped Ppy-2,3,3-trimethylindole (Ppy/P2,3,3-TMe@In/BN) composite was prepared as a new SPME copolymer coating to detect three PAHs: naphthalene (NAP), acenaphthene (ANY), and fluorene (FLU). Scanning electron microscopy, thermal stability analysis, Fourier transform infrared spectroscopy, and other techniques were used to characterize the Ppy/P2,3,3-TMe@In/BN composite coating. The results showed that the coating featured a large number of porous and wrinkled dendritic structures, which increased the specific surface area of the composite coating and enabled the extensive enrichment of the three PAHs. When the sample inlet temperature of the chromatograph is 320 ℃, the chromatographic baseline of the coating is basically stable. Compared with commercial coatings, the prepared coating had better thermal stability. The coating formed stable intermolecular forces with the three PAHs owing to its numerous carbon-carbon double bonds (C=C), hydrogen bonds, and other structures, thereby achieving excellent enrichment of the target analytes. Compared with Ppy, Ppy/PIn, Ppy/P2,3,3-TMe@In, Ppy/BN, and polydimethylsiloxane (PDMS) coatings, the prepared Ppy/P2,3,3-TMe@In/BN composite coating exhibited better extraction effects for the three PAHs. The Ppy/P2,3,3-TMe@In/BN composite coating was polymerized on the surface of a stainless-steel wire by cyclic voltammetry and combined with gas chromatography-hydrogen flame ionization detection (GC-FID) to optimize the conditions influencing the extraction and separation of the three PAHs, thereby establishing a highly sensitive analytical method for detecting NAP, ANY, and FLU. This method had low limits of detection (LODs) of 10.6-14.5 ng/L (S/N=3) and high stability. The SPME-GC-FID method was used to detect the three PAHs in two environmental water samples, and a small amount of ANY (1.39 µg/L) was detected in one water sample. Satisfactory recoveries (82.5%-113.9%) were obtained when both water samples were spiked with the three PAHs at three levels. The experimental results indicate that the established analytical method can detect the three PAHs in environmental water samples.

10.
Se Pu ; 41(9): 814-820, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37712546

ABSTRACT

Oil is a primary source of energy worldwide. However, the use of oil produces large amounts of pollutants, which are detrimental to the environment. The presence of petroleum hydrocarbons in soil is a critical marker of environmental pollution and safety. Rapid on-site detection technology has been broadly used in emergency tracking, offering critical information support for effective reactions to environmental emergencies. Thus, it is expected to play an increasingly critical role in environmental remediation efforts. The current approach for petroleum hydrocarbon detection in soil mainly involves Soxhlet extraction with a combination of solvents, including acetone and n-hexane. The samples are then analyzed after rotary evaporation, dehydration with anhydrous sodium sulfate, and purification using a magnesium silica-type adsorbent. Unfortunately, this approach requires sample analysis to be performed in the laboratory, which is tedious and time consuming, and consumes large amounts of solvents. Moreover, the rotary evaporator is not portable. Therefore, this method is not appropriate for the rapid on-site detection of petroleum hydrocarbons. In this study, a rapid on-site detection method based on silica-gel dehydration and cyclohexane extraction was developed for the extraction and pretreatment of petroleum hydrocarbons (C10-C40) in soil. First, an appropriate amount of silica gel was added to the soil, and the mixture was completely ground to eliminate moisture. Next, petroleum hydrocarbons were extracted with 40 mL of cyclohexane, and the extract was cleaned by Florisil solid-phase extraction (SPE) column elution. Finally, the samples were analyzed by gas chromatography (GC) to evaluate the above method. The silica gel exhibited optimal adsorption properties compared with anhydrous sodium sulfate, calcium oxide, and molecular sieves, with recovery of 87.5%. The effects of different soil water content (5%, 10%, and 20%) and silica gel (1, 3, 5, and 10 times the moisture content) dosage on the extraction of petroleum hydrocarbons were investigated. The recoveries of petroleum hydrocarbons increased from 74.0% to 103.8% after 15 min of invasive extraction (relative standard deviation, RSD, <10.1%) when silica gel amounting to 10 times the moisture content was used. Five types of silica gels with different properties were purchased from four manufacturers, and the effects of these silica gels on the dehydration and extraction efficiency of petroleum hydrocarbons in soil were assessed. The results showed that amorphous silica gel led to low recoveries (<60%), spherical silica gel achieved extraction efficiencies of approximately 70%-90%, and alkaline silica gel produced recoveries with poor precision. Therefore, neutral spherical silica gel was used for further experiments. The fingerprints of petroleum hydrocarbons with different carbon numbers are an important reference for identifying pollution sources. Thus, ensuring good recoveries throughout the entire carbon range is necessary to ensure the accuracy of the fingerprint analysis results. The proposed method showed good recoveries for petroleum hydrocarbons of all carbon numbers (75%-101%). The findings above indicate that the developed method could be an efficient means to extract petroleum hydrocarbons from soil for both total quantity and fingerprint analyses. Compared with standard methods, the proposed method requires lower solvent dosages and features simpler processing steps. Another advantage of this method is that it does not require the use of highly toxic halogenated solvents; thus, it does not contribute to environmental pollution. It can be applied to the laboratory analysis of soil petroleum hydrocarbons and coupled with other rapid on-site detection techniques for soil petroleum hydrocarbons, such as infrared spectroscopy and portable GC. However, because it does not include a concentration process, the developed method exhibits relatively low sensitivity. In the future, we plan to develop a simple and flexible on-site sample-concentration system to further improve various indicators of this method.

11.
Environ Sci Technol ; 57(34): 12583-12593, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37590158

ABSTRACT

Petroleum substances, as archetypical UVCBs (substances of unknown or variable composition, complex reaction products, or biological substances), pose a challenge for chemical risk assessment as they contain hundreds to thousands of individual constituents. It is particularly challenging to determine the biodegradability of petroleum substances since each constituent behaves differently. Testing the whole substance provides an average biodegradation, but it would be effectively impossible to obtain all constituents and test them individually. To overcome this challenge, comprehensive two-dimensional gas chromatography (GC × GC) in combination with advanced data-handling algorithms was applied to track and calculate degradation half-times (DT50s) of individual constituents in two dispersed middle distillate gas oils in seawater. By tracking >1000 peaks (representing ∼53-54% of the total mass across the entire chromatographic area), known biodegradation patterns of oil constituents were confirmed and extended to include many hundreds not currently investigated by traditional one-dimensional GC methods. Approximately 95% of the total tracked peak mass biodegraded after 64 days. By tracking the microbial community evolution, a correlation between the presence of functional microbial communities and the observed progression of DT50s between chemical classes was demonstrated. This approach could be used to screen the persistence of GC × GC-amenable constituents of petroleum substance UVCBs.


Subject(s)
Petroleum , Chromatography, Gas , Algorithms , Biodegradation, Environmental , Food
12.
J Chromatogr A ; 1705: 464203, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37451196

ABSTRACT

The analysis of thermally labile and high-boiling point compounds by gas chromatography (GC) can be a challenge. One technique to overcome these challenges is low-pressure GC, which uses the vacuum produced from the mass spectrometer and wide-bore columns to elute compounds at significantly lower temperatures. While GC-MS is a powerful technique, comprehensive two-dimensional gas chromatography (GC × GC), allows for resolution of compounds that would typically coelute using GC. In this study, a pesticide standard mixture (8270 MegaMix Standard) was analyzed using a conventional GC × GC-TOFMS configuration (0.25 mm inner diameter (i.d.) to a 0.18 mm i.d. column) and low-pressure GC × GC-TOFMS configuration (0.53 mm i.d. to a 0.53 mm i.d. column). Elution temperatures, sensitivity, and peak capacity were investigated for both configurations. Compounds eluted an average of 30 °C less on the low-pressure GC × GC-TOFMS configuration compared to the conventional GC × GC-TOFMS configuration. Moreover, the compounds were separated in ∼13 min on the low-pressure GC × GC-TOFMS as opposed to 33 min for conventional GC × GC-TOFMS. However, due to the wide-bore columns and faster runtimes the low-pressure GC × GC-TOFMS had a lower, ß corrected 2D peak capacity, nc,ß,2D, of 1260 while the conventional GC × GC-TOFMS was 3588. Interestingly, both configurations yielded a similar peak capacity production of 93 peaks/min and 107 peaks/min for low-pressure and conventional GC × GC-TOFMS, respectively. A "real world" sample of diesel fuel was tested on the low-pressure and conventional GC × GC-TOFMS configurations and similar results were obtained compared to the pesticide standard mix except the peak capacity production of the low-pressure GC × GC-TOFMS configuration was higher than that of the conventional GC × GC-TOFMS method.


Subject(s)
Gas Chromatography-Mass Spectrometry , Gas Chromatography-Mass Spectrometry/methods , Mass Spectrometry , Chromatography, Gas , Temperature
13.
Anal Bioanal Chem ; 415(21): 5067-5082, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37147559

ABSTRACT

Mineral oil hydrocarbons (MOH) contain a wide structural diversity of molecules, for which the reference method of analysis is the online coupled liquid chromatography-gas chromatography with flame ionization detection (LC-GC-FID). These compounds are very heterogeneous from a toxicological viewpoint, and an accurate risk assessment when dealing with a MOH contamination can only be performed if sufficient information is available on the types of structures present (i.e., number of carbons, degree of alkylation, number of aromatic rings). Unfortunately, the separation performances of the current LC-GC-FID method are insufficient for such characterization, not even mentioning the possible coelution of interfering compounds which additionally hinder MOH determination. Comprehensive two-dimensional gas chromatography (GC × GC), while mostly used for confirmation purposes in the past, starts to prove its relevance for overcoming the weaknesses of the LC-GC method and reaching even better the analytical requirements defined in the latest EFSA opinion. The present paper therefore aims at highlighting how GC × GC has contributed to the understanding of the MOH topic, how it has developed to meet the requirements of MOH determination, and how it could play a role in the field for overcoming many of the current analytical and toxicological challenges related to the topic.

14.
Molecules ; 28(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37110787

ABSTRACT

Gas chromatography (GC) techniques for analyzing and determining the cannabinoid profile in cannabis (Cannabis sativa L.) are widely used in standard laboratories; however, these methods may mislabel the profile when used under rapid conditions. Our study aimed to highlight this problem and optimize GC column conditions and mass spectrometry (MS) parameters to accurately identify cannabinoids in both standards and forensic samples. The method was validated for linearity, selectivity, and precision. It was observed that when tetrahydrocannabinol (Δ9-THC) and cannabidiolic acid (CBD-A) were examined using rapid GC conditions, the resulting derivatives generated identical retention times. Wider chromatographic conditions were applied. The linear range for each compound ranged from 0.02 µg/mL to 37.50 µg/mL. The R2 values ranged from 0.996 to 0.999. The LOQ values ranged from 0.33 µg/mL to 5.83 µg/mL, and the LOD values ranged from 0.11 µg/mL to 1.92 µg/mL. The precision values ranged from 0.20% to 8.10% RSD. In addition, forensic samples were analyzed using liquid chromatography (HPLC-DAD) in an interlaboratory comparison test, with higher CBD and THC content than GC-MS determination (p < 0.05) in samples. Overall, this study highlights the importance of optimizing GC techniques to avoid mislabeling cannabinoids in cannabis samples.


Subject(s)
Cannabinoids , Cannabis , Hallucinogens , Cannabis/chemistry , Cannabinoids/chemistry , Hallucinogens/analysis , Gas Chromatography-Mass Spectrometry/methods , Cannabinoid Receptor Agonists , Dronabinol/chemistry
15.
Anal Bioanal Chem ; 415(18): 4501-4510, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37041278

ABSTRACT

In the present work, the potential benefit of using multi-cumulative trapping headspace extraction was explored by comparing the results using solid-phase microextraction (SPME) coated with divinylbenzene/carboxen/polydimethylsiloxane and a probe-like tool coated with polydimethylsiloxane. The efficiency of a single 30-min extraction, already explored in previous work, was compared with that of multiple shorter extractions. We evaluated three different conditions, i.e., three repeated extractions for 10 min each from different sample vials (for both the probe-like tool and SPME) or from the same vial (for SPME) containing brewed coffee. The entire study was performed using comprehensive two-dimensional gas chromatography coupled with mass spectrometry. The two-dimensional plots were aligned and integrated using a tile-sum approach before any statistical analysis. A detailed comparison of all the tested conditions was performed on a set of 25 targeted compounds. Although a single 30-min extraction using the probe-like tool provided a significantly higher compound intensity than SPME single extraction, the use of multiple shorter extractions with SPME showed similar results. However, multiple extractions with the probe-like tool showed a greater increase in the number of extracted compounds. Furthermore, an untargeted cross-sample comparison was performed to evaluate the ability of the two tested tools and the different extraction procedures in differentiating between espresso-brewed coffee samples obtained from capsules made of different packaging materials (i.e., compostable capsules, aluminum capsules, aluminum multilayer pack). The highest explained variance was obtained using the probe-like tool and multiple extractions (91.6% compared to 83.9% of the single extraction); nevertheless, SPME multiple extractions showed similar results with 88.3% of variance explained.


Subject(s)
Coffee , Odorants , Coffee/chemistry , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Aluminum/analysis , Capsules , Solid Phase Microextraction/methods , Dimethylpolysiloxanes
16.
Se Pu ; 41(4): 359-365, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37005923

ABSTRACT

The fatty acid ethyl ester (FAEE) content of olive oil is an important indicator of its quality. At present, the international standard method used to detect FAEEs in olive oil is silica gel (Si) column chromatography-gas chromatography (GC); however, this technique presents a number of disadvantages, including complex operation, long analysis times, and high reagent consumption. In this study, a method based on Si solid phase extraction (SPE)-GC was established to determine four FAEEs in olive oil, namely, ethyl palmitate, ethyl linoleate, ethyl oleate, and ethyl stearate. First, the effects of the carrier gas were investigated, and He gas was ultimately selected as the carrier gas. Next, several internal standards were screened, and ethyl heptadecenoate (cis-10) was determined as the optimal internal standard. The SPE conditions were also optimized, and the effects of different brands of Si SPE columns on the recoveries of analytes were compared. Finally, a pretreatment method in which 0.05 g of olive oil was extracted with n-hexane and purified through a Si SPE column (1 g/6 mL) was developed. A sample could be processed within approximately 2 h using a total reagent volume of about 23 mL. Validation of the optimized method revealed that the four FAEEs have good linearities within the range of 0.1-5.0 mg/L (coefficients of determination (R2)>0.999). The limits of detection (LODs) of the method were within 0.78-1.11 mg/kg, and its limits of quantification (LOQs) were in the range of 2.35-3.33 mg/kg. The recoveries ranged from 93.8% to 104.0% at all spiked levels tested (4, 8, and 20 mg/kg), and the relative standard deviations were 2.2%-7.6%. Fifteen olive oil samples were tested using the established method, and the total FAEEs of three extra-virgin olive oil samples were found to exceed 35 mg/kg. Compared with the international standard method, the proposed method has the advantages of simpler pretreatment process, shorter operation time, lower reagent consumption and detection cost, high precision, and good accuracy. The findings provide an effective theoretical and practical reference for improving olive oil detection standards.


Subject(s)
Fatty Acids , Solid Phase Extraction , Olive Oil , Chromatography, Gas , Fatty Acids/analysis , Esters/analysis
17.
Waste Manag ; 165: 108-118, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37119685

ABSTRACT

Due to the complexity and diversity of polyolefinic plastic waste streams and the inherent non-selective nature of the pyrolysis chemistry, the chemical decomposition of plastic waste is still not fully understood. Accurate data of feedstock and products that also consider impurities is, in this context, quite scarce. Therefore this work focuses on the thermochemical recycling via pyrolysis of different virgin and contaminated waste-derived polyolefin feedstocks (i.e., low-density polyethylene (LDPE), polypropylene (PP) as main components), along with an investigation of the decomposition mechanisms based on the detailed composition of the pyrolysis oils. Crucial in this work is the detailed chemical analysis of the resulting pyrolysis oils by comprehensive two-dimensional gas chromatography (GC × GC) and ICP-OES, among others. Different feedstocks were pyrolyzed at a temperature range of 430-490 °C and at pressures between 0.1 and 2 bar in a continuous pilot-scale pyrolysis unit. At the lowest pressure, the pyrolysis oil yield of the studied polyolefins reached up to 95 wt%. The pyrolysis oil consists of primarily α-olefins (37-42 %) and n-paraffins (32-35 %) for LDPE pyrolysis, while isoolefins (mostly C9 and C15) and diolefins accounted for 84-91 % of the PP-based pyrolysis oils. The post-consumer waste feedstocks led to significantly less pyrolysis oil yields and more char formation compared to their virgin equivalents. It was found that plastic aging, polyvinyl chloride (PVC) (3 wt%), and metal contamination were the main causes of char formation during the pyrolysis of polyolefin waste (4.9 wt%).


Subject(s)
Polyethylene , Pyrolysis , Polyethylene/chemistry , Temperature , Plastics/chemistry , Polypropylenes/chemistry , Oils
18.
Cancers (Basel) ; 15(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36831694

ABSTRACT

Canines can identify prostate cancer with high accuracy by smelling volatile organic compounds (VOCs) in urine. Previous studies have identified VOC biomarkers for prostate cancer utilizing solid phase microextraction (SPME) gas chromatography-mass spectrometry (GC-MS) but have not assessed the ability of VOCs to distinguish aggressive cancers. Additionally, previous investigations have utilized murine models to identify biomarkers but have not determined if the results are translatable to humans. To address these challenges, urine was collected from mice with prostate cancer and men undergoing prostate cancer biopsy and VOCs were analyzed by SPME GC-MS. Prior to analysis, SPME fibers/arrows were compared, and the fibers had enhanced sensitivity toward VOCs with a low molecular weight. The analysis of mouse urine demonstrated that VOCs could distinguish tumor-bearing mice with 100% accuracy. Linear discriminant analysis of six VOCs in human urine distinguished prostate cancer with sensitivity = 75% and specificity = 69%. Another panel of seven VOCs could classify aggressive cancer with sensitivity = 78% and specificity = 85%. These results show that VOCs have moderate accuracy in detecting prostate cancer and a superior ability to stratify aggressive tumors. Furthermore, the overlap in the structure of VOCs identified in humans and mice shows the merit of murine models for identifying biomarker candidates.

19.
Molecules ; 28(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36838677

ABSTRACT

Phthalates are chemicals that are extensively used in the manufacturing of cosmetic products. The occurrence of phthalate esters in personal care products may pose adverse effects on consumers' health. In this work, a simple, fast and reliable GC-MS method was developed and validated for concurrent determination of phthalate esters in fragrances. Simple procedures were employed for sample preparation and clean up. The recoveries achieved were in the range of 94.9% to 105.6% with RSD ≤ 4.06. The detection limits were in the range of 0.0010 to 0.0021 µg/mL. The GC-MS method was utilized to investigate the occurrence of phthalate esters in different brands of perfumes sold in the Saudi Arabian market. Diethyl phthalate was detected in all analyzed samples, with a maximum concentration of 5766 µg/mL, and di (2-ethylhexyl) phthalate was detected in the majority of the analyzed samples (95%), with a mean concentration of 55.9 µg/mL and a highest concentration of 377.7 µg/mL. Additionally, the exposure to phthalate esters due to the consumption of perfumes was investigated among the adult Saudi population for the first time. It was found that the systemic exposure dose, measured at mean concentrations, ranged from 4.59 × 10-4 to 4.29 × 10-2 (mg/kg/day) and from 5.00 × 10-4 to 4.68 × 10-2 (mg/kg/day) for male and female users, respectively. Moreover, the non-carcinogenic risk of the investigated phthalate esters and the carcinogenic risk of DEHP were also evaluated. The non-carcinogenic risk values of the detected phthalate esters were greater than 100, which indicates that exposure to these phthalate esters is unlikely to produce non-carcinogenic health effects to consumers. However, at maximum DEHP concentrations, the carcinogenic risk values were 5.49 × 10-5 for male users and 5.98 × 10-5 for female users, which indicates the possibility of DEHP to pose a carcinogenic health effect if present at high levels. Regular monitoring of undeclared chemicals such as phthalate esters in personal care products marketed in Saudi Arabia is extremely important to ensure consumers' safety. To the best of the authors' knowledge, this is the first study to assess the health risk associated with consumption of perfumes in Saudi Arabia.


Subject(s)
Cosmetics , Diethylhexyl Phthalate , Perfume , Phthalic Acids , Female , Male , Humans , Gas Chromatography-Mass Spectrometry , Carcinogens , Esters/analysis , Odorants , Saudi Arabia , Phthalic Acids/analysis , Cosmetics/analysis
20.
Talanta ; 257: 124324, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36780779

ABSTRACT

This review provides an overview of the online hyphenation of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with separation methods to date. The online coupling between separation techniques (gas and liquid chromatography, capillary electrophoresis) and FT-ICR MS essentially raises questions of compromise and is not look as straightforward as hyphenation with other analyzers (QTOF-MS for instance). FT-ICR MS requires time to reach its highest resolving power and accuracy in mass measurement capabilities whereas chromatographic and electrophoretic peaks are transient. In many applications, the strengths and the weaknesses of each technique are balanced by their hyphenation. Untargeted "Omics" (e.g. proteomics, metabolomics, petroleomics, …) is one of the main areas of application for FT-ICR MS hyphenated to online separation techniques because of the complexity of the sample. FT-ICR MS achieves the required high mass measurement accuracy to determine accurate molecular formulae and resolution for isobar distinction. Meanwhile separation techniques highlight isomers and reduce the ion suppression effects extending the dynamic range. Even if the implementation of FT-ICR MS hyphenated with online separation methods is a little trickier (the art of compromise), this review shows that it provides unparalleled results to the scientific community (the art of the possible), along with raising the issue of its future in the field with the relentless technological progress.

SELECTION OF CITATIONS
SEARCH DETAIL
...