Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Cancer Biol Ther ; 25(1): 2322206, 2024 12 31.
Article in English | MEDLINE | ID: mdl-38436092

ABSTRACT

Salidroside inhibited the proliferation of cancer cell. Nevertheless, the mechanism has not been completely clarified. The purpose of the study is to explore the mechanisms of salidroside against gastric cancer. To analyze the changes of microRNA (miRNA) in gastric cancer cells under the treatment of salidroside, the miRNA expression was analyzed by using RNA-seq in cancer cells for 24 h after salidroside treatment. The differentially expressed miRNAs were clustered and their target genes were analyzed. Selected miRNA and target mRNA genes were further verified by q-PCR. The expressions of target genes in cancer cells were detected by immunohistochemistry. Cancer cell apoptotic index was significantly increased after salidroside treatment. The proliferation of gastric cancer cells were blocked at S-phase cell cycle. The expression of 44 miRNAs changed differentially after salidroside treatment in cancer cells. Bioinformatic analysis showed that there were 1384 target mRNAs corresponding to the differentially expressed miRNAs. Surprisingly, salidroside significantly up-regulated the expression of tumor suppressor miR-1343-3p, and down-regulated the expression of MAP3K6, STAT3 and MMP24-related genes. Salidroside suppressed the growth of gastric cancer by inducing the cancer cell apoptosis, arresting the cancer cell cycle and down-regulating the related signal transduction pathways. miRNAs are expressed differentially in gastric cancer cells after salidroside treatment, playing important roles in regulating proliferation and metastasis. Salidroside may suppress the growth of gastric cancer by up-regulating the expression of the tumor suppressor miR-1343-3p and down-regulating the expression of MAP3K6 and MMP24 signal molecules.


Subject(s)
Glucosides , MicroRNAs , Phenols , Stomach Neoplasms , Humans , Cell Proliferation , Matrix Metalloproteinases, Membrane-Associated , MicroRNAs/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , MAP Kinase Kinase Kinases/drug effects , MAP Kinase Kinase Kinases/metabolism
2.
Int J Oncol ; 63(3)2023 Sep.
Article in English | MEDLINE | ID: mdl-37477139

ABSTRACT

Following the publication of the above article, a concerned reader has drawn to the Editor's attention that there were a number of apparently overlapping data panels shown in Fig. 4C and D on p. 2360 such that the data would have drawn from a smaller number of original sources, where the data panels were intended to show the results from differently performed experiments. Moreover, certain of the data shown in Figs. 2D, 3B, C and E and 4F contained data that were strikingly similar to data that have appeared in other publications written by different authors at different research institutes.  In view of the substantial number of overlapping data panels identified in Fig. 4C and D, and the fact that certain of the data in the above article have appeared in other published articles, the Editor of International Journal of Oncology has decided that this paper should be retracted from the publication on account of a lack of confidence in the presented data. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Oncology 46: 2355­2363, 2015; DOI: 10.3892/ijo.2015.2959].

3.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511481

ABSTRACT

Previous studies have found that Bifidobacterium infantis-mediated herpes simplex virus-TK/ganciclovir (BF-TK/GCV) reduces the expression of VEGF and CD146, implying tumor metastasis inhibition. However, the mechanism by which BF-TK/GCV inhibits tumor metastasis is not fully studied. Here, we comprehensively identified and quantified protein expression profiling for the first time in gastric cancer (GC) cells MKN-45 upon BF-TK/GCV treatment using quantitative proteomics. A total of 159 and 72 differential expression proteins (DEPs) were significantly changed in the BF-TK/GCV/BF-TK and BF-TK/GCV/BF/GCV comparative analysis. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis enriched some metastasis-related pathways such as gap junction and cell adhesion molecules pathways. Moreover, the transwell assay proved that BF-TK/GCV inhibited the invasion and migration of tumor cells. Furthermore, immunohistochemistry (IHC) demonstrated that BF-TK/GCV reduced the expression of HIF-1α, mTOR, NF-κB1-p105, VCAM1, MMP13, CXCL12, ATG16, and CEBPB, which were associated with tumor metastasis. In summary, BF-TK/GCV inhibited tumor metastasis, which deepened and expanded the understanding of the antitumor mechanism of BF-TK/GCV.


Subject(s)
Ganciclovir , Stomach Neoplasms , Mice , Animals , Ganciclovir/pharmacology , Ganciclovir/therapeutic use , Simplexvirus/genetics , Simplexvirus/metabolism , Bifidobacterium longum subspecies infantis/metabolism , Genetic Therapy , Disease Models, Animal , Stomach Neoplasms/therapy , Thymidine Kinase/genetics , Antiviral Agents/pharmacology
4.
Oncol Lett ; 26(2): 327, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37415631

ABSTRACT

Gastric cancer is one of the most lethal cancers worldwide. Research has focused on exploring natural medicines to improve the systematic chemotherapy for gastric cancer. Luteolin, a natural flavonoid, possesses anticancer activities. Nevertheless, the mechanism of the anticancer effects of luteolin is still not clear. The present study aimed to verify the inhibitory effect of luteolin on gastric cancer HGC-27, MFC and MKN-45 cells and to explore the underlying mechanism. A Cell Counting Kit-8 cell viability assay, flow cytometry, western blot, an ATP content assay and an enzyme activity testing assay were used. Luteolin inhibited the proliferation of gastric cancer HGC-27, MFC and MKN-45 cells. Further, it impaired mitochondrial integrity and function by destroying the mitochondrial membrane potential, downregulating the activities of mitochondrial electron transport chain complexes (mainly complexes I, III and V), and unbalancing the expression of B cell lymphoma-2 family member proteins, eventually leading to apoptosis of gastric cancer HGC-27, MFC and MKN-45 cells. The intrinsic apoptosis pathway was involved in luteolin's anti-gastric cancer effects. Furthermore, mitochondria were the main target in luteolin-induced gastric cancer apoptosis. The present study may provide a theoretical basis for the research on the effect of luteolin on the mitochondrial metabolism in cancer cells, and pave the way for its practical application in the future.

5.
BMC Genom Data ; 24(1): 24, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081404

ABSTRACT

OBJECTIVES: Gastric cancer (GC) is the fourth most common cancer worldwide, with the highest incidence and mortality regardless of sex. Despite technological advances in diagnosing and treating gastric cancer, GC still has high incidence and mortality rates. Therefore, continuous research is needed to overcome GC. In various studies, cell lines are used to find and verify the cause of specific diseases. Large-scale genomic studies such as ENCODE and Roadmap epigenomic projects provide multiomics data from various organisms and samples. However, few multi-omics data for gastric tissues and cell lines have been generated. Therefore, we performed RNA-seq, Exome-seq, and ChIP-seq with several gastric cell lines to generate a multi-omics data set in gastric cancer. DATA DESCRIPTION: Multiomic data, such as RNA-seq, Exome-seq, and ChIP-seq, were produced in gastric cancer and normal cell lines. RNA-seq data were generated from nine GC and one normal gastric cell line, mapped to a human reference genome (hg38) using the STAR alignment tool, and quantified with HTseq. Exome sequence data were produced in nine GC and two normal gastric lines. Sequenced reads were mapped and processed using BWA-MEM and GATK, variants were called by stralka2, and annotation was performed using ANNOVAR. Finally, for the ChIP-seq, nine GC cell lines and four GC cell lines were used in two experimental sets; chip-seq was performed to confirm changes in H3K4me3 and H3K27me3. Data was mapped to human reference hg38 with BWA-MEM, and peak calling and annotation were performed using the Homer tool. Since these data provide multi-omics data for GC cell lines, it will be useful for researchers who use the GC cell lines to study.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Multiomics , Chromatin Immunoprecipitation , Genomics , Cell Line
6.
Comput Struct Biotechnol J ; 21: 802-811, 2023.
Article in English | MEDLINE | ID: mdl-36698976

ABSTRACT

Cell misuse and cross-contamination can affect the accuracy of cell research results and result in wasted time, manpower and material resources. Thus, cell line identification is important and necessary. At present, the commonly used cell line identification methods need cell staining and culturing. There is therefore a need to develop a new method for the rapid and automated identification of cell lines. Raman spectroscopy has become one of the emerging techniques in the field of microbial identification, with the advantages of being rapid and noninvasive and providing molecular information for biological samples, which is beneficial in the identification of cell lines. In this study, we built a library of Raman spectra for gastric mucosal epithelial cell lines GES-1 and gastric cancer cell lines, such as AGS, BGC-823, HGC-27, MKN-45, MKN-74 and SNU-16. Five spectral datasets were constructed using spectral data and included the full spectrum, fingerprint region, high-wavelength number region and Raman background of Raman spectra. A stacking ensemble learning model, SL-Raman, was built for different datasets, and gastric cancer cell identification was achieved. For the gastric cancer cells we studied, the differentiation accuracy of SL-Raman was 100% for one of the gastric cancer cells and 100% for six of the gastric cancer cells. Additionally, the separation accuracy for two gastric cancer cells with different degrees of differentiation was 100%. These results demonstrate that Raman spectroscopy combined with SL-Raman may be a new method for the rapid and accurate identification of gastric cancer. In addition, the accuracy of 94.38% for classifying Raman spectral background data using machine learning demonstrates that the Raman spectral background contains some useful spectral features. These data have been overlooked in previous studies.

7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-979219

ABSTRACT

ObjectiveThe aim of this study is to investigate the role of salidroside in regulating the miR-1343-3p/MAP3K6 (mitogen-activated protein kinase kinase kinase 6)/MMP24 (membrane-type matrix metalloproteinase 24) signaling pathway to inhibit gastric cancer cell proliferation and migration. MethodsHuman gastric cancer cells (MGC-803) were divided into several groups based on different salidroside concentrations: a control group (0 μmol/mL), a low-dose group (6 μmol/mL), a medium-dose group (12 μmol/mL), and a high-dose group (24 μmol/mL). The anti proliferative effects of salidroside on human gastric cancer cells were evaluated by CCK-8 assay. Clonogenic assay was used to examine the effects of salidroside drugs on the clonogenic ability of human gastric cancer cells. Transwell assay was performed to detect the effect of salidroside on the invasive ability of human gastric cancer cells. Cell scratch assay was performed to detect the effect of salidroside on the migration ability of human gastric cancer cells. The miRNA expression profile was analyzed by using RNA-seq in cancer cells for 24 h after salidroside treatment. The differentially expressed miRNAs were clustered and their target genes were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze and predict the functions of these target genes, and the interaction networks were established. Immunocytofluorescence was used to detect the expression of target proteins, and the transcription of candidate genes was detected by q-PCR. ResultsCCK-8 cytotoxicity experiments showed that salidroside inhibited the proliferation of MGC-803 cells (P < 0.01). Cell cloning experiments showed that salidroside reduced the clonal formation capacity of MGC-803 cells (P < 0.000 1). Cell invasion experiments showed that salidroside reduced the MGC-803 cell invasion capacity (P < 0.000 1). Cell scratch experiments showed that salidroside reduced the cell migration capacity (P < 0.000 1). RNA-seq findings showed that the expression of 44 miRNAs changed significantly after salidroside treatment in cancer cells (P < 0.05). Bioinformatic analysis showed that there were 1 384 target mRNAs corresponding to the differentially expressed miRNAs, and the expression of the tumor suppressor miR-1343-3p was significantly upregulated after salidroside treatment (P < 0.01),and resulted in down-regulated transcription of MAP3K6 and MMP24 genes which are related to the proliferation and migration of cancer cells (P < 0.05). Immunofluorescence experiments demonstrated that salidroside reduced protein expression levels in MAP3K6 and MMP24 genes (P < 0.000 1). q-PCR experiments showed that salidroside reduced the mRNA expression level of MAP3K6 and MMP24 genes (P < 0.000 1), while miRNA expression in miR-1343-3p gene was upregulated (P < 0.000 1). ConclusionSalidroside regulates the miRNA-1343-3p/MAP3K6/MMP24 signaling molecules to inhibit proliferation and invasion of gastric cancer cells.

8.
Curr Issues Mol Biol ; 44(12): 6145-6157, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36547080

ABSTRACT

Exosomes containing glucose-regulated protein 78 (GRP78) are involved in cancer malignancy. GRP78 is thought to promote the tumor microenvironment, leading to angiogenesis. No direct evidence for this role has been reported, however, mainly because of difficulties in accurately measuring the GRP78 concentration in the exosomes. Recently, exosomal GRP78 concentrations were successfully measured using an ultrasensitive ELISA. In the present study, GRP78 concentrations in exosomes collected from gastric cancer AGS cells with overexpression of GRP78 (OE), knockdown of GRP78 (KD), or mock GRP78 (mock) were quantified. These three types of exosomes were then incubated with vascular endothelial cells to examine their effects on endothelial cell angiogenesis. Based on the results of a tube formation assay, GRP78-OE exosomes accelerated angiogenesis compared with GRP78-KD or GRP78-mock exosomes. To investigate the mechanisms underlying this effect, we examined the Ser473 phosphorylation state ratio of AKT, which is involved in the angiogenesis process, and found that AKT phosphorylation was increased by GRP78-OE exosome application to the endothelial cells. An MTT assay showed that GRP78-OE exosome treatment increased the proliferation rate of endothelial cells, and a wound healing assay showed that this treatment increased the migration capacity of the endothelial cells. These findings demonstrated that GRP78-containing exosomes promote the tumor microenvironment and induce angiogenesis.

9.
Cancers (Basel) ; 14(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36010879

ABSTRACT

Cancer cells communicate with each other via exosomes in the tumor microenvironment. However, measuring trace amounts of proteins in exosomes is difficult, and thus the cancer stemness-promoting mechanisms of exosomal proteins have not been elucidated. In the present study, we attempted to quantify trace amounts of 78-kDa glucose-regulated protein (GRP78), which is involved in cancer progression, in exosomes released from cultured gastric cancer cells using an ultrasensitive ELISA combined with thio-NAD cycling. We also evaluated the cancer stemness-promoting effects by the application of high-GRP78-containing exosomes to cultured gastric cancer cells. The ultrasensitive ELISA enabled the detection of GRP78 at a limit of detection of 0.16 pg/mL. The stemness of cancer cultured cells incubated with high-GRP78-containing exosomes obtained from GRP78-overexpressed cells was increased on the basis of both an MTT assay and a wound healing assay. Our results demonstrated that the ultrasensitive ELISA has strong potential to measure trace amounts of proteins in exosomes. Further, exosomes with a high concentration of GRP78 promote the cancer stemness of surrounding cells. The technique for quantifying proteins in exosomes described here will advance our understanding of cancer stemness progression via exosomes.

10.
J Gastrointest Oncol ; 13(3): 985-996, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35837196

ABSTRACT

Background: We aimed to study the effects and potential mechanism of resveratrol (RS) in gastric cancer (GC). Methods: The human GC cell line SGC7901 was treated with different concentrations of RS (0, 1, 5 µM) for 24 hours. The messenger ribonucleic acid or protein expressions levels of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), micro ribonucleic acid-383-5p (miR-383-5p), and DNA damage-inducible transcript 4 (DDIT4) in GC cells were determined by Western blot and quantitative real-time polymerase chain assays. Cells were then transfected with miR-383-5p inhibitor (inhibitor), inhibitor negative control (NC), MALAT1-interfering RNA (si-MALAT1), si-DDIT4 and negative interference control (si-NC). The Cell Counting Kit-8 method, scratch assay, and transwell assay were performed to evaluate cell proliferation, migration, and invasion. Additionally, flow cytometry was used to examine apoptosis, and the target relationship was examined by a luciferase-reporter gene analysis. Results: RS treatment downregulated the expression of MALAT1, repressed cell proliferation, inhibited cell migration and invasion (all P<0.05), and induced apoptosis (P<0.05) in GC cells. When the cells were treated with RS and inhibited the expression of MALAT1 meanwhile, the above anti-cancer effects were more significant (all P<0.05). Target prediction and the luciferase-reporter gene analysis showed that MALAT1 targeted miR-383-5p (P<0.05). When suppressing the expression of MALAT1 and miR-383-5p, the anti-cancer effects caused by the silencing of MALAT1 were absent (all P<0.05). We also found that miR-383-5p targeted DDIT4 protein. When the expression of miR-383-5p and DDIT4 in the GC cells was inhibited, the promoting cancer effects caused by the inhibition of miR-383-5p were reversed (all P<0.05). Conclusions: This study found that RS inhibited the proliferation, migration, and invasion of human GC cells through the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/miR-383-5p/DDIT4 pathway and induced apoptosis.

11.
Acta Biochim Biophys Sin (Shanghai) ; 54(5): 673-685, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35593474

ABSTRACT

Gastric cancer is one of the malignant tumors in the world. PAK4 plays an important role in the occurrence and development of gastric cancer, especially in the process of invasion and metastasis. Here we discover that CORO1C, a member of coronin family that regulates microfilament and lamellipodia formation, recruits cytoplasmic PAK4 to the leading edge of gastric cancer cells by C-terminal extension (CE) domain of CORO1C (353-457 aa). The localization of PAK4 on the leading edge of the cell depends on two necessary conditions: the phosphorylation of PAK4 on serine 99 and the binding to the CE domain of CORO1C. Unphosphorylated PAK4 on serine 99 is closely associated with microtubules by PAK4/GEF-H1/Tctex-1 complex. Once phosphorylated, PAK4 is released from microtubule, and then is recruited by CORO1C to the leading edge and regulates the CORO1C/RCC2 (regulator of chromosome condensation 2) complex, leading to the migration of gastric cancer cells. Our results reveal a new mechanism by which PAK4 regulates the migration potential of gastric cancer cells through microtubule-microfilament cross talk.


Subject(s)
Stomach Neoplasms , Humans , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Movement/genetics , p21-Activated Kinases/metabolism , Phosphorylation , Serine/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
12.
Bioengineered ; 13(4): 9959-9972, 2022 04.
Article in English | MEDLINE | ID: mdl-35416122

ABSTRACT

The recurrence and metastasis of gastric cancer are related to the stemness of gastric cancer cells. Researches have shown that miR-18 level is negatively correlated to the occurrence and development of certain cancer types. However, the effects of miR-18 on the stemness of gastric cancer remain uncertain. In this research, gastric cancer cell lines with stable overexpression of miR-18 were constructed through lentivirus infection. CCK-8 assay, RT-qPCR, Western blot, flow cytometry, and in vivo tumorigenesis assays were performed to evaluate the effects of miR-18 on the stemness of gastric cancer cells. Moreover, luciferase reporter assays found that Meis2 was the target of miR-18. Furthermore, we also found that the low-expressed oncogene HMGB3 is involved in this miR-18/Meis2 axis to further promote the stemness of gastric cancer cells. These findings suggest that the miR-18/Meis2/HMGB3 axis may be potential prognostic indicators for patients with gastric cancer.


Subject(s)
HMGB3 Protein , MicroRNAs , Stomach Neoplasms , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , HMGB3 Protein/genetics , HMGB3 Protein/metabolism , Homeodomain Proteins/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Oncogenes , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Transcription Factors/metabolism
13.
Molecules ; 27(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35163851

ABSTRACT

Ovatodiolide (Ova), found in the plant Anisomeles indica (AI), has been reported to have an anti-proliferation effect in various cancer cells. However, little information is available regarding the anti-cancer effect of Ova in human gastric cancer cells. In this study, we investigated the inhibitory effects and the mechanisms of action responsible for these effects on human AGS cell lines from a newly developed purification technique for Ova from AI extract. Extract obtained at the optimum condition of 95% ethanol extraction of AI was sequentially partitioned by using different polarity solvents. Enriched content of Ova (35.9% purity) from the n-hexane fraction was then applied to the purification by using centrifugal partition chromatography (CPC) in a two-phase solvent system consisting of n-hexane:ethyl acetate:methanol:water (1.0:1.0:1.0:1.0, v/v/v/v) to reach purity over >95.0%. In evaluation of the anti-proliferation effect on AGS cells, Ova induced cell apoptosis with IC50 values of 13.02 and 6.18 µM at 24 and 48 h, respectively, and arrested the cells at the G2/M phase. Quantification of Bax/Bcl2 mRNA expressions using qPCR showed a 2.5-fold increase in the Ova (5 µM)-treated cells at 48 h than in the control group. Specific protein expression data warrant further research to further confirm the proposed Ova-induced apoptotic pathway in AGS cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Diterpenes/isolation & purification , Diterpenes/pharmacology , Lamiaceae/chemistry , Plant Extracts/pharmacology , Solvents/chemistry , Stomach Neoplasms/drug therapy , Apoptosis , Cell Survival , Humans , Plant Extracts/isolation & purification , Stomach Neoplasms/pathology
14.
Pathol Res Pract ; 230: 153740, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35007850

ABSTRACT

Metformin is an oral biguanide used to treat diabetes. Recent study showed it may interfere was related to cancer progression and has a positive effect on cancer prevention and treatment, which attracts a new hot research topic. Here we show that Metformin suppressed the proliferation but induced apoptosis of gastric cells. Notably, Metformin enhanced gastriccell apoptosis via modulating AMPK signaling. Furthermore, Metformin and miR-365 synergistically promote the apoptosis of gastric cancer cells by miR-365-PTEN-AMPK axis. Our study unraveled a novel signaling axis in the regulation in gastric cancer, which could be amplified by the application of metformin. The new effect of metformin potentiates its novel therapeutic application in the future. AVAILABILITY OF DATA AND MATERIALS: The data generated during this study are included in this article and its supplementary information files are available from the corresponding author on reasonable request.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Metformin/pharmacology , MicroRNAs/metabolism , PTEN Phosphohydrolase/metabolism , Stomach Neoplasms/drug therapy , 3' Untranslated Regions , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Male , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , PTEN Phosphohydrolase/genetics , Phosphorylation , Signal Transduction , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
15.
Anticancer Res ; 42(1): 555-563, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34969765

ABSTRACT

BACKGROUND: Epstein-Barr virus (EBV)-associated gastric cancer has been identified as a cancer subtype with definitive clinical and molecular characteristics. Although olaparib, a poly ADP ribose polymerase (PARP) inhibitor, is considered a potential effective agent for gastric cancer, the effect and underlying mechanism of olaparib on gastric cancer depending on EBV infection is not fully understood. MATERIALS AND METHODS: EBV-positive SNU719 and EBV-negative SNU638 gastric cancer cell lines were used to identify the effects of olaparib using the trypan blue exclusion method and annexin V staining assay. To observe the underlying cellular signaling mechanisms of olaparib-induced cell death, Epstein-Barr virus nuclear antigen 1 (EBNA1) and signaling related molecule expression were assessed using transfection, silencing of specific genes using small interfering RNA (siRNA), western blotting and signaling inhibition assay. RESULTS: Olaparib decreased the cell viability of EBV-positive SNU719 gastric cancer cells through caspase-3-dependent apoptosis in a dose dependent manner, whereas EBV-negative SNU638 gastric cancer cells showed drug resistance to olaparib. EBNA1 was expressed in SUN719 gastric cancer cells; however, ataxia telangiectasia and Rad3 related (ATR) and phosphorylated ATR kinase were expressed in SNU638 gastric cancer cells. EBNA1 transfection decreased ATR phosphorylation through p38 mitogen-activated protein kinase (MAPK) phosphorylation in SUN638 gastric cancer cells, and silencing of ATR kinase increased the susceptibility of these cells to olaparib treatment. Moreover, VE-821, an ATR kinase specific inhibitor, also increased the sensitivity of SNU638 cells to olaparib. In contrast, SB203580, a p38 MAPK inhibitor, inhibited this increase in sensitivity to olaparib by EBNA1 transfection. CONCLUSION: Olaparib treatment led to different cellular responses depending on EBV infection in gastric cancer cell lines. These results provide new insights into the mechanism of olaparib-induced apoptosis in gastric cancer cells and suggest that EBV infection should be considered when developing new potential therapeutic agents for gastric cancer.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Phthalazines/pharmacology , Piperazines/pharmacology , Stomach Neoplasms/drug therapy , p38 Mitogen-Activated Protein Kinases/genetics , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Epstein-Barr Virus Infections/drug therapy , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/pathology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Herpesvirus 4, Human/isolation & purification , Herpesvirus 4, Human/pathogenicity , Humans , Signal Transduction/drug effects , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/virology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
16.
Clin Exp Pharmacol Physiol ; 49(2): 264-274, 2022 02.
Article in English | MEDLINE | ID: mdl-34570396

ABSTRACT

Propofol, a widely used short-acting intravenous sedative agent, has gradually gained attention due to the tumour-suppressing role and non-anaesthetic effect. Dysfunction of metabolic reprogramming has been recognised as a well-documented factor for tumour progression. The aim of this study is to explore the effect of propofol on the polyol pathway in gastric cancer cells. In this study, we found that propofol treatment led to a significant downregulation of cell proliferation in BGC823 and GES-1 cells, which was attributed to the decreased AR-mediated polyol pathway. Both aldo-keto reductase family 1, member B1 (AKR1B1) and AKR1B10 were significantly reduced in BGC823 and GES-1 cells in response to propofol stimulation, leading to decreased AR activity and sorbitol level. Addition of sorbitol could reverse the inhibitory effect of propofol on cell proliferation. Mechanically, propofol treatment drastically inhibited phosphorylation and nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (NRF2), subsequently decreased the binding of NRF2 to AR promoter. Overexpression of NRF2 resulted in the recovery of AR expression in gastric cancer cell with propofol treatment. Taken together, these finding showed that propofol suppressed cell proliferation in BGC823 and GES-1 cell through NRF2-mediated polyol pathway, which would aid the selection of sedation for patients with gastric cancer.


Subject(s)
Propofol , Stomach Neoplasms , Aldehyde Reductase/pharmacology , Cell Line, Tumor , Cell Proliferation , Humans , NF-E2-Related Factor 2/metabolism , Polymers , Propofol/pharmacology , Stomach Neoplasms/drug therapy
17.
J Gastrointest Cancer ; 53(3): 537-542, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34159520

ABSTRACT

OBJECTIVES: To discover new natural effective anticancer agents and new antibacterial agents against antibiotic-resistant bacteria which are the most serious public health concern. Another important concern is drug delivery which is the transport of pharmaceutical compounds to have a therapeutic effect in organisms having a disease. Azurin is a promising anticancer agent produced from Pseudomonas aeruginosa. This study tried to test the effectiveness of the immobilization of azurin on nano-chitosan to enhance its anticancer and antibacterial activity against gastrointestinal cancer and its related bacteria. METHODS: We purified azurin protein from Pseudomonas aeruginosa and then immobilized it on nano-chitosan. The anticancer activity of the free and nano-azurin is tested against a gastric cancer cell line (CLS-145), pancreatic cancer cell line (AsPC-1), colon cancer cell line (HCT116), esophagus cancer cell line (KYSE-410), and liver cancer cell line (HepG2). The antibacterial activity of both free and immobilized azurin also is tested against bacterial species related to the gastrointestinal cancer biopsies: Helicobacter pylori, Bacteroides fragilis, Salmonella enterica, Fusobacterium nucleatum, and Porphyromonas gingivalis. RESULTS: Both free and nano-azurin showed high anticancer and antibacterial activity. Immobilization significantly increased the anticancer and antibacterial activity of the azurin CONCLUSION: Nano-azurin can be used as an effective anticancer and antibacterial agent against gastrointestinal cancer and bacterial species related to these cancers.


Subject(s)
Antineoplastic Agents , Azurin , Chitosan , Gastrointestinal Neoplasms , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Azurin/metabolism , Azurin/pharmacology , Azurin/therapeutic use , Bacteria , Chitosan/metabolism , Chitosan/pharmacology , Humans , Pseudomonas aeruginosa/metabolism
18.
Acta Anatomica Sinica ; (6): 309-316, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015325

ABSTRACT

Objective To investigate the expression of mitogen-activated protein kinase kinase 1 (MAP2K1) in gastric cancer and its clinical significance. Methods Immunohistochemistry and Western blotting were used to detect the protein expression of MAP2K1 in gastric cancertissues and cells. The morphology and the expression position of MAP2K1 were observed by immunofluorescence. MAP2K1 mRNA expression in gastric cancer tissues was analyzed by data mining of Starbase database and Oneomine database. The correlation between MAP2K1 mRNA expression and clinicopathological features was analyzed by UALCAN database. Survival analysis was performed using Kaplan Meier-Plotter online analysis tools. GEPIA2 database mining the relationship between MAP2K1 and gastric cancer stem cell related factors and drug resistance related factors. Results Immunohistochemistry, immunofluorescence and Western blotting showed that MAP2K1 protein was highly expressed in gastric cancer tissues and cells, and MAP2K1 was expressed in the cytoplasm of gastric cancer. According to the analysis of various databases, the expression of MAP2K1 mRNA in gastric cancer tissue was higher than that in normal gastric tissue, and the expression of MAP2K1 mRNA was closely related to gastric cancer stage, grade, lymph node metastasis and patient gender, and the overall survival rate of gastric cancer patients in the group with high MAP2K1 mRNA expression was significantly lower than that in the group with low MAP2K1 mRNA expression, which may be related to the characteristics of gastric cancer stem cells and drug resistance. Conclusion MAP2K1 is highly expressed in gastric cancer, and its expression level may affect the poor prognosis of patients by regulating stem cell related factors and drug resistance related factors. MAP2K1 may be a new diagnostic marker to determine the prognosis of gastric cancer patients.

19.
Gastroenterol Hepatol Bed Bench ; 14(1): 67-76, 2021.
Article in English | MEDLINE | ID: mdl-33868612

ABSTRACT

AIM: Extremely low frequency electromagnetic fields affect miRNAs expression in cancer cell. In this study, electromagnetic fields exposed to low frequency were used to compare miR-21 and miR-29 expressions in a gastric cancer cell line. BACKGROUND: It has been recently suggested that the low frequency electromagnetic fields probably function as a treatment for cancers. METHODS: A cultured cell line of gastric cancer was exposed to an electromagnetic radiation system. The cell line was assigned to 4 groups under continuous and discontinuous radiations of 0.25 and 2.5 ml Tesla field strength. Then, the groups were compared with a non-radiation control group. Later, RNA extraction and cDNA synthesis were prepared for miR-21 and miR-29. Real Time PCR method was used to determine how expressions of these two microRNAs differ. Finally, the results were statistically analyzed. RESULTS: The percentage of cell viability in the electromagnetic field radiation experienced a significant decrease compared to that of the control group. In addition, expression of miRNA-21 and miRNA-29 had a significant increase as the strength of the electromagnetic field radiations was on an upward trend. Similarly, the percentage of cell viability saw a significant decline in the upregulation of miRNA-21 and miRNA-29 regardless of radiation types. CONCLUSION: Findings of this study showed the therapeutic effect of low frequency electromagnetic fields on the gastric cancer cell line. They also indicated that novel biomarkers (miRNA-21 and miRNA-29) could be proposed as potential treatments of gastric cancer, but the results are required to be well established by future studies.

20.
Cancer Cell Int ; 21(1): 127, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33608016

ABSTRACT

BACKGROUND: Gastric cancer (GC) is one of the most common cancers and the third leading cause of cancer related mortality worldwide. The 5-year survival rate is rather low owing to advanced unresectable and distant metastasis. The EMT has been widely implicated in the stemness, metastatic dormancy, and chemoresistance of different solid tumors. Given the fact that activating transcription factor-3 (ATF3) is a member of the ATF/CREB family of transcription factors and its role in regulation of GC recurrence and metastasis remain poorly understood, the aim of the present study was to investigate its potential impact in epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties and GC aggression. METHODS: To elucidate the potential role of ATF3 in gastric cancer, we utilized SGC-7901 and MGC-803 gastric cancer cell lines as research models and constructed stable cell lines overexpressing ATF3. We conducted a series of assays including cell proliferation, colony formation, cell migration, tumorsphere formation, and invasion to investigate the functional roles of ATF3 in stemness of gastric cancer. The possible effect of ATF3 on epithelial-mesenchymal transition (EMT) was assessed through flow cytometry and qRT-PCR. In vivo functional effect of upregulation of ATF3 on tumor growth was examined in a mouse xenograft model. RESULTS: We found that overexpression of ATF3 inhibited cell proliferation, colony formation, cell migration and invasion. In addition, up-regulation of ATF3 attenuated tumorsphere formation, cell stemness, and potentially decreased expression of EMT markers. Moreover, ATF3 overexpression inhibited tumorigenesis in mouse xenograft model. CONCLUSION: Our data suggest a suppressive role of ATF3 in gastric cancer development. Our findings will provide a potential therapeutic strategy and novel drug target for gastric cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...