Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 660
Filter
1.
Microb Cell Fact ; 23(1): 191, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956640

ABSTRACT

BACKGROUND: In this study, we isolated a cellulase-producing bacterium, Bacillus amyloliquefaciens strain elh, from rice peel. We employed two optimization methods to enhance the yield of cellulase. Firstly, we utilized a one-variable-at-a-time (OVAT) approach to evaluate the impact of individual physical and chemical parameters. Subsequently, we employed response surface methodology (RSM) to investigate the interactions among these factors. We heterologously expressed the cellulase encoding gene using a cloning vectorin E. coli DH5α. Moreover, we conducted in silico molecular docking analysis to analyze the interaction between cellulase and carboxymethyl cellulose as a substrate. RESULTS: The bacterial isolate eh1 exhibited an initial cellulase activity of 0.141 ± 0.077 U/ml when cultured in a specific medium, namely Basic Liquid Media (BLM), with rice peel as a substrate. This strain was identified as Bacillus amyloliquefaciens strain elh1 through 16S rRNA sequencing, assigned the accession number OR920278 in GenBank. The optimal incubation time was found to be 72 h of fermentation. Urea was identified as the most suitable nitrogen source, and dextrose as the optimal sugar, resulting in a production increase to 5.04 ± 0.120 U/ml. The peak activity of cellulase reached 14.04 ± 0.42 U/ml utilizing statistical optimization using Response Surface Methodology (RSM). This process comprised an initial screening utilizing the Plackett-Burman design and further refinement employing the BOX -Behnken Design. The gene responsible for cellulase production, egl, was effectively cloned and expressed in E. coli DH5α. The transformed cells exhibited a cellulase activity of 22.3 ± 0.24 U/ml. The egl gene sequence was deposited in GenBank with the accession number PP194445. In silico molecular docking revealed that the two hydroxyl groups of carboxymethyl cellulose bind to the residues of Glu169 inside the binding pocket of the CMCase. This interaction forms two hydrogen bonds, with an affinity score of -5.71. CONCLUSIONS: Optimization of cultural conditions significantly enhances the yield of cellulase enzyme when compared to unoptimized culturing conditions. Additionally, heterologous expression of egl gene showed that the recombinant form of the cellulase is active and that a valid expression system can contribute to a better yield of the enzyme.


Subject(s)
Bacillus amyloliquefaciens , Cellulase , Cloning, Molecular , Molecular Docking Simulation , Oryza , Cellulase/genetics , Cellulase/biosynthesis , Cellulase/metabolism , Bacillus amyloliquefaciens/enzymology , Bacillus amyloliquefaciens/genetics , Oryza/microbiology , Fermentation , Escherichia coli/genetics , Escherichia coli/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
2.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2897-2905, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041149

ABSTRACT

Rehmannia glutinosa is one of the commonly used Chinese herbal medicines, which has activities of heat-clearing,blood-cooling, Yin-nourishing, and body fluid-promoting. Iridoid glycosides are the main bioactive in R. glutinosa. Iridoid oxidase is a key rate-limiting enzyme in the biosynthetic pathway of iridoid glycosides. In this study, an iridoid oxidase gene Rg IO was screened based on the transcriptome data, followed by bioinformatics analysis, expression characteristic detection, and subcellular localization analysis. The results show that the coding region of Rg IO is 1 536 bp, with 511 amino acids encoded, and the molecular weight is about 58 258. 01. The protein sequence of Rg IO contains the conserved domains and motifs of cytochrome P450 oxidases. Rg IO has the highest sequence identities with its ortholog proteins in Striga asiatica, Striga hermonthica, and Centranthera grandiflora and has good sequence identities(77. 28%) with Catharanthus roseus Cr IO. Rg IO shows specific expression in the leaf of R. glutinosa. In response to MeJA induction, the expression of MeJA in leaves and roots after treatment increases by 3. 15 and 1. 3 times at 3 h and 6 h,respectively. The result of subcellular localization shows that Rg IO is distributed in the endoplasmic reticulum. Agrobacterium-mediated transient expression of Rg IO gene in leaves of R. glutinosa makes the content of catalpol increase by 0. 82 times compared with the transient expression of the empty vector. This study provides a key target gene for the molecular regulation and biosynthesis of catalpol in R. glutinosa and lays a foundation for revealing the complete biosynthetic pathway of catalpol.


Subject(s)
Cloning, Molecular , Plant Proteins , Rehmannia , Rehmannia/genetics , Rehmannia/enzymology , Rehmannia/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Gene Expression Regulation, Plant , Phylogeny , Amino Acid Sequence
3.
Physiol Mol Biol Plants ; 30(6): 867-876, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974359

ABSTRACT

The market demand for essential oil containing citral is increasing. Our research group identified a rare chemotype of Camphora officinarum whose leaves are high in citral content by examining over 1000 wild trees across the entire native distribution area of C. officinarum in China. Because C. officinarum is suitable for large-scale cultivation, it is therefore seen as a promising source of natural citral. However, the molecular mechanism of citral biosynthesis in C. officinarum is poorly understood. In this study, transcriptomic analyses of C. officinarum with different citral contents revealed a strong positive correlation between the expression of a putative geraniol synthase gene (CoGES) and citral content. The CoGES cDNA was cloned, and the CoGES protein shared high similarity with other monoterpene synthases. Enzymatic assays of CoGES with geranyl diphosphate (GPP) as substrate yielded geraniol as the single product, which is the precursor of citral. Further transient expression of CoGES in Nicotiana benthamiana resulted in a higher relative content of geranial and the appearance of a new substance, neral. These findings indicate that CoGES is a geraniol synthase-encoding gene, and the encoded protein can catalyze the transformation of GPP into geraniol, which is further converted into geranial and neral through an unknown mechanism in vivo. These findings expand our understanding of citral biosynthesis in Lauraceae plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01463-4.

4.
Arch Insect Biochem Physiol ; 116(3): e22136, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39016052

ABSTRACT

H2A.Z, the most evolutionarily conserved variant of histone H2A, plays a pivotal role in chromatin remodeling and contributes significantly to gene transcription and genome stability. However, the role of H2A.Z in the silkworm (Bombyx mori) remains unclear. In this study, we cloned the BmH2A.Z from B. mori. The open reading frame of BmH2A.Z is 390 bp, encoding 129 amino acids, with a confirmed molecular weight of 13.4 kDa through prokaryotic expression analysis. Sequence analysis revealed that BmH2A.Z has a conserved H2A.Z domain and is closely related to the systemic evolution of other known H2A.Zs. The expression profile of BmH2A.Z at various developmental stages of the B. mori exhibited the highest expression level in the 1st instar, followed by the grain stage and the 2nd instar, and the lowest expression level in the moth. The highest transcript level of BmH2A.Z was observed in the head, with relatively lower levels detected in the blood than in the other tissues under consideration. In addition, the upregulation of BmH2A.Z resulted in the amplified expression of B. mori nucleopolyhedrovirus (BmNPV) genes, thus facilitating the proliferation of BmNPV. This study establishes a foundation for investigating the role of BmH2A.Z in B. mori and its participation in virus-host interactions.


Subject(s)
Amino Acid Sequence , Bombyx , Cloning, Molecular , Histones , Insect Proteins , Animals , Bombyx/genetics , Bombyx/metabolism , Bombyx/virology , Histones/metabolism , Histones/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/genetics , Larva/metabolism , Larva/growth & development , Phylogeny , Nucleopolyhedroviruses/genetics , Sequence Alignment
5.
Genes (Basel) ; 15(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38927707

ABSTRACT

Phenylalanine ammonia lyase (PAL) is a key enzyme regulating the biosynthesis of the compounds of the phenylpropanoid pathway. This study aimed to isolate and characterize PAL genes from Ferula pseudalliacea Rech.f. (Apiales: Apiaceae) to better understand the regulation of metabolite production. Three PAL gene isoforms (FpPAL1-3) were identified and cloned using the 3'-RACE technique and confirmed by sequencing. Bioinformatics analysis revealed important structural features, such as phosphorylation sites, physicochemical properties, and evolutionary relationships. Expression analysis by qPCR demonstrated the differential transcription profiles of each FpPAL isoform across roots, stems, leaves, flowers, and seeds. FpPAL1 showed the highest expression in stems, FpPAL2 in roots and flowers, and FpPAL3 in flowers. The presence of three isoforms of PAL in F. pseudalliacea, along with the diversity of PAL genes and their tissue-specific expression profiles, suggests that complex modes of regulation exist for phenylpropanoid biosynthesis in this important medicinal plant. The predicted interaction network revealed associations with key metabolic pathways, emphasizing the multifaceted roles of these PAL genes. In silico biochemical analyses revealed the hydrophilicity of the FpPAL isozyme; however, further analysis of substrate specificity and enzyme kinetics can clarify the specific role of each FpPAL isozyme. These comprehensive results increase the understanding of PAL genes in F. pseudalliacea, helping to characterize their contributions to secondary metabolite biosynthesis.


Subject(s)
Ferula , Gene Expression Regulation, Plant , Phenylalanine Ammonia-Lyase , Plant Proteins , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Ferula/genetics , Ferula/metabolism , Phylogeny , Flowers/genetics
6.
Front Plant Sci ; 15: 1381243, 2024.
Article in English | MEDLINE | ID: mdl-38817937

ABSTRACT

Reducing plant height (PH) is one of the core contents of the "Green Revolution", which began in the 1960s in wheat. A number of 27 reduced-height (Rht) genes have been identified and a great number of quantitative trait loci (QTLs) for PH have been mapped on all 21 chromosomes. Nonetheless, only several genes regulated PH have been cloned. In this study, we found the interval of QTL QPh-1B included an EST-SSR marker swes1079. According to the sequence of swes1079, we cloned the TaOSCA1.4 gene. We developed a CAPS marker to analyze the variation across a natural population. The result showed that the PH was significantly different between the two haplotypes of TaOSCA1.4-1B under most of the 12 environments and the average values of irrigation and rainfed conditions. This result further demonstrated that TaOSCA1.4 was associated with PH. Then, we validated the TaOSCA1.4 via RNAi technology. The average PHs of the wild-type (WT), RNAi lines 1 (Ri-1) and 2 (Ri-2) were 94.6, 83.6 and 79.2 cm, respectively, with significant differences between the WT and Ri-1 and Ri-2. This result indicated that the TaOSCA1.4 gene controls PH. TaOSCA1.4 is a constitutively expressed gene and its protein localizes to the cell membrane. TaOSCA1.4 gene is a member of the OSCA gene family, which regulates intracellular Ca2+ concentration. We hypothesized that knock down mutants of TaOSCA1.4 gene reduced regulatory ability of Ca2+, thus reducing the PH. Furthermore, the cell lengths of the knock down mutants are not significantly different than that of WT. We speculate that TaOSCA1.4 gene is not directly associated with gibberellin (GA), which should be a novel mechanism for a wheat Rht gene.

7.
Neuropeptides ; 106: 102437, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38776655

ABSTRACT

FMRFamide, a member of the neuropeptide family, is involved in numerous physiological processes. FMRFamide-activated sodium channels (FaNaCs) are a family of non-voltage-gated, amiloride-sensitive, Na+-selective channels triggered by the neuropeptide FMRFamide. In the present study, the full-length cDNA of the FaNaC receptor of Sepiella japonica (SjFaNaC) was cloned. The cDNA of SjFaNaC was 3004 bp long with an open reading frame (ORF) of 1812 bp, encoding 603 amino acid residues with no signal peptide at the N-terminus. Sequence analysis indicated that SjFaNaC shared a high identity with other cephalopods FaNaCs and formed a sister clade with bivalves. The protein structure was predicted using SWISS-MODEL with AcFaNaC as the template. Quantitative real-time PCR (qRT-PCR) revealed that SjFaNaC transcripts were highly expressed in both female and male reproductive organs, as well as in the optic lobe and brain of the central nervous system (CNS). Results of in situ hybridisation (ISH) showed that SjFaNaC mRNA was mainly distributed in the medulla and deep retina of the optic lobe and in both the supraesophageal and subesophageal masses of the brain. Subcellular localisation indicated that the SjFaNaC protein was localised intracellularly and on the cell surface of HEK293T cells. In summary, these findings may lay the foundation for future exploration of the functions of SjFaNaC in cephalopods.


Subject(s)
FMRFamide , Animals , Male , Female , FMRFamide/metabolism , Amino Acid Sequence , Sodium Channels/metabolism , Sodium Channels/genetics , Cephalopoda/metabolism , Cephalopoda/genetics , Cephalopoda/growth & development , Gonads/metabolism , Gonads/growth & development , Phylogeny , Gene Expression Profiling , Humans , Cloning, Molecular , Gene Expression Regulation, Developmental
8.
J Agric Food Chem ; 72(19): 10944-10957, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38710505

ABSTRACT

Isoflavones, the major secondary metabolites of interest due to their benefits to both human and plant health, are exclusively produced by legumes. In this study, we profiled the isoflavone content in dry seeds from 211 soybean [Glycine max (L.) Merr.] accessions grown across five environments. Broad and discernible phenotypic variations were observed among accessions, regions, and years of growth. Twenty-six single-nucleotide polymorphisms (SNPs) associated with the sum of glycitein (GLE), glycitin (GL), 6″-O-acetylglycitin (AGL), and 6″-O-malonylglycitin (MGL) contents were detected in multiple environments via a genome-wide association study (GWAS). These SNPs were located on chromosome 11 (8,148,438 bp to 8,296,956 bp, renamed qGly11-01). Glyma.11g108300 (GmGLY1), a gene that encodes a P450 family protein, was identified via sequence variation analysis, functional annotation, weighted gene coexpression network analysis (WGCNA), and expression profile analysis of candidate gene, and hairy roots transformation in soybean. Overexpression of GmGLY1 increased the glycitein content (GLC) in soybean hairy roots and transgenic seeds, while CRISPR/Cas9-generated mutants exhibited decreased GLC and increased daidzein content (DAC). Haplotype analysis revealed that GmGLY1 allelic variations significantly affect the GLC accumulation. These findings enhance our understanding of genes influencing GLC in soybean and may guide breeding for lines with high and stable GLC.


Subject(s)
Genome-Wide Association Study , Glycine max , Isoflavones , Plant Proteins , Polymorphism, Single Nucleotide , Seeds , Glycine max/metabolism , Glycine max/genetics , Glycine max/chemistry , Isoflavones/metabolism , Isoflavones/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/metabolism , Seeds/genetics , Seeds/chemistry , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant
9.
Gene ; 927: 148619, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38821325

ABSTRACT

Black shank disease is the main disease affecting tobacco crops worldwide, and the main impacted by the disease are the stem base and root. At present, transgenic technology is an effective method to improve plant disease resistance through transgenic technology. In this study, the EuCHIT73.88 gene was cloned from Eucommia ulmoides Oliver (E. ulmoides) by using RT-PCR. The full length of the gene was 897 bp, encoding 298 amino acid residues. An overexpression vector of from the EuCHIT73.88 gene driven by the 35S promoter was constructed and transferred into tobacco plants via transgenic technology. After inoculation with the black shank pathogen, the number of visible lesions on the stems and leaves of the transgenic tobacco variety EuCHIT73.88 was significantly shorter than that on the stems and leaves of the of wild type (WT) and empty vector (EV) plants, and the lesion area was significantly smaller than on the stems and leaves of the WT and EV plants. With increasing inoculation time, introduction of the WT and EV vectors was obviously lethal, whereas transgenic tobacco only exhibited wilted characteristics, and the stems were black, which indicated that the EuCHIT73.88 gene could improve the resistance of tobacco to black shank disease. Furthermore, the activity of protective enzymes and the gene expression of resistance-related proteins were measured. The results showed that compared with those of the WT and EV plants, the CAT and POD activities of the TP tobacco plants were greater, peaking at 72 h at concentrations of 446.87 U/g and 4562.24 U/g, which were 1.63 and 1.61 times greater than those of the WT and EV plants, respectively. This indicated that CAT and POD may be involved in the process of disease resistance of in the transgenic plants. The MDA content of the transgenic tobacco plants was significantly lower than that of the WT and EV plants with increasing EuCHIT73.88 expression, thus indicating that the overexpression of the transgenic EuCHIT73.88 gene could alleviate the levels of lipid peroxidation and reduce the damage to plant cell membranes. The expression of disease-related protein genes (PR2, PR5, PR1a, PDF1.2 and MLP423) was significantly greater in the EuCHIT73.88 ransgenic tobacco than in the WT and EV-transgenic tobacco. and these findings consistently showed that EuCHIT73.88 could improve the resistance to black shank.


Subject(s)
Chitinases , Disease Resistance , Eucommiaceae , Nicotiana , Plant Diseases , Plants, Genetically Modified , Nicotiana/genetics , Plants, Genetically Modified/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Chitinases/genetics , Chitinases/metabolism , Eucommiaceae/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Leaves/genetics , Cloning, Molecular
10.
J Plant Res ; 137(4): 669-683, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38758249

ABSTRACT

Various environmental stresses induce the production of reactive oxygen species (ROS), which have deleterious effects on plant cells. Glutathione (GSH) is an antioxidant used to counteract reactive oxygen species. Glutathione is produced by glutamylcysteine synthetase (GCS) and glutathione synthetase (GS). However, evidence for the GCS gene in sweetpotato remains scarce. In this study, the full-length cDNA sequence of IbGCS isolated from sweetpotato cultivar Xu18 was 1566 bp in length, which encodes 521 amino acids. The qRT-PCR analysis revealed a significantly higher expression of the IbGCS in sweetpotato flowers, and the gene was induced by salinity, abscisic acid (ABA), drought, extreme temperature and heavy metal stresses. The seed germination rate, root elongation and fresh weight were promoted in T3 Arabidopsis IbGCS-overexpressing lines (OEs) in contrast to wild type (WT) plants under mannitol and salt stresses. In addition, the soil drought and salt stress experiment results indicated that IbGCS overexpression in Arabidopsis reduced the malondialdehyde (MDA) content, enhanced the levels of GCS activity, GSH and AsA content, and antioxidant enzyme activity. In summary, overexpressing IbGCS in Arabidopsis showed improved salt and drought tolerance.


Subject(s)
Arabidopsis , Droughts , Gene Expression Regulation, Plant , Glutamate-Cysteine Ligase , Ipomoea batatas , Plants, Genetically Modified , Arabidopsis/genetics , Arabidopsis/physiology , Ipomoea batatas/genetics , Ipomoea batatas/physiology , Ipomoea batatas/enzymology , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Salt Stress/genetics , Abscisic Acid/metabolism , Malondialdehyde/metabolism , Glutathione/metabolism , Antioxidants/metabolism , Germination/drug effects
11.
Vet Parasitol ; 328: 110193, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704976

ABSTRACT

In prokaryotes and lower eukaryotes, 2-methylcitrate cycle (2-MCC) is the main pathway for propionate decomposition and transformation, but little is known about the 2-MCC pathway of Eimeria tenella. The analysis of genomic data found that the coding gene of 2- methylcitrate synthase (EC 2.3.3.5, PrpC) exists in E. tenella, which is a key enzyme of 2-MCC pathway. Through the search analysis of the database (ToxoDB), it was found that ETH_ 00026655 contains the complete putative sequence of EtprpC. In this study, we amplified the ORF sequence of EtprpC based on putative sequence. Then, prokaryotic expression, enzyme activity and kinetic analysis was performed. The results showed that the EtprpC ORF sequence was 1272 bp, encoding a 46.3 kDa protein comprising 424 amino acids. Enzyme activity assays demonstrate linearity between the initial reaction rate (OD/min) and EtPrpC concentration (ranging from 1.5 to 9 µg/reaction), with optimal enzyme activity observed at 41°C and pH 8.0. The results of enzymatic kinetic analysis showed that the Km of EtPrpC for propionyl-CoA, oxaloacetic acid, and acetyl-CoA was 5.239 ± 0.17 mM, 1.102 ± 0.08 µM, and 5.999 ± 1.24 µM, respectively. The Vmax was 191.11 ± 19.1 nmol/min/mg, 225.48 ± 14.4 nmol/min/mg, and 370.02 ± 25.8 nmol/min/mg when EtPrpC concentration at 4, 6, and 8 µg, respectively. Although the ability of EtPrpC to catalyze acetyl-CoA is only 0.11% of its ability to catalyze propionyl-CoA, it indicates that the 2-MCC pathway in E. tenella is similar to that in bacteria and may have a bypass function in the TCA cycle. This study can provide the theoretical foundation for the new drug targets and the development of new anticoccidial drugs.


Subject(s)
Cloning, Molecular , Eimeria tenella , Eimeria tenella/enzymology , Eimeria tenella/genetics , Kinetics , Citrate (si)-Synthase/genetics , Citrate (si)-Synthase/metabolism , Amino Acid Sequence , Citrates/metabolism
12.
Insects ; 15(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38667426

ABSTRACT

Saliva plays a crucial role in shaping the compatibility of piercing-sucking insects with their host plants. Understanding the complex composition of leafhopper saliva is important for developing effective and eco-friendly control strategies for the tea green leafhopper, Empoasca flavescens Fabrecius, a major piercing-sucking pest in Chinese tea plantations. This study explored the saliva proteins of tea green leafhopper adults using a custom collection device, consisting of two layers of Parafilm stretched over a sucrose diet. A total of 152 proteins were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) following the filter-aided sample preparation (FASP). These proteins were categorized into six groups based on their functions, including enzymes, transport proteins, regulatory proteins, cell structure proteins, other proteins, and unknown proteins. Bioinformatics analyses predicted 16 secreted proteins, which were successfully cloned and transcriptionally analyzed across various tissues and developmental stages. Genes encoding putative salivary secretory proteins, including Efmucin1, EfOBP1, EfOBP2, EfOBP3, Efmucin2, low-density lipoprotein receptor-related protein (EfLRP), EFVg1, and EFVg2, exhibited high expressions in salivary gland (SG) tissues and feeding-associated expressions at different developmental stages. These findings shed light on the potential elicitors or effectors mediating the leafhopper feeding and defense responses in tea plants, providing insights into the coevolution of tea plants and leafhoppers. The study's conclusions open avenues for the development of innovative leafhopper control technologies that reduce the reliance on pesticides in the tea industry.

13.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1225-1236, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658159

ABSTRACT

Phospholipase A2 (PLA2) is widely distributed in animals, plants, and microorganisms, and it plays an important role in many physiological activities. In a previous study, we have identified a secretory PLA2 in Bombyx mori (BmsPLA2-1-1). In this study, we further identified four new sPLA2 genes (BmsPLA2-1-2, BmsPLA2-2, BmsPLA2-3, and BmsPLA2-4) in B. mori genome. All four genes exhibits the characteristic features of sPLA2, including the sPLA2 domain, metal binding sites, and highly conserved catalytic domain. This study completed the cloning, in vitro expression, and expression pattern analysis of the BmsPLA2-4 gene in B. mori. The full length of BmsPLA2-4 is 585 bp, and the recombinant protein obtained through prokaryotic expression has an estimated size of 25 kDa. qRT-PCR analysis revealed that the expression level of BmsPLA2-4 reached its peak on the first day of the fifth instar larval stage. Tissue expression profiling analysis showed that BmsPLA2-4 had the highest expression level in the midgut, followed by the epidermis and fat body. Western blotting analysis results were consistent with those of qRT-PCR. Furthermore, after infecting fifth instar 1-day-old larvae with Escherichia coli and Staphylococcus aureus, the expression level of the BmsPLA2-4 gene significantly increased in 24 h. The findings of this study provides a theoretical basis and valuable experimental data for future related research.


Subject(s)
Bombyx , Phospholipases A2, Secretory , Bombyx/genetics , Bombyx/enzymology , Animals , Phospholipases A2, Secretory/genetics , Phospholipases A2, Secretory/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Larva/genetics , Cloning, Molecular , Staphylococcus aureus/genetics , Staphylococcus aureus/enzymology , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/biosynthesis , Amino Acid Sequence , Gene Expression Profiling
14.
Genes (Basel) ; 15(3)2024 02 28.
Article in English | MEDLINE | ID: mdl-38540374

ABSTRACT

The formation of fruit color in pepper is closely related to the processes of carotenoid metabolism. In this study, red wild-type pepper XHB, SP01, PC01 and their corresponding mutants H0809 (orange), SP02 (yellow), and PC02 (orange) were used as research materials. The Ggps, Psy, Lcyb, Crtz, Zep, and Ccs genes involved in carotenoid biosynthesis were cloned, and bioinformatics and expression analyses were carried out. The results showed that the full lengths of the six genes were 1110 bp, 2844 bp, 1497 bp, 2025 bp, 510 bp, and 1497 bp, and they encoded 369, 419, 498, 315, 169, and 498 amino acids, respectively. Except for the full-length Ccs gene, which could not be amplified in the yellow mutant SP02 and the orange mutant PC02, the complete full-length sequences of the other genes could be amplified in different materials, indicating that the formation of fruit color in the SP02 and PC02 mutants could be closely related to the deletion or mutation of the Ccs gene. The analytical results of real-time quantitative reverse transcription PCR (qRT-PCR) showed that the Ggps, Psy, Lcyb, Crtz, and Zep genes were expressed at different developmental stages of three pairs of mature-fruit-colored materials, but their patterns of expression were not consistent. The orange mutant H0809 could be amplified to the full Ccs gene sequence, but its expression was maintained at a lower level. It showed a significant difference in expression compared with the wild-type XHB, indicating that the formation of orange mutant H0809 fruit color could be closely related to the different regulatory pattern of Ccs expression. The results provide a theoretical basis for in-depth understanding of the molecular regulatory mechanism of the formation of color in pepper fruit.


Subject(s)
Capsicum , Fruit , Fruit/metabolism , Capsicum/genetics , Carotenoids/metabolism , Real-Time Polymerase Chain Reaction , Cloning, Molecular
15.
Genes (Basel) ; 15(3)2024 03 02.
Article in English | MEDLINE | ID: mdl-38540384

ABSTRACT

Leaf morphology is a crucial aspect of plant architecture, yet the molecular mechanisms underlying leaf development remain incompletely understood. In this study, a narrow leaf mutant, m625, was identified in rice (Oryza sativa L.), exhibiting pleiotropic developmental defects. Pigment measurement revealed reduced levels of photochromic pigments in m625. Cytological analysis demonstrated that the m625 gene affected vascular patterns and cell division. Specifically, the narrowing of the leaf was attributed to a decrease in small vein number, shorter vein spacing, and an abnormal V-shaped arrangement of bulliform cells, while the thickening was caused by longer leaf veins, thicker mesophyll cells, and an increased number of parenchyma cell layers. The dwarf stature and thickened internode were primarily due to shortened internodes and an increase in cell layers, respectively. Positional cloning and complementation assays indicated that the m625 gene is a novel allele of NAL1. In the m625 mutant, a nucleotide deletion at position 1103 in the coding sequence of NAL1 led to premature termination of protein translation. Further RNA-Seq and qRT-PCR analyses revealed that the m625 gene significantly impacted regulatory pathways related to IAA and ABA signal transduction, photosynthesis, and lignin biosynthesis. Moreover, the m625 mutant displayed thinner sclerenchyma and cell walls in both the leaf and stem, particularly showing reduced lignified cell walls in the midrib of the leaf. In conclusion, our study suggests that NAL1, in addition to its known roles in IAA transport and leaf photosynthesis, may also participate in ABA signal transduction, as well as regulate secondary cell wall formation and sclerenchyma thickness through lignification.


Subject(s)
Oryza , Phenotype , Alleles , Cell Division , Gene Expression Profiling
16.
PeerJ ; 12: e16790, 2024.
Article in English | MEDLINE | ID: mdl-38436004

ABSTRACT

Plant growth and development are inhibited by the high levels of ions and pH due to soda saline-alkali soil, and the cell wall serves as a crucial barrier against external stresses in plant cells. Proteins in the cell wall play important roles in plant cell growth, morphogenesis, pathogen infection and environmental response. In the current study, the full-length coding sequence of the vegetative cell wall protein gene OsGP1 was characterized from Lj11 (Oryza sativa longjing11), it contained 660 bp nucleotides encoding 219 amino acids. Protein-protein interaction network analysis revealed possible interaction between CESA1, TUBB8, and OsJ_01535 proteins, which are related to plant growth and cell wall synthesis. OsGP1 was found to be localized in the cell membrane and cell wall. Furthermore, overexpression of OsGP1 leads to increase in plant height and fresh weight, showing enhanced resistance to saline-alkali stress. The ROS (reactive oxygen species) scavengers were regulated by OsGP1 protein, peroxidase and superoxide dismutase activities were significantly higher, while malondialdehyde was lower in the overexpression line under stress. These results suggest that OsGP1 improves saline-alkali stress tolerance of rice possibly through cell wall-mediated intracellular environmental homeostasis.


Subject(s)
Oryza , Oryza/genetics , Cell Wall , Cell Membrane , Peroxidase , Alkalies
17.
Int J Mol Sci ; 25(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38542376

ABSTRACT

MYB (myoblast) protein comes in large quantities and a wide variety of types and plays a role in most eukaryotes in the form of transcription factors (TFs). One of its important functions is to regulate plant responses to various stresses. However, the role of MYB TFs in regulating stress tolerance in strawberries is not yet well understood. Therefore, in order to investigate the response of MYB family members to abiotic stress in strawberries, a new MYB TF gene was cloned from Fragaria vesca (a diploid strawberry) and named FvMYB108 based on its structural characteristics and evolutionary relationships. After a bioinformatics analysis, it was determined that the gene belongs to the R2R3-MYB subfamily, and its conserved domain, phylogenetic relationships, predicted protein structure and physicochemical properties, subcellular localization, etc. were analyzed. After qPCR analysis of the expression level of FvMYB108 in organs, such as the roots, stems, and leaves of strawberries, it was found that this gene is more easily expressed in young leaves and roots. After multiple stress treatments, it was found that the target gene in young leaves and roots is more sensitive to low temperatures and salt stimulation. After these two stress treatments, various physiological and biochemical indicators related to stress in transgenic Arabidopsis showed corresponding changes, indicating that FvMYB108 may be involved in regulating the plant's ability to cope with cold and high-salt stress. Further research has found that the overexpression of this gene can upregulate the expression of AtCBF1, AtCOR47, AtERD10, and AtDREB1A related to low-temperature stress, as well as AtCCA1, AtRD29a, AtP5CS1, and AtSnRK2.4 related to salt stress, enhancing the ability of overexpressed plants to cope with stress.


Subject(s)
Arabidopsis , Fragaria , Arabidopsis/metabolism , Salt Tolerance/genetics , Fragaria/genetics , Fragaria/metabolism , Phylogeny , Genes, myb , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
18.
Theor Appl Genet ; 137(3): 63, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427048

ABSTRACT

KEY MESSAGE: The gene BrABCG26 responsible for male sterility of Chinese cabbage was confirmed by two allelic mutants. Male-sterile lines are an important way of heterosis utilization in Chinese cabbage. In this study, two allelic male-sterile mutants msm3-1 and msm3-2 were obtained from a Chinese cabbage double haploid (DH) line 'FT' by using EMS-mutagenesis. Compared to the wild-type 'FT,' the stamens of mutants were completely degenerated and had no pollen, and other characters had no obvious differences. Cytological observation revealed that the failure of vacuolation of the mononuclear microspore, accompanied by abnormal tapetal degradation, resulted in anther abortion in mutants. Genetic analysis showed that a recessive gene controlled the mutant trait. MutMap combined with kompetitive allele specific PCR genotyping analyses showed that BraA01g038270.3C, encoding a transporter ABCG26 that played a vital role in pollen wall formation, was the candidate gene for msm3-1, named BrABCG26. Compared with wild-type 'FT,' the mutations existed on the second exon (C to T) and the sixth exon (C to T) of BrABCG26 gene in mutants msm3-1 and msm3-2, leading to the loss-of-function truncated protein, which verified the BrABCG26 function in stamen development. Subcellular localization and expression pattern analysis indicated that BrABCG26 was localized in the nucleus and was expressed in all organs, with the highest expression in flower buds. Compared to the wild-type 'FT,' the expressions of BrABCG26 were significantly reduced in flower buds and anthers of mutants. Promoter activity analysis showed that a strong GUS signal was detected in flower buds. These results indicated that BrABCG26 is responsible for the male sterility of msm3 mutants in Chinese cabbage.


Subject(s)
Brassica rapa , Brassica , Plant Infertility , ATP-Binding Cassette Transporters/genetics , Brassica/genetics , Brassica rapa/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Mutation , Plant Infertility/genetics , Plant Proteins/genetics
19.
Plants (Basel) ; 13(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38498460

ABSTRACT

MYB transcription factors (TFs) have been shown to play a key role in plant growth and development and are in response to various types of biotic and abiotic stress. Here, we clarified the structure, expression patterns, and function of a MYB TF, SlMYB86-like (Solyc06g071690) in tomato using an inbred tomato line exhibiting high resistance to bacterial wilt (Hm 2-2 (R)) and one susceptible line (BY 1-2 (S)). The full-length cDNA sequence of this gene was 1226 bp, and the open reading frame was 966 bp, which encoded 321 amino acids; its relative molecular weight was 37.05055 kDa; its theoretical isoelectric point was 7.22; it was a hydrophilic nonsecreted protein; and it had no transmembrane structures. The protein also contains a highly conserved MYB DNA-binding domain and was predicted to be localized to the nucleus. Phylogenetic analysis revealed that SlMYB86-like is closely related to SpMYB86-like in Solanum pennellii and clustered with other members of the family Solanaceae. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of the SlMYB86-like gene was tissue specific and could be induced by Ralstonia solanacearum, salicylic acid, and jasmonic acid. The results of virus-induced gene silencing (VIGS) revealed that SlMYB86-like silencing decreased the resistance of tomato plants to bacterial wilt, suggesting that it positively regulates the resistance of tomatoes to bacterial wilt. Overall, these findings indicate that SlMYB86-like plays a key role in regulating the resistance of tomatoes to bacterial wilt.

20.
Mol Biol Rep ; 51(1): 328, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393428

ABSTRACT

BACKGROUND: WD40 transcription factors are crucial in plant growth and developmental, significantly impacting plant growth regulation. This study investigates the WD40 transcription factor HmWDR68's role in developing the distinctive blue infertile flower colors in Hydrangea macrophylla 'Forever Summer'. METHODS AND RESULTS: The HmWDR68 gene was isolated by PCR, revealing an open reading frame of 1026 base pairs, which encodes 341 amino acids. Characterized by four WD40 motifs, HmWDR68 is a member of the WD40 family. Phylogenetic analysis indicates that HmWDR68 shares high homology with PsWD40 in Camellia sinensis and CsWD40 in Paeonia suffruticosa, both of which are integral in anthocyanin synthesis regulation. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that HmWDR68 expression in the blue infertile flowers of 'Forever Summer' hydrangea was significantly higher compared to other tissues and organs. Additionally, in various hydrangea varieties with differently colored infertile flowers, HmWDR68 expression was markedly elevated in comparison to other hydrangea varieties, correlating with the development of blue infertile flowers. Pearson correlation analysis revealed a significant association between HmWDR68 expression and the concentration of delphinidin 3-O-glucoside, as well as key genes involved in anthocyanin biosynthesis (HmF3H, HmC3'5'H, HmDFR, and HmANS) in the blue infertile flowers of 'Forever Summer' hydrangea (P < 0.01). CONCLUSION: These findings suggest HmWDR68 may specifically regulate blue infertile flower formation in hydrangea by enhancing delphinidin-3-O-glucoside synthesis, modulating expression of HmF3H, HmC3'5'H, HmDFR and HmANS. This study provides insights into HmWDR68's role in hydrangea's blue flowers development, offering a foundation for further research in this field.


Subject(s)
Anthocyanins , Hydrangea , Anthocyanins/genetics , Hydrangea/chemistry , Hydrangea/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Phylogeny , Pigmentation/genetics , Flowers/metabolism , Glucosides/metabolism , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...