Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
1.
Am J Transl Res ; 16(5): 1660-1668, 2024.
Article in English | MEDLINE | ID: mdl-38883380

ABSTRACT

OBJECTIVE: To investigate the methylation of HOXA11 gene promoter in testicular germ cell tumor (GCT). METHOD: The clinicopathological data of 63 patients with primary testicular GCT who underwent surgery during Apr. 2019 to Mar. 2021, were retrospectively analyzed. Their GCT tissue and paraneoplastic testicular tissue were obtained, and genomic DNA was extracted from both. The methylation of HOXA11 gene promoter region was detected by methylation-specific PCR (MSP). The incidence of HOXA11 methylation in testicular GCT and adjacent tissues was compared, and the connection between methylation level in testicular GCT and clinicopathologic features of patients was statistically analyzed. Testicular GCT cells were treated with methylated transferase inhibitor 5-Aza-dC in vitro, and HOXA11 mRNA expression was detected by real-time PCR. RESULTS: The positive rate of HOXA11 promoter methylation in testicular GCT tissues was notably higher than that of paired adjacent tissues (P<0.05). The abnormal methylation of HOXA11 gene promoter was correlated with lymph node metastasis and TNM stage in patients (P<0.05). HOXA11 mRNA expression in testicular GCT cells treated with 5-Aza-dC was increased (P<0.05). CONCLUSION: Abnormal methylation of HOXA11 gene promoter in testicular germ cell tumor tissue inhibits transcription and expression of HOXA11 gene. The abnormal methylation of HOXA11 promoter region is tightly associated with lymph node metastasis and TNM staging in testicular germ cell tumors.

2.
Int J Mol Sci ; 25(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38473903

ABSTRACT

Autoimmune polyglandular syndromes (APS) are classified into four main categories, APS1-APS4. APS1 is caused by AIRE gene loss of function mutations, while the genetic background of the other APS remains to be clarified. Here, we investigated the potential association between AIRE gene promoter Single Nucleotide Polymorphisms (SNPs) and susceptibility to APS. We sequenced the AIRE gene promoter of 74 APS patients, also analyzing their clinical and autoantibody profile, and we further conducted molecular modeling studies on the identified SNPs. Overall, we found 6 SNPs (-230Y, -655R, -261M, -380S, -191M, -402S) of the AIRE promoter in patients' DNA. Interestingly, folding free energy calculations highlighted that all identified SNPs, except for -261M, modify the stability of the nucleic acid structure. A rather similar percentage of APS3 and APS4 patients had polymorphisms in the AIRE promoter. Conversely, there was no association between APS2 and AIRE promoter polymorphisms. Further AIRE promoter SNPs were found in 4 out of 5 patients with APS1 clinical diagnosis that did not harbor AIRE loss of function mutations. We hypothesize that AIRE promoter polymorphisms could contribute to APS predisposition, although this should be validated through genetic screening in larger patient cohorts and in vitro and in vivo functional studies.


Subject(s)
Polyendocrinopathies, Autoimmune , Humans , Syndrome , Mutation , Polymorphism, Single Nucleotide , Promoter Regions, Genetic
3.
PeerJ ; 12: e16934, 2024.
Article in English | MEDLINE | ID: mdl-38529304

ABSTRACT

Background: Ischemic stroke (IS) is the main cause of death and adult disability. However, the pathogenesis of this complicated disease is unknown. The present study aimed to assess the relationship between ITLN1 single nucleotide polymorphisms (SNPs) and the susceptibility to IS in Xi'an population, Shaanxi province. Methods: In this study, we designed polymerase chain reaction (PCR) primers located at -3,308 bp upstream of the transcription initiation site within promoter region of the ITLN1 gene. The target fragment was amplified by PCR and identified by agarose gel electrophoresis. Sanger sequencing was then performed in the samples extracted from a cohort comprising 1,272 participants (636 controls and 636 cases), and the obtained sequences were compared with the reference sequences available on the National Center for Biotechnology Information (NCBI) website to detect SNPs in the ITLN1 gene promoter region. Logistic regression analysis was employed to assess the relationship between ITLN1 polymorphisms and IS risk, with adjustments for age and gender. Significant positive results were tested by false-positive report probability (FPRP) and false discovery rate (FDR). The interaction among noteworthy SNPs and their predictive relationship with IS risk were explored using the Multi-Factor Dimensionality Reduction (MDR) software. Results: The results of Sanger sequencing were compared with the reference sequences on the NCBI website, and we found 14 SNPs in ITLN1 gene promoter satisfied Hardy-Weinberg equilibrium (HWE). Logistic regression analysis showed that ITLN1 was associated with a decreased risk of IS (rs6427553: Homozygous C/C: adjusted OR: 0.69, 95% CI [0.48-0.97]; Log-additive: adjusted OR: 0.83, 95% CI [0.70-0.98]; rs7411035: Homozygous G/G: adjusted OR: 0.66, 95% CI [0.47-0.94]; Dominant G/T-G/G: adjusted OR: 0.78, 95% CI [0.62-0.98]; Log-additive: adjusted OR: 0.81, 95% CI [0.69-0.96]; rs4656958: Heterozygous G/A: adjusted OR: 0.74, 95% CI [0.59-0.94]; Homozygous A/A: adjusted OR: 0.51, 95% CI [0.31-0.84]; Dominant G/A-A/A: adjusted OR: 0.71, 95% CI [0.57-0.89]; Recessive A/A: adjusted OR: 0.59, 95% CI [0.36-0.96]; Log-additive: adjusted OR: 0.73, 95% CI [0.61-0.88]), especially in people aged less than 60 years and males. Conclusions: In short, our study revealed a correlation between ITLN1 variants (rs6427553, rs7411035 and rs4656958) and IS risk in Xi'an population, Shaanxi province, laying a foundation for ITLN1 gene as a potential biomarker for predicting susceptibility to IS.


Subject(s)
Ischemic Stroke , Polymorphism, Single Nucleotide , Adult , Humans , Biomarkers , Genetic Predisposition to Disease/genetics , Heterozygote , Ischemic Stroke/genetics , Polymorphism, Single Nucleotide/genetics , Cytokines/genetics , Lectins/genetics , GPI-Linked Proteins/genetics
4.
Plant Sci ; 342: 112046, 2024 May.
Article in English | MEDLINE | ID: mdl-38395069

ABSTRACT

Kalmegh (Andrographis paniculata) spatiotemporally produces medicinally-important ent-labdane-related diterpenoids (ent-LRDs); andrographolide (AD), 14-deoxy-11,12-didehydroandrographolide (DDAD), neoandrographolide (NAD). ApCPS1 and ApCPS2, the ent-copalyl pyrophosphate (ent-CPP)-producing class II diterpene synthases (diTPSs) were identified, but their contributions to ent-CPP precursor supply for ent-LRD biosynthesis were not well understood. Here, we characterized ApCPS4, an additional ent-CPP-forming diTPS. Further, we elucidated in planta function of the ent-CPP-producing diTPSs (ApCPS1,2,4) by integrating transcript-metabolite co-profiles, biochemical analysis and gene functional characterization. ApCPS1,2,4 localized to the plastids, where diterpenoid biosynthesis occurs in plants, but ApCPS1,2,4 transcript expression patterns and ent-LRD contents revealed a strong correlation of ApCPS2 expression and ent-LRD accumulation in kalmegh. ApCPS1,2,4 upstream sequences differentially activated ß-glucuronidase (GUS) in Arabidopsis and transiently-transformed kalmegh. Similar to higher expression of ApCPS1 in kalmegh stem, ApCPS1 upstream sequence activated GUS in stem/hypocotyl of Arabidopsis and kalmegh. However, ApCPS2,4 upstream sequences weakly activated GUS expression in Arabidopsis, which was not well correlated with ApCPS2,4 transcript expression in kalmegh tissues. Whereas, ApCPS2,4 upstream sequences could activate GUS expression at a considerable level in kalmegh leaf and roots/calyx, respectively, suggesting the involvement of transcriptional regulator(s) of ApCPS2,4 that might participate in kalmegh-specific diterpenoid pathway. Interestingly, ApCPS2-silenced kalmegh showed a drastic reduction in AD, DDAD and NAD contents and compromised defense against insect herbivore Spodoptera litura. However, ent-LRD contents and herbivore defense in ApCPS1 or ApCPS4-silenced plants remained largely unaltered. Overall, these results suggested an important role of ApCPS2 in producing ent-CPP for medicinal ent-LRD biosynthesis and defense against insect herbivore.


Subject(s)
Alkyl and Aryl Transferases , Andrographis , Arabidopsis , Diterpenes , Glucosides , Tetrahydronaphthalenes , Andrographis paniculata , Arabidopsis/metabolism , Herbivory , NAD/metabolism , Alkyl and Aryl Transferases/metabolism , Diterpenes/metabolism , Andrographis/genetics , Andrographis/metabolism
5.
Article in English, Russian | MEDLINE | ID: mdl-38054227

ABSTRACT

Methylation of the O-6-methylguanine-DNA methyltransferase (MGMT) gene promoter is currently the most important prognostic biomarker in therapy of IDH-wild-type glioblastoma. One can obtain information about this methylation from total DNA methylation profile. OBJECTIVE: To analyze the DNA methylation signal intensity in the MGMT gene in samples of malignant gliomas and identify the most significant genomic positions for calculating the MGMT gene promoter status for further improvement of diagnostics and prediction of therapeutic options in patients with malignant gliomas. MATERIAL AND METHODS: The study is based on 43 samples (frozen tissue or paraffin blocks) from patients with malignant gliomas. Tumor DNA samples were prepared using the Illumina Infinium MethylationEPIC BeadChip Kit and the Illumina Next-Seq 550 Sequencing System platform. DNA methylation profiles were analyzed using computational algorithms in the R language, specialized libraries minfi and mgmtstp27, as well as basic statistical functions in the Rstudio environment. RESULTS: We established the MGMT gene promoter status in 43 samples of malignant gliomas considering total DNA methylation profile. In 24 samples (55%), the MGMT gene promoter was methylated. We compared methylation signal in certain CpG islands in groups with methylated and unmethylated MGMT gene promoters and identified the most significant positions for further improvement of data analysis algorithm. CONCLUSION: These data demonstrate the possibilities and prospects for further improvement of algorithm for analysis of the MGMT gene promoter status based on total DNA methylation profile in patients with malignant gliomas as an alternative to methyl-specific PCR. Our results are consistent with data of other neuro-oncology researchers. Indeed, computational methods like MGMT-STP27 are quite powerful and can be used in scientific and clinical practice to assess prognosis and make decisions about chemotherapy with alkylating agents.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , DNA Methylation/genetics , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Glioma/genetics , Glioma/therapy , Glioblastoma/genetics , Prognosis , O(6)-Methylguanine-DNA Methyltransferase/genetics , DNA , DNA Modification Methylases/genetics , Tumor Suppressor Proteins/genetics , DNA Repair Enzymes/genetics
6.
Cell Biochem Funct ; 41(8): 1503-1513, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38014564

ABSTRACT

The role of tetraspanin CD81 in malignant transformation is best studied in colorectal cancer, and it appears that other transcripts beside the fully coding mRNA may also be dysregulated in malignant cells. Recent data from a comprehensive pan-cancer transcriptome analysis demonstrated differential activity of two alternative CD81 gene promoters in malignant versus nonmalignant gut mucosa. The promoter active in gut mucosa gives rise to transcripts CD81-203 and CD81-213, while the promoter active in colon and rectal cancer gives rise to transcripts CD81-205 and CD81-215. Our study aimed to explore the biomarker potential of the transcripts from the alternative CD81 gene promoters in colon cancer, as well as to investigate their structure and potential function using in silico tools. The analysis of the transcripts' expression in several colon cell lines cultivated in 2D and 3D and a set of colon cancer and healthy gut mucosa samples by qPCR and RNA sequencing suggested their low expression and stromal origin. Expression patterns in tumor and nontumor tissue along with in silico data suppose that the transcript CD81-215 may be a noncoding RNA of stromal origin with possible involvement in signaling related to malignant transformation.


Subject(s)
Colonic Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Gene Expression Profiling , Signal Transduction , Tetraspanin 28/genetics , Tetraspanin 28/metabolism
7.
Biochimie ; 214(Pt A): 45-56, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37660977

ABSTRACT

The majority of drugs are metabolized by cytochrome P450 (CYP) enzymes, primarily belonging to the CYP1, CYP2 and CYP3 families. Genetic variations are the main cause of inter-individual differences in drug response, which constitutes a major concern in pharmacotherapy. G-quadruplexes (G4s), are non-canonical DNA and RNA secondary structures formed by guanine-rich sequences. G4s have been implicated in cancer and gene regulation. In this study, we investigated putative G4-forming sequences (PQSs) in the CYP genes. Our findings reveal a high density of PQSs in the full genes of CYP family 2. Moreover, we observe an increased density of PQSs in the promoters of CYP family 1 genes compared to non-CYP450 genes. Importantly, stable PQSs were also identified in all studied CYP genes. Subsequently, we assessed the impact of the most frequently reported genetic mutations in the selected genes and the possible effect of these mutations on G4 formation as well as on the thermodynamic stability of predicted G4s. We found that 4 SNPs overlap G4 sequences and lead to mutated DNA and RNA G4 forming sequences in their context. Notably, the mutation in the CYP2C9 gene, which is associated with impaired (S)-warfarin metabolism in patients, alters a G4 sequence. We then demonstrated that at least 10 of the 13 chosen cytochrome P450 G4 candidates form G-quadruplex structures in vitro, using a combination of spectroscopic methods. In conclusion, our findings indicate the potential role of G-quadruplexes in the regulation of cytochrome genes, and emphasize the importance of G-quadruplexes in drug metabolism.


Subject(s)
G-Quadruplexes , Humans , Promoter Regions, Genetic , DNA , RNA , Cytochrome P-450 Enzyme System/genetics
8.
Adv Cancer Res ; 160: 253-315, 2023.
Article in English | MEDLINE | ID: mdl-37704290

ABSTRACT

Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Oncogenes , Immunotherapy , Epigenomics
9.
Front Genet ; 14: 1125967, 2023.
Article in English | MEDLINE | ID: mdl-37538359

ABSTRACT

Complex diseases have multifactorial etiologies making actionable diagnostic biomarkers difficult to identify. Diagnostic research must expand beyond single or a handful of genetic or epigenetic targets for complex disease and explore a broader system of biological pathways. With the objective to develop a diagnostic tool designed to analyze a comprehensive network of epigenetic profiles in complex diseases, we used publicly available DNA methylation data from over 2,400 samples representing 20 cell types and various diseases. This tool, rather than detecting differentially methylated regions at specific genes, measures the intra-individual methylation variability within gene promoters to identify global shifts away from healthy regulatory states. To assess this new approach, we explored three distinct questions: 1) Are profiles of epigenetic variability tissue-specific? 2) Do diseased tissues exhibit altered epigenetic variability compared to normal tissue? 3) Can epigenetic variability be detected in complex disease? Unsupervised clustering established that global epigenetic variability in promoter regions is tissue-specific and promoter regions that are the most epigenetically stable in a specific tissue are associated with genes known to be essential for its function. Furthermore, analysis of epigenetic variability in these most stable regions distinguishes between diseased and normal tissue in multiple complex diseases. Finally, we demonstrate the clinical utility of this new tool in the assessment of a multifactorial condition, male infertility. We show that epigenetic variability in purified sperm is correlated with live birth outcomes in couples undergoing intrauterine insemination (IUI), a common fertility procedure. Men with the least epigenetically variable promoters were almost twice as likely to father a child than men with the greatest number of epigenetically variable promoters. Interestingly, no such difference was identified in men undergoing in vitro fertilization (IVF), another common fertility procedure, suggesting this as a treatment to overcome higher levels of epigenetic variability when trying to conceive.

10.
Curr Issues Mol Biol ; 45(5): 3933-3952, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37232720

ABSTRACT

The regulation of apoptosis (the programmed cell death) is dependent on the crucial involvement of BCL2 and BAX. The Bax-248G>A and Bcl-2-938 C>A polymorphic variations in the promoter sequences of the Bax and Bcl-2 gene have been recently associated with low Bax expression, progression to advanced stages, treatment resistance, and shortened overall survival rate in some hematological malignancies, including chronic myeloid leukemia (CML) and other myeloproliferative neoplasms. Chronic inflammation has been linked to various stages of carcinogenesis wherein pro-inflammatory cytokines play diverse roles in influencing cancer microenvironment leading to cell invasion and cancer progression. Cytokines such as TNF-α and IL-8 have been implicated in cancer growth in both solid and hematological malignancies with studies showing their elevated levels in patients. Genomic approaches have in recent years provided significant knowledge with the regard to the association of certain SNPs (single nucleotide polymerphisms) either in a gene or its promoter that can influence its expression, with the risk and susceptibility to human diseases including cancer. This study has investigated the consequences of promoter SNPs in apoptosis genes Bax-248G>A (rs4645878)/Bcl-2-938C>A (rs2279115) and pro-inflammatory cytokines TNF-α rs1800629 G>A/IL-8 rs4073 T>A on the risk and susceptibility towards hematological cancers. The study design has 235 individuals both male and female enrolled as subjects that had 113 cases of MPDs (myeloproliferative disorders) and 122 healthy individuals as controls. The genotyping studies were conducted through ARMS PCR (amplification-refractory mutation system PCR). The Bcl-2-938 C>A polymorphism showed up in 22% of patients in the study, while it was observed in only 10% of normal controls. This difference in genotype and allele frequency between the two groups was significant (p = 0.025). Similarly, the Bax-248G>A polymorphism was detected in 6.48% of the patients and 4.54% of the normal controls, with a significant difference in genotype and allele frequency between the groups (p = 0.048). The results suggest that the Bcl-2-938 C>A variant is linked to an elevated risk of MPDs in the codominant, dominant, and recessive inheritance models. Moreover, the study indicated allele A as risk allele which can significantly increase the risk of MPDs unlike the C allele. In case of Bax gene covariants, these were associated with an increased risk of MPDs in the codominant inheritance model and dominant inheritance model. It was found that the allele A significantly enhanced the risk of MPDs unlike the G allele. The frequencies of IL-8 rs4073 T>A in patients was found to be TT (16.39%), AT (36.88%) and AA (46.72%), compared to controls who were more likely to have frequencies of TT (39.34%), AT (37.70%) and AA (22.95%) as such, respectively. There was a notable overrepresentation of the AA genotype and GG homozygotes among patients compared to controls in TNF-α polymorphic variants, with 6.55% of patients having the AA genotype and 84% of patients being GG homozygotes, compared to 1.63% and 69%, respectively in controls. The data from the current study provide partial but important evidence that polymorphisms in apoptotic genes Bcl-2-938C>A and Bax-248G>A and pro-inflammatory cytokines IL-8 rs4073 T>A and TNF-α G>A may help predict the clinical outcomes of patients and determine the significance of such polymorphic variations in the risk of myeloproliferative diseases and their role as prognostic markers in disease management using a case-control study approach.

11.
Sheng Wu Gong Cheng Xue Bao ; 39(4): 1445-1461, 2023 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-37154316

ABSTRACT

Glioma is the most common primary brain tumor, accounting for 81% of intracranial tumors. The diagnosis and prognosis assessment of glioma are mainly based on imaging. However, imaging cannot be fully used as the basis for diagnosis and prognosis assessment due to the infiltrative growth characteristics of glioma. Therefore, the discovery and identification of novel biomarkers is particularly important for the diagnosis, treatment and prognosis assessment of glioma. The latest findings suggest that a variety of biomarkers in the tissues and blood of glioma patients can be used for the auxiliary diagnosis and prognosis assessment of glioma. Among them, IDH1/2 gene mutation, BRAF gene mutation and fusion, p53 gene mutation, increased telomerase activity, circulating tumor cells and non-coding RNA can be used as diagnostic markers. Prognostic markers include 1p/19p codeletion, MGMT gene promoter methylation, upregulation of matrix metalloproteinase-28, insulin-like growth factor-binding protein-2 and CD26, and downregulation of Smad4. This review highlights the latest advances of biomarkers in the diagnosis and prognosis assessment of glioma.


Subject(s)
Brain Neoplasms , Glioma , Humans , Tumor Suppressor Proteins/genetics , Mutation , Glioma/diagnosis , Glioma/genetics , Glioma/pathology , Biomarkers , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Methylation , DNA Repair Enzymes/genetics
12.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37239961

ABSTRACT

HNF4α, a member of the nuclear receptor superfamily, regulates the genes involved in lipid and glucose metabolism. The expression of the RARß gene in the liver of HNF4α knock-out mice was higher versus wildtype controls, whereas oppositely, RARß promoter activity was 50% reduced by the overexpression of HNF4α in HepG2 cells, and treatment with retinoic acid (RA), a major metabolite of vitamin A, increased RARß promoter activity 15-fold. The human RARß2 promoter contains two DR5 and one DR8 binding motifs, as RA response elements (RARE) proximal to the transcription start site. While DR5 RARE1 was previously reported to be responsive to RARs but not to other nuclear receptors, we show here that mutation in DR5 RARE2 suppresses the promoter response to HNF4α and RARα/RXRα. Mutational analysis of ligand-binding pocket amino acids shown to be critical for fatty acid (FA) binding indicated that RA may interfere with interactions of FA carboxylic acid headgroups with side chains of S190 and R235, and the aliphatic group with I355. These results could explain the partial suppression of HNF4α transcriptional activation toward gene promoters that lack RARE, including APOC3 and CYP2C9, while conversely, HNF4α may bind to RARE sequences in the promoter of the genes such as CYP26A1 and RARß, activating these genes in the presence of RA. Thus, RA could act as either an antagonist towards HNF4α in genes lacking RAREs, or as an agonist for RARE-containing genes. Overall, RA may interfere with the function of HNF4α and deregulate HNF4α targets genes, including the genes important for lipid and glucose metabolism.


Subject(s)
Hepatocyte Nuclear Factor 4 , Hepatocytes , Receptors, Retinoic Acid , Tretinoin , Animals , Humans , Mice , Glucose , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/metabolism , Lipids , Retinoic Acid Receptor alpha/genetics , Tretinoin/pharmacology , Receptors, Retinoic Acid/genetics
13.
Dev Dyn ; 252(9): 1162-1179, 2023 09.
Article in English | MEDLINE | ID: mdl-37222488

ABSTRACT

BACKGROUND: Betaglycan, also known as the TGFß type III receptor (Tgfbr3), is a co-receptor that modulates TGFß family signaling. Tgfbr3 is upregulated during C2C12 myoblast differentiation and expressed in mouse embryos myocytes. RESULTS: To investigate tgfbr3 transcriptional regulation during zebrafish embryonic myogenesis, we cloned a 3.2 kb promoter fragment that drives reporter transcription during C2C12 myoblasts differentiation and in the Tg(tgfbr3:mCherry) transgenic zebrafish. We detect tgfbr3 protein and mCherry expression in the adaxial cells concomitantly with the onset of their radial migration to become slow-twitch muscle fibers in the Tg(tgfbr3:mCherry). Remarkably, this expression displays a measurable antero-posterior somitic gradient expression. CONCLUSIONS: tgfbr3 is transcriptionally regulated during somitic muscle development in zebrafish with an antero-posterior gradient expression that preferentially marks the adaxial cells and their descendants.


Subject(s)
Somites , Zebrafish , Animals , Mice , Somites/metabolism , Proteoglycans/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Transforming Growth Factor beta/metabolism , Muscle Development/physiology
14.
Curr Mol Med ; 23(3): 266-274, 2023.
Article in English | MEDLINE | ID: mdl-35040412

ABSTRACT

BACKGROUND: DNA methylation was considered as prognostic information in some hematological malignancies. Previous studies have reported the in vitro and in vivo biology role of mesenchymal stem cells (MSCs) on leukemic cells. The aim of this study was to investigate the effect of MSCs on the promoter methylation status of hTERT as a catalytic subunit of telomerase enzyme. METHODS: In the experimental study, the Molt-4 leukemic cells were co-cultured with MSCs for 7 days. At the end of the co-culture period, the Molt-4 cells were collected, DNA and protein were extracted. Then methylation specific-PCR and western blotting were done for evaluating the hTERT gene promoter methylation status and cyclin D1 and hTERT protein expression, respectively. In the following, the flow cytometry was done for cell cycle distribution assay. RESULTS: It was found that MSCs resulted in a significant decrease in the cyclin D1 and hTERT protein expression levels. Also, MSCs caused changes in the methylation status of the CpG islands in the hTERT gene promoter region. The following results showed that MSCs caused a significant increase in the number of cells at G0/G1 phase and arrest the G0/G1 phase as well as decrease in the cell proliferation of Molt-4 cells. CONCLUSION: It is concluded that co-culture of MSCs with Molt-4 cells could be involved in changing the methylation status of hTERT gene promoter, cell cycle and hTERT protein expression; it could be potentially beneficial for further investigations regarding the cell transplantation and cell-based therapy.


Subject(s)
Leukemia , Mesenchymal Stem Cells , Humans , CpG Islands/genetics , Cyclin D1/genetics , DNA Methylation , Promoter Regions, Genetic , Adipose Tissue
15.
Methods Mol Biol ; 2582: 103-126, 2023.
Article in English | MEDLINE | ID: mdl-36370347

ABSTRACT

Cell communication network factor 2 (CCN2), also known as connective tissue growth factor (CTGF), is protein inducible in response to TGFß/Smad signal or the transcriptional activity of matrix metalloproteinase 3 (MMP3). We discovered that MMP3 in exosomes is transferable to recipient cells and then translocates into cell nuclei to transactivate the CCN2/CTGF gene. Exosomes and liposomes enable molecular transfection to recipient cells in vitro and in vivo. These small vesicles are surrounded by lipid membranes and carry proteins, RNA, DNA, and small chemicals. Here we define the exosome-based transfection as "exofection." In addition, spinfection increases the efficiencies of transfection, exofection, and viral infection, thus being compatible with various molecular transfer protocols. Here, we provide protocols, tips, and practical examples of transfection, spinfection, exofection, fluorescence microscopy, and luciferase assays to analyze the CCNs gene expression mechanisms.


Subject(s)
Matrix Metalloproteinase 3 , Signal Transduction , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 3/metabolism , Signal Transduction/physiology , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Transfection , Luciferases/genetics , Luciferases/metabolism , Transforming Growth Factor beta/genetics
16.
Expert Opin Drug Deliv ; 19(11): 1397-1415, 2022 11.
Article in English | MEDLINE | ID: mdl-36103209

ABSTRACT

INTRODUCTION: Glioblastoma multiforme (GBM) is the deadliest type of brain cancer with poor response to the available therapies, mainly due to intrinsic resistance mechanisms. Chemotherapy is based on alkylating agents, but DNA-repair mechanisms can revert this cytotoxic effect. O6-methylguanine-DNA methyltransferase (MGMT) protein is the primary mechanism for GBM resistance. Therefore, different strategies to suppress its activity have been explored. However, their clinical use has been hindered due to the high toxicity of MGMT inhibitors verified in clinical trials. AREAS COVERED: This review article aims to provide the current progress in the development of novel drug delivery systems (DDS) to overcome this resistance. Here, we also review the current knowledge on MGMT-mediated resistance and the clinical outcomes and potential risks of using MGMT inhibitors. EXPERT OPINION: To overcome therapeutic limitations, nano-based approaches have been proposed as a suitable solution to improve drug accumulation in the brain tumor tissue and decrease systemic toxicity. DDS to overcome MGMT-mediated resistance in GBM have been mostly developed to deliver MGMT inhibitors and for gene therapy to modulate MGMT gene expression.


Subject(s)
Brain Neoplasms , Glioblastoma , Nanoparticles , Humans , Glioblastoma/drug therapy , O(6)-Methylguanine-DNA Methyltransferase/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , O(6)-Methylguanine-DNA Methyltransferase/therapeutic use , Brain Neoplasms/drug therapy , Drug Delivery Systems , Antineoplastic Agents, Alkylating , Drug Resistance, Neoplasm , DNA Modification Methylases/genetics , DNA Modification Methylases/therapeutic use , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/therapeutic use , DNA Repair Enzymes/genetics , DNA Repair Enzymes/therapeutic use
17.
Planta ; 256(4): 69, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36066773

ABSTRACT

MAIN CONCLUSION: The pUceS8.3 is a constitutive gene promoter with potential for ectopic and strong genes overexpression or active biomolecules in plant tissues attacked by pests, including nematode-induced giant cells or galls. Soybean (Glycine max) is one of the most important agricultural commodities worldwide and a major protein and oil source. Herein, we identified the soybean ubiquitin-conjugating (E2) enzyme gene (GmUBC4; Glyma.18G216000), which is significantly upregulated in response to Anticarsia gemmatalis attack and Meloidogyne incognita-induced galls during plant parasitism by plant nematode. The GmUBC4 promoter sequence and its different modules were functionally characterized in silico and in planta using transgenic Arabidopsis thaliana and G. max lines. Its full-length transcriptional regulatory region (promoter and 5´-UTR sequences, named pUceS8.3 promoter) was able to drive higher levels of uidA (ß-glucuronidase) gene expression in different tissues of transgenic A. thaliana lines compared to its three shortened modules and the p35SdAMV promoter. Notably, higher ß-glucuronidase (GUS) enzymatic activity was shown in M. incognita-induced giant cells when the full pUceS8.3 promoter drove the expression of this reporter gene. Furthermore, nematode-specific dsRNA molecules were successfully overexpressed under the control of the pUceS8.3 promoter in transgenic soybean lines. The RNAi gene construct used here was designed to post-transcriptionally downregulate the previously characterized pre-mRNA splicing factor genes from Heterodera glycines and M. incognita. A total of six transgenic soybean lines containing RNAi gene construct were selected for molecular characterization after infection with M. incognita pre-parasitic second-stage (ppJ2) nematodes. A strong reduction in the egg number produced by M. incognita after parasitism was observed in those transgenic soybean lines, ranging from 71 to 92% compared to wild-type control plants. The present data demonstrated that pUceS8.3 is a gene promoter capable of effectively driving dsRNA overexpression in nematode-induced giant cells of transgenic soybean lines and can be successfully applied as an important biotechnological asset to generate transgenic crops with improved resistance to root-knot nematodes as well as other pests.


Subject(s)
Arabidopsis , Tylenchoidea , Animals , Arabidopsis/genetics , Glucuronidase/genetics , Plants, Genetically Modified/genetics , RNA, Double-Stranded/genetics , Glycine max/genetics , Tylenchoidea/genetics
18.
Mol Carcinog ; 61(11): 1002-1015, 2022 11.
Article in English | MEDLINE | ID: mdl-35975911

ABSTRACT

Parabens are a group of alkyl esters of p-hydroxybenzoic acid added to consumer products to prevent the growth of harmful bacteria and molds. Parabens are hypothesized to increase the risk of breast cancer (BC); however, no study has examined the interactions between parabens, global DNA methylation (DNAm), and BC risk. We examined the modifying effects of DNAm on the associations between parabens and BC, and whether parabens were associated with BC defined by tumor promoter methylation status. Participants included 708 cases and 598 controls from the Long Island Breast Cancer Study Project. Methylparaben (MPB), propylparaben, and butylparaben levels were measured in spot urine samples. Global DNAm was measured by analysis of long interspersed elementes-1 (LINE-1) and the luminometric methylation assay (LUMA). The promoter methylation status of 13 genes was measured in tumor samples from 509 cases. We used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between parabens and BC stratified by LINE-1/LUMA, and between parabens and gene-specific promoter methylation-defined BC. Outcome heterogeneity was evaluated using ratios of ORs (RORs). We assessed the joint effects of the multiple parabens using quantile g-computation. The highest versus lowest tertile of MPB and a one-quantile increase in all parabens were associated with ORs of 1.46 (95% CI = 0.96-2.23) and 1.32 (95% CI = 1.02-1.71), respectively, among women with hypomethylated LINE-1. A one-ln unit increase in MPB was associated with a 25% increase in the odds of hypomethylated (vs. hypermethylated) CCND2 promoter-defined BC (ROR = 1.25, 95% CI = 1.06-1.48), and a one-quantile increase in all parabens was associated with a 55% increase in the odds of hypomethylated (vs. hypermethylated) CCND2 promoter-defined BC (ROR = 1.55, 95% CI = 1.04-2.32). Exposure to parabens may increase the risk of BC among women with hypomethylated global DNAm and may increase the risk of tumors with gene-specific hypomethylated promoter regions.


Subject(s)
Breast Neoplasms , DNA Methylation , Female , Humans , Breast Neoplasms/chemically induced , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Carcinogens/toxicity , Electrolytes , Logistic Models , Parabens/toxicity , Promoter Regions, Genetic
19.
J Int Med Res ; 50(7): 3000605221105344, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35808817

ABSTRACT

OBJECTIVE: Chromodomain helicase DNA-binding 5 (CHD5) acts as a tumor suppressor gene in some cancers. CHD5 expression levels may affect an individual's susceptibility to hepatocellular carcinoma (HCC). This study aimed to evaluate the methylation pattern of the CHD5 promoter region and the gene's corresponding mRNA expression in HCC patients compared with healthy individuals. METHODS: In this case-control study, CHD5 mRNA gene expression levels and DNA methylation patterns were analyzed in 81 HCC patients and 90 healthy individuals by quantitative reverse transcription polymerase chain reaction and methylation-specific polymerase chain reaction, respectively. RESULTS: The CHD5 gene was hypermethylated in 61.8% of the HCC patients and 54.4% of the controls, and this difference was statistically significant. The CHD5 mRNA expression levels were significantly lower in the HCC patient group. CONCLUSIONS: Hypermethylation of the CHD5 promoter region may significantly lower the expression of this gene, affecting the incidence and severity of HCC. The methylation status of CHD5 can also be further studied as a prognostic factor in HCC.


Subject(s)
Carcinoma, Hepatocellular , DNA Methylation , Liver Neoplasms , RNA, Messenger , Carcinoma, Hepatocellular/genetics , Case-Control Studies , DNA/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Nerve Tissue Proteins/genetics , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
BMC Genomics ; 23(1): 516, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35842574

ABSTRACT

BACKGROUND: Plant species from Rosaceae family are economically important. One of the major environmental factors impacting those species is cold stress. Although several Rosaceae plant genomes have recently been sequenced, there have been very few research conducted on cold upregulated genes and their promoter binding sites. In this study, we used computational approaches to identify and analyse potential cold stress response genes across ten Rosaceae family members. RESULTS: Cold stress upregulated gene data from apple and strawberry were used to identify syntelogs in other Rosaceae species. Gene duplication analysis was carried out to better understand the distribution of these syntelog genes in different Rosaceae members. A total of 11,145 popular abiotic stress transcription factor-binding sites were identified in the upstream region of these potential cold-responsive genes, which were subsequently categorised into distinct transcription factor (TF) classes. MYB classes of transcription factor binding site (TFBS) were abundant, followed by bHLH, WRKY, and AP2/ERF. TFBS patterns in the promoter regions were compared among these species and gene families, found to be quite different even amongst functionally related syntelogs. A case study on important cold stress responsive transcription factor family, AP2/ERF showed less conservation in TFBS patterns in the promoter regions. This indicates that syntelogs from the same group may be comparable at the gene level but not at the level of cis-regulatory elements. Therefore, for such genes from the same family, different repertoire of TFs could be recruited for regulation and expression. Duplication events must have played a significant role in the similarity of TFBS patterns amongst few syntelogs of closely related species. CONCLUSIONS: Our study overall suggests that, despite being from the same gene family, different combinations of TFs may play a role in their regulation and expression. The findings of this study will provide information about potential genes involved in the cold stress response, which will aid future functional research of these gene families involved in many important biological processes.


Subject(s)
Cold-Shock Response , Rosaceae , Cold-Shock Response/genetics , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Rosaceae/genetics , Rosaceae/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...