Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.643
Filter
1.
Exp Gerontol ; : 112503, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955238

ABSTRACT

OBJECTIVE: Observational studies have shown that increased serum urate is associated with a lower risk of neurodegenerative diseases (NDs), but the causality remains unclear. We employed a two-sample Mendelian randomization (MR) approach to assess the causal relationship between serum urate and four common subtypes of NDs, including Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). METHODS: Serum urate data came from the CKDGen Consortium. GWAS data for PD, AD, ALS, and MS were obtained from four databases in the primary analysis and then acquired statistics from the FinnGen consortium for replication and meta-analysis. Inverse variance weighted (IVW), weighted median (WM), and MR-Egger regression methods were applied in the MR analyses. Pleiotropic effects, heterogeneity, and leave-one-out analyses were evaluated to validate the results. RESULTS: There was no evidence for the effect of serum urate on PD (OR: 1.00, 95 % CI: 0.90-1.11, P = 0.97), AD (OR: 1.02, 95 % CI: 1.00-1.04, P = 0.06), ALS (OR: 1.05, 95 % CI: 0.97-1.13, P = 0.22), and MS (OR: 1.01, 95 % CI: 0.89-1.14, P = 0.90) risk when combined with the FinnGen consortium, neither was any evidence of pleiotropy detected between the instrumental variables (IVs). CONCLUSION: The MR analysis suggested that serum urate may not be causally associated with a risk of PD, AD, ALS, and MS.

2.
Front Oncol ; 14: 1373380, 2024.
Article in English | MEDLINE | ID: mdl-38957317

ABSTRACT

Background: Lung cancer is the deadliest and most prevalent malignancy worldwide. While smoking is an established cause, evidence to identify other causal factors remains lacking. Current research indicates chronic inflammation is involved in tumorigenesis and cancer development, though the specific mechanisms underlying the role of inflammatory cytokines in lung cancer pathogenesis remain unclear. This study implemented Mendelian randomization (MR) analysis to investigate the causal effects of circulating cytokines on lung cancer development. Methods: We performed a two-sample MR analysis in Europeans utilizing publicly available genome-wide association study summary statistics. Single nucleotide polymorphisms significantly associated with cytokine were selected as genetic instrumental variables. Results: Genetically predicted levels of the chemokine interleukin-18 (IL-18) (OR = 0.942, 95% CI: 0.897-0.990, P = 0.018) exerted significant negative causal effects on overall lung cancer risk in this analysis. Examining specific histologic subtypes revealed further evidence of genetic associations. Stem cell factor (SCF) (OR = 1.150, 95% CI: 1.021-1.296, P = 0.021) and interleukin-1beta (IL-1ß) (OR = 1.152, 95% CI: 1.003-1.325, P = 0.046) were positively associated with lung adenocarcinoma risk, though no inflammatory factors showed causal links to squamous cell lung cancer risk. Stratified by smoking status, interferon gamma-induced protein 10 (IP-10) (OR = 0.861, 95% CI: 0.781-0.950, P = 0.003) was inversely associated while IL-1ß (OR = 1.190, 95% CI: 1.023-1.384, P = 0.024) was positively associated with lung cancer risk in ever smokers. Among never smokers, a positive association was observed between lung cancer risk and SCF (OR = 1.474, 95% CI: 1.105-1.964, P = 0.008). Importantly, these causal inferences remained robust across multiple complementary MR approaches, including MR-Egger, weighted median, weighted mode and simple mode regressions. Sensitivity analyses also excluded potential bias stemming from pleiotropy. Conclusion: This MR study found preliminary evidence that genetically predicted levels of four inflammatory cytokines-SCF, IL-1ß, IL-18, and IP-10-may causally influence lung cancer risk in an overall and subtype-specific manner, as well as stratified by smoking status. Identifying these cytokine pathways that may promote lung carcinogenesis represents potential new targets for the prevention, early detection, and treatment of this deadly malignancy.

3.
FASEB J ; 38(14): e23821, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39018091

ABSTRACT

Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare inflammatory disease categorized as antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. The majority of patients are ANCA-positive, predominantly against myeloperoxidase (MPO). Previous studies have predominantly concentrated on the association between EGPA and neutrophils, but recent research has emphasized the role of lymphocytes in the development of EGPA. The objective of our research was to examine the causal association between immune cells and MPO + ANCA EGPA. A two-sample bidirectional Mendelian randomization (MR) analysis was performed, which included 159 MPO + ANCA EGPA cases and 6688 controls and utilized Genome-Wind Associaton Studies (GWAS) summary statistics of immune traits from approximately 3757 individuals, encompassing around 22 million single nucleotide polymorphisms (SNPs). Our findings revealed that 23 immunophenotypes were associated with MPO + ANCA EGPA. Furthermore, the reverse MR analysis showed that MPO + ANCA EGPA had significant causal effects on three immunophenotypes within the Treg panel. By integrating existing research, our study unveiled the contributions of Tregs, B cells, and monocytes to the development of EGPA. Subgroup analysis specifically examined the roles of lymphocyte subtypes, cytokines, and their surface molecules in the pathogenic mechanisms of the disease. This comprehensive approach provides a novel perspective on the biological mechanisms and early intervention strategies for MPO + ANCA EGPA by focusing on immune cells.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Antibodies, Antineutrophil Cytoplasmic , Mendelian Randomization Analysis , Peroxidase , Polymorphism, Single Nucleotide , Humans , Peroxidase/genetics , Peroxidase/immunology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/genetics , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/immunology , Antibodies, Antineutrophil Cytoplasmic/immunology , Genome-Wide Association Study , T-Lymphocytes, Regulatory/immunology , B-Lymphocytes/immunology
4.
Alzheimers Dement ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023044

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is a devastating neurological disease with complex genetic etiology. Yet most known loci have only identified from the late-onset type AD in populations of European ancestry. METHODS: We performed a two-stage genome-wide association study (GWAS) of AD totaling 6878 Chinese and 63,926 European individuals. RESULTS: In addition to the apolipoprotein E (APOE) locus, our GWAS of two independent Chinese samples uncovered three novel AD susceptibility loci (KIAA2013, SLC52A3, and TCN2) and a novel ancestry-specific variant within EGFR (rs1815157). More replicated variants were observed in the Chinese (31%) than in the European samples (15%). In combining genome-wide associations and functional annotations, EGFR and TCN2 were prioritized as two of the most biologically significant genes. Phenome-wide Mendelian randomization suggests that high mean corpuscular hemoglobin concentration might protect against AD. DISCUSSION: The current study reveals novel AD susceptibility loci, emphasizes the importance of diverse populations in AD genetic research, and advances our understanding of disease etiology. HIGHLIGHTS: Loci KIAA2013, SLC52A3, and TCN2 were associated with Alzheimer's disease (AD) in Chinese populations. rs1815157 within the EGFR locus was associated with AD in Chinese populations. The genetic architecture of AD varied between Chinese and European populations. EGFR and TCN2 were prioritized as two of the most biologically significant genes. High mean corpuscular hemoglobin concentrations might have protective effects against AD.

5.
Transfusion ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966903

ABSTRACT

BACKGROUND: Red cell alloimmunization after exposure to donor red cells is a very common complication of transfusion for patients with sickle cell disease (SCD), resulting frequently in accelerated donor red blood cell destruction. Patients show substantial differences in their predisposition to alloimmunization, and genetic variability is one proposed component. Although several genetic association studies have been conducted for alloimmunization, the results have been inconsistent, and the genetic determinants of alloimmunization remain largely unknown. STUDY DESIGN AND METHODS: We performed a genome-wide association study (GWAS) in 236 African American (AA) SCD patients from the Outcome Modifying Genes in Sickle Cell Disease (OMG-SCD) cohort, which is part of Trans-Omics for Precision Medicine (TOPMed), with whole-genome sequencing data available. We also performed sensitivity analyses adjusting for different sets of covariates and applied different sample grouping strategies based on the number of alloantibodies patients developed. RESULTS: We identified one genome-wide significant locus on chr12 (p = 3.1e-9) with no evidence of genomic inflation (lambda = 1.003). Further leveraging QTL evidence from GTEx whole blood and/or Jackson Heart Study PBMC RNA-Seq data, we identified a number of potential genes, such as ARHGAP9, STAT6, and ATP23, that may be driving the association signal. We also discovered some suggestive loci using different analysis strategies. DISCUSSION: We call for the community to collect additional alloantibody information within SCD cohorts to further the understanding of the genetic basis of alloimmunization in order to improve transfusion outcomes.

6.
Front Genet ; 15: 1381303, 2024.
Article in English | MEDLINE | ID: mdl-39005629

ABSTRACT

Background: Former research has emphasized a correlation between lung cancer (LC) and sepsis, but the causative link remains unclear. Method: This study used univariate Mendelian Randomization (MR) to explore the causal relationship between LC, its subtypes, and sepsis. Linkage Disequilibrium Score (LDSC) regression was used to calculate genetic correlations. Multivariate MR was applied to investigate the role of seven confounding factors. The primary method utilized was inverse-variance-weighted (IVW), supplemented by sensitivity analyses to assess directionality, heterogeneity, and result robustness. Results: LDSC analysis revealed a significant genetic correlation between LC and sepsis (genetic correlation = 0.325, p = 0.014). Following false discovery rate (FDR) correction, strong evidence suggested that genetically predicted LC (OR = 1.172, 95% CI 1.083-1.269, p = 8.29 × 10-5, P fdr = 2.49 × 10-4), squamous cell lung carcinoma (OR = 1.098, 95% CI 1.021-1.181, p = 0.012, P fdr = 0.012), and lung adenocarcinoma (OR = 1.098, 95% CI 1.024-1.178, p = 0.009, P fdr = 0.012) are linked to an increased incidence of sepsis. Suggestive evidence was also found for small cell lung carcinoma (Wald ratio: OR = 1.156, 95% CI 1.047-1.277, p = 0.004) in relation to sepsis. The multivariate MR suggested that the partial impact of all LC subtypes on sepsis might be mediated through body mass index. Reverse analysis did not find a causal relationship (p > 0.05 and P fdr > 0.05). Conclusion: The study suggests a causative link between LC and increased sepsis risk, underscoring the need for integrated sepsis management in LC patients.

7.
Biochim Biophys Acta Mol Basis Dis ; : 167344, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004380

ABSTRACT

The complex pathology of mild traumatic brain injury (mTBI) is a main contributor to the difficulties in achieving a successful therapeutic regimen. Thyroxine (T4) administration has been shown to prevent the cognitive impairments induced by mTBI in mice but the mechanism is poorly understood. To understand the underlying mechanism, we carried out a single cell transcriptomic study to investigate the spatiotemporal effects of T4 on individual cell types in the hippocampus and frontal cortex at three post-injury stages in a mouse model of mTBI. We found that T4 treatment altered the proportions and transcriptomes of numerous cell types across tissues and timepoints, particularly oligodendrocytes, astrocytes, and microglia, which are crucial for injury repair. T4 also reversed the expression of mTBI-affected genes such as Ttr, mt-Rnr2, Ggn12, Malat1, Gnaq, and Myo3a, as well as numerous pathways such as cell/energy/iron metabolism, immune response, nervous system, and cytoskeleton-related pathways. Cell-type specific network modeling revealed that T4 mitigated select mTBI-perturbed dynamic shifts in subnetworks related to cell cycle, stress response, and RNA processing in oligodendrocytes. Cross cell-type ligand-receptor networks revealed the roles of App, Hmgb1, Fn1, and Tnf in mTBI, with the latter two ligands having been previously identified as TBI network hubs. mTBI and/or T4 signature genes were enriched for human genome-wide association study (GWAS) candidate genes for cognitive, psychiatric and neurodegenerative disorders related to mTBI. Our systems-level single cell analysis elucidated the temporal and spatial dynamic reprogramming of cell-type specific genes, pathways, and networks, as well as cell-cell communications as the mechanisms through which T4 mitigates cognitive dysfunction induced by mTBI.

8.
J Neurooncol ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002029

ABSTRACT

PURPOSE: Although meningiomas are the most common primary intracranial tumors, their genetic etiologies have not been fully elucidated. To date, only two genome-wide association studies (GWASs) have focused on European ancestries, despite ethnic differences in the incidence of meningiomas. The aim of this study was to conduct the first GWAS of Japanese patients with meningiomas to identify the SNPs associated with meningioma susceptibility. METHODS: In this multicenter prospective case-control study, we studied 401 Japanese patients with meningioma admitted in five institutions in Japan, and 50,876 control participants of Japanese ancestry enrolled in Biobank Japan. RESULTS: The quality control process yielded 536,319 variants and imputation resulted in 8,224,735 variants on the autosomes and 224,820 variants on the X chromosomes. This GWAS eventually revealed no genetic variants with genome-wide significance (P < 5 × 10 - 8) and observed no significant association in the previously reported risk variants rs11012732 and rs2686876 due to low minor allele frequency in the Japanese population. CONCLUSION: This is the first GWAS of meningiomas in East Asian populations and is expected to contribute to the development of GWAS research for meningiomas.

9.
J Genet Genomics ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002897

ABSTRACT

Facial morphology, a complex trait influenced by genetics, holds great significance in evolutionary research. However, due to limited fossil evidence, the facial characteristics of Neanderthals and Denisovans have remained largely unknown. In this study, we conducted a large-scale multi-ethnic meta-analysis of Genome-Wide Association Study (GWAS), including 9674 East Asians and 10,115 Europeans, quantitatively assessing 78 facial traits using 3D facial images. We identified 71 genomic loci associated with facial features, including 21 novel loci. We developed a facial polygenic score (FPS) that enables the prediction of facial features based on genetic information. Interestingly, the distribution of FPSs among populations from diverse continental groups exhibited significant correlations with observed facial features. Furthermore, we applied the FPS to predict the facial traits of seven Neanderthals and one Denisovan using ancient DNA, and aligned predictions with the fossil records. Our results suggested that Neanderthals and Denisovans likely shared similar facial features, such as a wider but shorter nose and a wider endocanthion distance. The decreased mouth width was characterized specifically in Denisovan. The integration of genomic data and facial trait analysis provides valuable insights into the evolutionary history and adaptive changes in human facial morphology.

10.
J Transl Med ; 22(1): 650, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997780

ABSTRACT

BACKGROUND: Although the inherited risk factors associated with fatty liver disease are well understood, little is known about the genetic background of metabolic dysfunction-associated steatotic liver disease (MASLD) and its related health impacts. Compared to non-alcoholic fatty liver disease (NAFLD), MASLD presents significantly distinct diagnostic criteria, and epidemiological and clinical features, but the related genetic variants are yet to be investigated. Therefore, we conducted this study to assess the genetic background of MASLD and interactions between MASLD-related genetic variants and metabolism-related outcomes. METHODS: Participants from the UK Biobank were grouped into discovery and replication cohorts for an MASLD genome-wide association study (GWAS), and base and target cohorts for polygenic risk score (PRS) analysis. Autosomal genetic variants associated with NAFLD were compared with the MASLD GWAS results. Kaplan-Meier and Cox regression analyses were used to assess associations between MASLD and metabolism-related outcomes. RESULTS: Sixteen single-nucleotide polymorphisms (SNPs) were identified at genome-wide significance levels for MASLD and duplicated in the replication cohort. Differences were found after comparing these SNPs with the results of NAFLD-related genetic variants. MASLD cases with high PRS had a multivariate-adjusted hazard ratio of 3.15 (95% confidence interval, 2.54-3.90) for severe liver disease (SLD), and 2.81 (2.60-3.03) for type 2 diabetes mellitus. The high PRS amplified the impact of MASLD on SLD and extrahepatic outcomes. CONCLUSIONS: High PRS of MASLD GWAS amplified the impact of MASLD on SLD and metabolism-related outcomes, thereby refining the process of identification of individuals at high risk of MASLD. Supplementation of this process with relevant genetic backgrounds may lead to more effective MASLD prevention and management.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Humans , Polymorphism, Single Nucleotide/genetics , Male , Female , Multifactorial Inheritance/genetics , Risk Factors , Middle Aged , Fatty Liver/genetics , Fatty Liver/complications , Non-alcoholic Fatty Liver Disease/genetics , Metabolic Diseases/genetics , Metabolic Diseases/complications , Cohort Studies , Kaplan-Meier Estimate , Aged , Proportional Hazards Models , Genetic Risk Score
11.
Animals (Basel) ; 14(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998005

ABSTRACT

Egg production traits are crucial in the poultry industry, including age at first egg (AFE), egg number (EN) at different stages, and laying rate (LR). Ducks exhibit higher egg production capacity than other poultry species, but the genetic mechanisms are still poorly understood. In this study, we collected egg-laying data of 618 Peking ducks from 22 to 66 weeks of age and genotyped them by whole-genome resequencing. Genetic parameters were calculated based on SNPs, and a genome-wide association study (GWAS) was performed for these traits. The SNP-based heritability of egg production traits ranged from 0.09 to 0.54. The GWAS identified nine significant SNP loci associated with AFE and egg number from 22 to 66 weeks. These loci showed that the corresponding alleles were positively correlated with a decrease in the traits. Moreover, three potential candidate genes (ENSAPLG00020011445, ENSAPLG00020012564, TMEM260) were identified. Functional enrichment analyses suggest that specific immune responses may have a critical impact on egg production capacity by influencing ovarian function and oocyte maturation processes. In conclusion, this study deepens the understanding of egg-laying genetics in Peking duck and provides a sound theoretical basis for future genetic improvement and genomic selection strategies in poultry.

12.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000095

ABSTRACT

Esotropia and exotropia in the entity of comitant strabismus are multifactorial diseases with both genetic and environmental backgrounds. Idiopathic superior oblique muscle palsy, as the predominant entity of non-comitant (paralytic) strabismus, also has a genetic background, as evidenced by varying degrees of muscle hypoplasia. A genome-wide association study (GWAS) was conducted of 711 Japanese patients with esotropia (n= 253), exotropia (n = 356), and idiopathic superior oblique muscle palsy (n = 102). The genotypes of single nucleotide polymorphisms (SNPs) were determined by Infinium Asian Screening Array. Three control cohorts from the Japanese population were used: two cohorts from BioBank Japan (BBJ) and the Nagahama Cohort. BBJ (180K) was genotyped by a different array, Illumina Infinium OmniExpressExome or HumanOmniExpress, while BBJ (ASA) and the Nagahama Cohort were genotyped by the same Asian array. After quality control of SNPs and individuals, common SNPs between the case cohort and the control cohort were chosen in the condition of genotyping by different arrays, while all SNPs genotyped by the same array were used for SNP imputation. The SNPs imputed with R-square values ≥ 0.3 were used to compare the case cohort of each entity or the combined entity with the control cohort. In comparison with BBJ (180K), the esotropia group and the exotropia group showed CDCA7 and HLA-F, respectively, as candidate genes at a significant level of p < 5 × 10-8, while the idiopathic superior oblique muscle palsy group showed DAB1 as a candidate gene which is involved in neuronal migration. DAB1 was also detected as a candidate in comparison with BBJ (ASA) and the Nagahama Cohort at a weak level of significance of p < 1 × 10-6. In comparison with BBJ (180K), RARB (retinoic acid receptor-ß) was detected as a candidate at a significant level of p < 5 × 10-8 in the combined group of esotropia, exotropia, and idiopathic superior oblique muscle palsy. In conclusion, a series of GWASs with three different control cohorts would be an effective method with which to search for candidate genes for multifactorial diseases such as strabismus.


Subject(s)
Esotropia , Exotropia , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Case-Control Studies , Cohort Studies , East Asian People/genetics , Esotropia/genetics , Exotropia/genetics , Genetic Predisposition to Disease , Genotype , Japan
13.
Am J Obstet Gynecol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969199

ABSTRACT

BACKGROUND: While the phenotypic association between anti-Müllerian hormone (AMH) and age at menopause has been widely studied, the role of AMH in predicting the age at menopause is currently controversial, and the genetic architecture or causal relationships underlying these two traits is not well understood. AIM: We aimed to explore the shared genetic architecture between AMH and age at menopause, to identify shared pleiotropic loci and genes, and to investigate causal association and potential causal mediators. STUDY DESIGN: Using summary statistics from publicly available genome-wide association studies on AMH (N=7,049) and age at menopause (N=201,323) in Europeans, we investigated the global genetic architecture between AMH and age at menopause through linkage disequilibrium score regression. We employed pleiotropic analysis under composite null hypothesis (PLACO), Functional Mapping and Annotation of Genetic Associations (FUMA), Multimarker analysis of GenoMic annotation (MAGMA), and colocalization analysis to identify loci and genes with pleiotropic effects. Tissue enrichment analysis based on GTEx data was conducted using the Linkage Disequilibrium Score for the specific expression of genes analysis (LDSC-SEG). Functional genes that were shared were additionally identified through summary data-based Mendelian randomization (SMR). The relationship between AMH and age at menopause was examined through two-sample Mendelian randomization (MR), and potential mediators were further explored using colocalization and metabolite-mediated analysis. RESULTS: A positive genetic association (correlation coefficient = 0.88, P = 1.33 × 10-5) was observed between AMH and age at menopause. By using PLACO and FUMA, 42 significant pleiotropic loci were identified that were associated with AMH and age at menopause, and ten of these (rs10734411, rs61913600, rs2277339, rs75770066, rs28416520, rs9796, rs11668344, rs403727, rs6011452, and rs62237617) had colocalized loci. Additionally, 245 significant pleiotropic genes were identified by MAGMA. Genetic associations between AMH and age at menopause were markedly concentrated in various tissues including whole blood, brain, heart, liver, muscle, pancreas, and kidneys. Further, SMR analysis revealed nine genes that may have a causative effect on both AMH and age at menopause. A potential causal effect of age at menopause on AMH was suggested by two-sample MR analysis, with very-low-density lipoprotein identified as a potential mediator. CONCLUSIONS: Our study revealed a shared genetic architecture between AMH and age at menopause, providing a basis for experimental investigations and individual therapies to enhance reproductive outcomes. Furthermore, our findings emphasized that relying solely on AMH is not sufficient for accurately predicting the age at menopause, and a combination of other factors needs to be considered. Exploring new therapeutics aimed at delaying at the onset of menopause holds promise, particularly when targeting shared genes based on their shared genetic architecture.

14.
EBioMedicine ; 106: 105232, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991381

ABSTRACT

BACKGROUND: Abdominal obesity increases the risk for non-alcoholic fatty liver disease (NAFLD), now known as metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: To elucidate the directional cell-type level biological mechanisms underlying the association between abdominal obesity and MASLD, we integrated adipose and liver single nucleus RNA-sequencing and bulk cis-expression quantitative trait locus (eQTL) data with the UK Biobank genome-wide association study (GWAS) data using colocalization. Then we used colocalized cis-eQTL variants as instrumental variables in Mendelian randomization (MR) analyses, followed by functional validation experiments on the target genes of the cis-eQTL variants. FINDINGS: We identified 17 colocalized abdominal obesity GWAS variants, regulating 17 adipose cell-type marker genes. Incorporating these 17 variants into MR discovers a putative tissue-of-origin, cell-type-aware causal effect of abdominal obesity on MASLD consistently with multiple MR methods without significant evidence for pleiotropy or heterogeneity. Single cell data confirm the adipocyte-enriched mean expression of the 17 genes. Our cellular experiments across human adipogenesis identify risk variant -specific epigenetic and transcriptional mechanisms. Knocking down two of the 17 genes, PPP2R5A and SH3PXD2B, shows a marked decrease in adipocyte lipidation and significantly alters adipocyte function and adipogenesis regulator genes, including DGAT2, LPL, ADIPOQ, PPARG, and SREBF1. Furthermore, the 17 genes capture a characteristic MASLD expression signature in subcutaneous adipose tissue. INTERPRETATION: Overall, we discover a significant cell-type level effect of abdominal obesity on MASLD and trace its biological effect to adipogenesis. FUNDING: NIH grants R01HG010505, R01DK132775, and R01HL170604; the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 802825), Academy of Finland (Grants Nos. 333021), the Finnish Foundation for Cardiovascular Research the Sigrid Jusélius Foundation and the Jane and Aatos Erkko Foundation; American Association for the Study of Liver Diseases (AASLD) Advanced Transplant Hepatology award and NIH/NIDDK (P30DK41301) Pilot and Feasibility award; NIH/NIEHS F32 award (F32ES034668); Finnish Diabetes Research Foundation, Kuopio University Hospital Project grant (EVO/VTR grants 2005-2021), the Academy of Finland grant (Contract no. 138006); Academy of Finland (Grant Nos 335443, 314383, 272376 and 266286), Sigrid Jusélius Foundation, Finnish Medical Foundation, Finnish Diabetes Research Foundation, Novo Nordisk Foundation (#NNF20OC0060547, NNF17OC0027232, NNF10OC1013354) and Government Research Funds to Helsinki University Hospital; Orion Research Foundation, Maud Kuistila Foundation, Finish Medical Foundation, and University of Helsinki.

15.
Gen Psychiatr ; 37(4): e101412, 2024.
Article in English | MEDLINE | ID: mdl-38975363

ABSTRACT

Background: Observational studies highlight the association between gut microbiota (GM) composition and depression; however, evidence for the causal relationship between GM and specific depressive symptoms remains lacking. Aims: We aimed to evaluate the causal relationship between GM and specific depressive symptoms as well as the mediating role of body mass index (BMI). Methods: We performed a two-sample Mendelian randomisation (MR) analysis using genetic variants associated with GM and specific depressive symptoms from genome-wide association studies. The mediating role of BMI was subsequently explored using mediation analysis via two-step MR. Results: MR evidence suggested the Bifidobacterium genus (ß=-0.03; 95% CI -0.05 to -0.02; p<0.001 and ß=-0.03; 95% CI -0.05 to -0.02; p<0.001) and Actinobacteria phylum (ß=-0.04; 95% CI -0.06 to -0.02; p<0.001 and ß=-0.03; 95% CI -0.05 to -0.03; p=0.001) had protective effects on both anhedonia and depressed mood. The Actinobacteria phylum also had protective effects on appetite changes (ß=-0.04; 95% CI -0.06 to -0.01; p=0.005), while the Family XI had an antiprotective effect (ß=0.03; 95% CI 0.01 to 0.04; p<0.001). The Bifidobacteriaceae family (ß=-0.01; 95% CI -0.02 to -0.01; p=0.001) and Actinobacteria phylum (ß=-0.02; 95% CI -0.03 to -0.01; p=0.001) showed protective effects against suicidality. The two-step MR analysis revealed that BMI also acted as a mediating moderator between the Actinobacteria phylum and appetite changes (mediated proportion, 34.42%) and that BMI partially mediated the effect of the Bifidobacterium genus (14.14% and 8.05%) and Actinobacteria phylum (13.10% and 8.31%) on both anhedonia and depressed mood. Conclusions: These findings suggest a potential therapeutic effect of Actinobacteria and Bifidobacterium on both depression and obesity. Further studies are required to translate these findings into clinical practice.

16.
Genet Resour Crop Evol ; 71(6): 2435-2448, 2024.
Article in English | MEDLINE | ID: mdl-39026943

ABSTRACT

Breeding for host resistance is the most efficient and environmentally safe method to curb the spread of fusarium ear rot (FER). However, conventional breeding for resistance to FER is hampered by the complex polygenic nature of this trait, which is highly influenced by environmental conditions. This study aimed to identify genomic regions, single nucleotide polymorphisms (SNPs), and putative candidate genes associated with FER resistance as well as candidate metabolic pathways and pathway genes involved in it. A panel of 151 tropical inbred maize lines were used to assess the genetic architecture of FER resistance over two seasons. During the study period, seven SNPs associated with FER resistance were identified on chromosomes 1, 2, 4, 5, and 9, accounting for 4-11% of the phenotypic variance. These significant markers were annotated into four genes. Seven significant metabolic pathways involved in FER resistance were identified using the Pathway Association Study Tool, the most significant being the superpathway of the glyoxylate cycle. Overall, this study confirmed that resistance to FER is indeed a complex mechanism controlled by several small to medium-effect loci. Our findings may contribute to fast-tracking the efforts to develop disease-resistant maize lines through marker-assisted selection. Supplementary Information: The online version contains supplementary material available at 10.1007/s10722-023-01793-4.

17.
Stroke ; 55(8): 2045-2054, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39038097

ABSTRACT

BACKGROUND: Individuals who have experienced a stroke, or transient ischemic attack, face a heightened risk of future cardiovascular events. Identification of genetic and molecular risk factors for subsequent cardiovascular outcomes may identify effective therapeutic targets to improve prognosis after an incident stroke. METHODS: We performed genome-wide association studies for subsequent major adverse cardiovascular events (MACE; ncases=51 929; ncontrols=39 980) and subsequent arterial ischemic stroke (AIS; ncases=45 120; ncontrols=46 789) after the first incident stroke within the Million Veteran Program and UK Biobank. We then used genetic variants associated with proteins (protein quantitative trait loci) to determine the effect of 1463 plasma protein abundances on subsequent MACE using Mendelian randomization. RESULTS: Two variants were significantly associated with subsequent cardiovascular events: rs76472767 near gene RNF220 (odds ratio, 0.75 [95% CI, 0.64-0.85]; P=3.69×10-8) with subsequent AIS and rs13294166 near gene LINC01492 (odds ratio, 1.52 [95% CI, 1.37-1.67]; P=3.77×10-8) with subsequent MACE. Using Mendelian randomization, we identified 2 proteins with an effect on subsequent MACE after a stroke: CCL27 ([C-C motif chemokine 27], effect odds ratio, 0.77 [95% CI, 0.66-0.88]; adjusted P=0.05) and TNFRSF14 ([tumor necrosis factor receptor superfamily member 14], effect odds ratio, 1.42 [95% CI, 1.24-1.60]; adjusted P=0.006). These proteins are not associated with incident AIS and are implicated to have a role in inflammation. CONCLUSIONS: We found evidence that 2 proteins with little effect on incident stroke appear to influence subsequent MACE after incident AIS. These associations suggest that inflammation is a contributing factor to subsequent MACE outcomes after incident AIS and highlights potential novel targets.


Subject(s)
Biological Specimen Banks , Genome-Wide Association Study , Mendelian Randomization Analysis , Stroke , Veterans , Humans , Male , Stroke/genetics , Stroke/epidemiology , Female , United Kingdom/epidemiology , Middle Aged , Aged , Disease Progression , Polymorphism, Single Nucleotide/genetics , Ischemic Stroke/genetics , Ischemic Stroke/epidemiology , Risk Factors , Quantitative Trait Loci , UK Biobank
18.
Plant Physiol ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041422

ABSTRACT

The WRINKLED1 (WRI1) and LAFL [LEAFY COTYLEDON1 (LEC1), ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2] transcription factors play essential roles in governing seed development and oil biosynthesis. To gain a comprehensive understanding of the transcriptional regulation of WRI1 and LAFL, we conducted genome-wide association studies for the expression profiles of WRI1 and LAFL in developing seeds at 20 and 40 days after flowering (DAF) using 302 rapeseed (Brassica napus) accessions. We identified a total of 237 expression quantitative trait nucleotides (eQTNs) and 51 expression QTN-by-environment interactions (eQEIs) associated with WRI1 and LAFL. Around these eQTNs and eQEIs, we pinpointed 41 and 8 candidate genes with known transcriptional regulations or protein interactions with their expression traits, respectively. Based on RNA-seq and ATAC-seq data, we employed the XGBoost and Basenji models which predicted 15 candidate genes potentially regulating the expression of WRI1 and LAFL. We further validated the predictions via tissue expression profile, haplotype analysis, and expression correlation analysis, and verified the transcriptional activation activity of BnaC03.MYB56 (R2R3-MYB transcription factor 56) on the expression of BnaA09.LEC1 by dual-luciferase reporter and yeast one-hybrid assays. BnaA10.AGL15 (AGAMOUS-LIKE 15), BnaC04.VAL1 (VIVIPAROUS1/ABSCISIC ACID INSENSITIVE3-LIKE 1), BnaC03.MYB56, and BnaA10.MYB56 were co-expressed with WRI1 and LAFL at 20 DAF in M35, a key module for seed development and oil biosynthesis. We further validated the positive regulation of MYB56 on seed oil accumulation using Arabidopsis (Arabidopsis thaliana) mutants. This study not only delivers a framework for future eQEI identification but also offers insights into the developmental regulation of seed oil accumulation.

19.
New Phytol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953386

ABSTRACT

C4 photosynthesis is a complex trait requiring multiple developmental and metabolic alterations. Despite this complexity, it has independently evolved over 60 times. However, our understanding of the transition to C4 is complicated by the fact that variation in photosynthetic type is usually segregated between species that diverged a long time ago. Here, we perform a genome-wide association study (GWAS) using the grass Alloteropsis semialata, the only known species to have C3, intermediate, and C4 accessions that recently diverged. We aimed to identify genomic regions associated with the strength of the C4 cycle (measured using δ13C), and the development of C4 leaf anatomy. Genomic regions correlated with δ13C include regulators of C4 decarboxylation enzymes (RIPK), nonphotochemical quenching (SOQ1), and the development of Kranz anatomy (SCARECROW-LIKE). Regions associated with the development of C4 leaf anatomy in the intermediate individuals contain additional leaf anatomy regulators, including those responsible for vein patterning (GSL8) and meristem determinacy (GIF1). The parallel recruitment of paralogous leaf anatomy regulators between A. semialata and other C4 lineages implies the co-option of these genes is context-dependent, which likely has implications for the engineering of the C4 trait into C3 species.

20.
J Hepatol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960375

ABSTRACT

BACKGROUND: The underlying mechanisms for the link between steatotic liver disease and cardiovascular and cancer outcomes are poorly understood. We aimed to use MRI-derived measures of liver fat and genetics to investigate causal mechanisms that link higher liver fat to various health outcomes. METHODS: We conducted a genome-wide association study on 37,358 UK Biobank participants to identify genetic variants associated with liver fat measured from MRI scans. We used Mendelian randomization approach to investigate the causal effect of liver fat on health outcomes independent of BMI, alcohol consumption and lipids using data from published GWAS and FinnGen. RESULTS: We identified 13 genetic variants associated with liver fat that showed differing risks to health outcomes. Genetic variants associated with impaired hepatic triglyceride export showed liver fat-increasing alleles to be correlated with a reduced risk of coronary artery disease and myocardial infarction but an elevated risk of type 2 diabetes; and variants associated with enhanced de novo lipogenesis showed liver fat-increasing alleles to be linked to a higher risk of myocardial infarction and coronary artery disease. Genetically higher liver fat content increased the risk of non-alcohol liver cirrhosis, hepatocellular and Intrahepatic bile ducts and gallbladder cancers, exhibiting a dose-dependent relationship, irrespective of the mechanism. CONCLUSION: This study provides fresh insight into the heterogeneous effect of liver fat on health outcomes. It challenges the notion that liver fat per se is an independent risk factor for cardiovascular disease, underscoring the dependency of this association on the specific mechanisms that drive fat accumulation in the liver. However, excess liver fat, regardless of how achieved, appears to be causally linked to liver cirrhosis and cancers in a dose dependent manner. IMPACT AND IMPLICATION: This research advances our understanding of the heterogeneity in mechanisms influencing liver fat accumulation, providing new insights into how liver fat accumulation may impact various health outcomes. The findings challenge the notion that liver fat is an independent risk factor for cardiovascular disease and highlight the mechanistic effect of some genetic variants on fat accumulation and the development of cardiovascular diseases. This study is of particular importance for healthcare professionals including physicians and researchers as well as patients as it allows for more targeted and personalised treatment by understanding the relationship between liver fat and various health outcomes. The findings emphasise the need for a personalised management approach and a reshaping of risk assessment criteria. It also provides room for prioritising a clinical intervention aimed at reducing liver fat content (likely by intentional weight loss, however, achieved) that could help protect against liver related fibrosis and cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...