ABSTRACT
Entomopathogenic nematodes from the genus Steinernema (Nematoda: Steinernematidae) are capable of causing the rapid killing of insect hosts, facilitated by their association with symbiotic Gram-negative bacteria in the genus Xenorhabdus (Enterobacterales: Morganellaceae), positioning them as interesting candidate tools for the control of insect pests. In spite of this, only a limited number of species from this bacterial genus have been identified from their nematode hosts and their insecticidal properties documented. This study aimed to perform the genome sequence analysis of fourteen Xenorhabdus strains that were isolated from Steinernema nematodes in Argentina. All of the strains were found to be able of killing 7th instar larvae of Galleria mellonella (L.) (Lepidoptera: Pyralidae). Their sequenced genomes harbour 110 putative insecticidal proteins including Tc, Txp, Mcf, Pra/Prb and App homologs, plus other virulence factors such as putative nematocidal proteins, chitinases and secondary metabolite gene clusters for the synthesis of different bioactive compounds. Maximum-likelihood phylogenetic analysis plus average nucleotide identity calculations strongly suggested that three strains should be considered novel species. The species name for strains PSL and Reich (same species according to % ANI) is proposed as Xenorhabdus littoralis sp. nov., whereas strain 12 is proposed as Xenorhabdus santafensis sp. nov. In this work, we present a dual insight into the biocidal potential and diversity of the Xenorhabdus genus, demonstrated by different numbers of putative insecticidal genes and biosynthetic gene clusters, along with a fresh exploration of the species within this genus.
Subject(s)
Moths , Nematoda , Xenorhabdus , Animals , Xenorhabdus/genetics , Phylogeny , Argentina , Nematoda/genetics , Moths/genetics , Sequence Analysis , SymbiosisABSTRACT
Leishmaniasis, a disease caused by Leishmania parasites and transmitted via sandflies, presents in two main forms: cutaneous and visceral, the latter being more severe. With 0.7 to 1 million new cases each year, primarily in Brazil, diagnosing remains challenging due to diverse disease manifestations. Traditionally, the identification of Leishmania species is inferred from clinical and epidemiological data. Advances in disease management depend on technological progress and the improvement of parasite identification programs. Current treatments, despite the high incidence, show limited efficacy due to factors like cost, toxicity, and lengthy regimens causing poor adherence and resistance development. Diagnostic techniques have improved but a significant gap remains between scientific progress and application in endemic areas. Complete genomic sequence knowledge of Leishmania allows for the identification of therapeutic targets. With the aid of computational tools, testing, searching, and detecting affinity in molecular docking are optimized, and strategies that assess advantages among different options are developed. The review focuses on the use of molecular docking and molecular dynamics (MD) simulation for drug development. It also discusses the limitations and advancements of current treatments, emphasizing the importance of new techniques in improving disease management.
ABSTRACT
Since the beginning of the SARS-CoV-2 spread in Brazil, few studies have been published analysing the variability of viral genome. Herein, we described the dynamic of SARS-CoV-2 strains circulating in Brazil from May to September 2020, to better understand viral changes that may affect the ongoing pandemic. Our data demonstrate that some of the mutations identified are currently observed in variants of interest and variants of concern, and emphasize the importance of studying previous periods in order to comprehend the emergence of new variants. From 720 SARS-CoV-2 genome sequences, we found few sites under positive selection pressure, such as the D614G (98.5â%) in the spike, that has replaced the old variant; the V1167F in the spike (41â%), identified in the P.2 variant that emerged from Brazil during the period of analysis; and I292T (39â%) in the N protein. There were a few alterations in the UTRs, which was expected, however, our data suggest that the emergence of new variants was not influenced by mutations in UTR regions, since it maintained its conformational structure in most analysed sequences. In phylogenetic analysis, the spread of SARS-CoV-2 from the large urban centres to the countryside during these months could be explained by the flexibilization of social isolation measures and also could be associated with possible new waves of infection. These results allow a better understanding of SARS-CoV-2 strains that have circulated in Brazil, and thus, with relevant infomation, provide the potential viral changes that may have affected and/or contributed to the current and future scenario of the COVID-19 pandemic.
Subject(s)
COVID-19/virology , Genome, Viral , Mutation , SARS-CoV-2/genetics , 5' Untranslated Regions/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Amino Acid Substitution , Brazil/epidemiology , COVID-19/epidemiology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , Selection, Genetic , Young AdultABSTRACT
Rust fungi are one of the most devastating pathogens of crop plants. The biotrophic fungus Puccinia sorghi Schwein (Ps) is responsible for maize common rust, an endemic disease of maize (Zea mays L.) in Argentina that causes significant yield losses in corn production. In spite of this, the Ps genomic sequence was not available. We used Illumina sequencing to rapidly produce the 99.6Mbdraft genome sequence of Ps race RO10H11247, derived from a single-uredinial isolate from infected maize leaves collected in the Argentine Corn Belt Region during 2010. High quality reads were obtained from 200bppaired-end and 5000bpmate-paired libraries and assembled in 15,722 scaffolds. A pipeline which combined an ab initio program with homology-based models and homology to in planta enriched ESTs from four cereal pathogenic fungus (the three sequenced wheat rusts and Ustilago maydis) was used to identify 21,087 putative coding sequences, of which 1599 might be part of the Ps RO10H11247 secretome. Among the 458 highly conserved protein families from the euKaryotic Orthologous Groups (KOG) that occur in a wide range of eukaryotic organisms, 97.5% have at least one member with high homology in the Ps assembly (TBlastN, E-value⩽e-10) covering more than 50% of the length of the KOG protein. Comparative studies with the three sequenced wheat rust fungus, and microsynteny analysis involving Puccinia striiformis f. sp. tritici (Pst, wheat stripe rust fungus), support the quality achieved. The results presented here show the effectiveness of the Illumina strategy for sequencing dikaryotic genomes of non-model organisms and provides reliable DNA sequence information for genomic studies, including pathogenic mechanisms of this maize fungus and molecular marker design.