Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
Front Plant Sci ; 15: 1241515, 2024.
Article in English | MEDLINE | ID: mdl-39006962

ABSTRACT

The plastid-targeted transcription factor Whirly1 (WHY1) has been implicated in chloroplast biogenesis, plastid genome stability, and fungal defense response, which together represent characteristics of interest for the study of autotrophic losses across the angiosperms. While gene loss in the plastid and nuclear genomes has been well studied in mycoheterotrophic plants, the evolution of the molecular mechanisms impacting genome stability is completely unknown. Here, we characterize the evolution of WHY1 in four early transitional mycoheterotrophic orchid species in the genus Corallorhiza by synthesizing the results of phylogenetic, transcriptomic, and comparative genomic analyses with WHY1 genomic sequences sampled from 21 orders of angiosperms. We found an increased number of non-canonical WHY1 isoforms assembled from all but the greenest Corallorhiza species, including intron retention in some isoforms. Within Corallorhiza, phylotranscriptomic analyses revealed the presence of tissue-specific differential expression of WHY1 in only the most photosynthetically capable species and a coincident increase in the number of non-canonical WHY1 isoforms assembled from fully mycoheterotrophic species. Gene- and codon-level tests of WHY1 selective regimes did not infer significant signal of either relaxed selection or episodic diversifying selection in Corallorhiza but did so for relaxed selection in the late-stage full mycoheterotrophic orchids Epipogium aphyllum and Gastrodia elata. Additionally, nucleotide substitutions that most likely impact the function of WHY1, such as nonsense mutations, were only observed in late-stage mycoheterotrophs. We propose that our findings suggest that splicing and expression changes may precede the selective shifts we inferred for late-stage mycoheterotrophic species, which therefore does not support a primary role for WHY1 in the transition to mycoheterotrophy in the Orchidaceae. Taken together, this study provides the most comprehensive view of WHY1 evolution across the angiosperms to date.

2.
Cell Rep ; 43(7): 114419, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38985672

ABSTRACT

The compaction of chromatin into mitotic chromosomes is essential for faithful transmission of the genome during cell division. In eukaryotes, chromosome morphogenesis is regulated by the condensin complex, though the exact mechanism used to target condensin to chromatin and initiate condensation is not understood. Here, we reveal that condensin contains an intrinsically disordered region (IDR) that modulates its association with chromatin in early mitosis and exhibits phase separation. We describe DNA-binding motifs within the IDR that, upon deletion, inflict striking defects in chromosome condensation and segregation, ill-timed condensin turnover on chromatin, and cell death. Importantly, we demonstrate that the condensin IDR can impart cell cycle regulatory functions when transferred to other subunits within the complex, indicating its autonomous nature. Collectively, our study unveils the molecular basis for the initiation of chromosome condensation in early mitosis and how this process ultimately promotes genomic stability and faultless cell division.

3.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38935071

ABSTRACT

Advances in chromatin mapping have exposed the complex chromatin hierarchical organization in mammals, including topologically associating domains (TADs) and their substructures, yet the functional implications of this hierarchy in gene regulation and disease progression are not fully elucidated. Our study delves into the phenomenon of shared TAD boundaries, which are pivotal in maintaining the hierarchical chromatin structure and regulating gene activity. By integrating high-resolution Hi-C data, chromatin accessibility, and DNA double-strand breaks (DSBs) data from various cell lines, we systematically explore the complex regulatory landscape at high-level TAD boundaries. Our findings indicate that these boundaries are not only key architectural elements but also vibrant hubs, enriched with functionally crucial genes and complex transcription factor binding site-clustered regions. Moreover, they exhibit a pronounced enrichment of DSBs, suggesting a nuanced interplay between transcriptional regulation and genomic stability. Our research provides novel insights into the intricate relationship between the 3D genome structure, gene regulation, and DNA repair mechanisms, highlighting the role of shared TAD boundaries in maintaining genomic integrity and resilience against perturbations. The implications of our findings extend to understanding the complexities of genomic diseases and open new avenues for therapeutic interventions targeting the structural and functional integrity of TAD boundaries.


Subject(s)
Chromatin , DNA Breaks, Double-Stranded , DNA Repair , Gene Expression Regulation , Humans , Chromatin/metabolism , Chromatin/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Animals , Genomics/methods , Genomic Instability , Chromatin Assembly and Disassembly
4.
J Cell Physiol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860420

ABSTRACT

Mouse embryonic stem cells (mESCs) sporadically transition to a transient totipotent state that resembles blastomeres of the two-cell (2C) embryo stage, which has been proposed to contribute to exceptional genomic stability, one of the key features of mESCs. However, the biological significance of the rare population of 2C-like cells (2CLCs) in ESC cultures remains to be tested. Here we generated an inducible reporter cell system for specific elimination of 2CLCs from the ESC cultures to disrupt the equilibrium between ESCs and 2CLCs. We show that removing 2CLCs from the ESC cultures leads to dramatic accumulation of DNA damage, genomic mutations, and rearrangements, indicating impaired genomic instability. Furthermore, 2CLCs removal results in increased apoptosis and reduced proliferation of mESCs in both serum/LIF and 2i/LIF culture conditions. Unexpectedly, p53 deficiency results in defective response to DNA damage, leading to early accumulation of DNA damage, micronuclei, indicative of genomic instability, cell apoptosis, and reduced self-renewal capacity of ESCs when devoid of 2CLCs in cultures. Together, our data reveal that transition to the privileged 2C-like state is a major component of the intrinsic mechanisms that maintain the exceptional genomic stability of mESCs for long-term self-renewal.

5.
Aging (Albany NY) ; 16(11): 9692-9708, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38843391

ABSTRACT

BACKGROUND: Cutaneous melanoma (CM) is an aggressive form of skin cancer with limited treatment options for advanced stages. Prognostic markers that accurately predict patients' outcomes and guide therapeutic strategies are crucial for improving melanoma management. SETD2 (SET Domain-Containing Protein 2), a histone methyltransferase involved in chromatin remodeling and gene regulation, has recently emerged as a tumor suppressor. Its dysfunction is involved in oncogenesis in some cancers, but little is known about its functions in progression and therapeutic response of melanoma. METHODS: RNA-seq and clinical data from public database were used to evaluate the survival analysis, gene set enrichment, IC50 of therapeutics and immunotherapy response. SETD2 knock-out A375 cell line (A375SETD2ko) was developed by Crispr/cas9 and CCK-8 analysis and nude mice used to evaluate the proliferation and invasion of melanoma cells in vitro and in vivo, while Western blotting tested the MMR-related protein. RESULTS: SETD2 was commonly down-regulated in melanoma samples which demonstrated an unfavorable survival. Cells without SETD2 expression tend to have a more progressive and invasive behavior, with resistance to chemotherapy. However, they are more sensitive to tyrosine kinase inhibitors (TKIs). They also exhibit inflamed features with lower TIDE (Tumor Immune Dysfunction and Exclusion) score and higher tumor mutation burden (TMB), showing that these patients may benefit from immunotherapy. CONCLUSIONS: This study revealed that SETD2 dysfunction in melanoma implied a poor prognosis and chemotherapy resistance, but highly sensitive to TKIs and immunotherapy, highlighting the prognostic and therapeutic value of SETD2 in cutaneous melanoma.


Subject(s)
Histone-Lysine N-Methyltransferase , Melanoma , Skin Neoplasms , Melanoma/genetics , Melanoma/pathology , Melanoma/drug therapy , Humans , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/drug therapy , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Animals , Cell Line, Tumor , Mice , Prognosis , Cell Proliferation/genetics , Mice, Nude , Gene Expression Regulation, Neoplastic , Melanoma, Cutaneous Malignant , Female
6.
Cell Mol Life Sci ; 81(1): 251, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847937

ABSTRACT

The Smc5/6 complex is a highly conserved molecular machine involved in the maintenance of genome integrity. While its functions largely depend on restraining the fork remodeling activity of Mph1 in yeast, the presence of an analogous Smc5/6-FANCM regulation in humans remains unknown. We generated human cell lines harboring mutations in the NSE1 subunit of the Smc5/6 complex. Point mutations or truncations in the RING domain of NSE1 result in drastically reduced Smc5/6 protein levels, with differential contribution of the two zinc-coordinating centers in the RING. In addition, nse1-RING mutant cells display cell growth defects, reduced replication fork rates, and increased genomic instability. Notably, our findings uncover a synthetic sick interaction between Smc5/6 and FANCM and show that Smc5/6 controls fork progression and chromosome disjunction in a FANCM-independent manner. Overall, our study demonstrates that the NSE1 RING domain plays vital roles in Smc5/6 complex stability and fork progression through pathways that are not evolutionary conserved.


Subject(s)
Cell Cycle Proteins , DNA Replication , Genomic Instability , Humans , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Protein Domains , Protein Stability , Mutation , Cell Line , DNA Helicases
7.
J Mol Cell Biol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710586

ABSTRACT

Chromothripsis, a type of complex chromosomal rearrangement originally known as chromoanagenesis, has been a subject of extensive investigation due to its potential role in various diseases, particularly cancer. Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period, leading to complex alterations in one or a few chromosomes. This phenomenon is triggered by chromosome missegregation during mitosis. Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges. The association between chromothripsis and cancer has attracted significant interest, with potential implications for tumorigenesis and disease prognosis. This review aims to explore the intricate mechanisms and consequences of chromothripsis, with a specific focus on its association with mitotic perturbations. Herein, we discuss a comprehensive analysis of crucial molecular entities and pathways, exploring the intricate roles of the CIP2A-TOPBP1 complex, micronuclei formation, chromatin bridge processing, DNA damage repair, and mitotic checkpoints. Moreover, the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis, paving the way for future therapeutic interventions in various diseases.

8.
J Biol Chem ; 300(6): 107377, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762174

ABSTRACT

Homologous recombination (HR) plays a key role in maintaining genomic stability, and the efficiency of the HR system is closely associated with tumor response to chemotherapy. Our previous work reported that CK2 kinase phosphorylates HIV Tat-specific factor 1 (HTATSF1) Ser748 to facilitate HTATSF1 interaction with TOPBP1, which in turn, promotes RAD51 recruitment and HR repair. However, the clinical implication of the CK2-HTATSF1-TOPBP1 pathway in tumorigenesis and chemotherapeutic response remains to be elucidated. Here, we report that the CK2-HTATSF1-TOPBP1 axis is generally hyperactivated in multiple malignancies and renders breast tumors less responsive to chemotherapy. In contrast, deletion mutations of each gene in this axis, which also occur in breast and lung tumor samples, predict higher HR deficiency scores, and tumor cells bearing a loss-of-function mutation of HTATSF1 are vulnerable to poly(ADP-ribose) polymerase inhibitors or platinum drugs. Taken together, our study suggests that the integrity of the CK2-HTATSF1-TOPBP1 axis is closely linked to tumorigenesis and serves as an indicator of tumor HR status and modulates chemotherapy response.


Subject(s)
Carrier Proteins , Casein Kinase II , DNA-Binding Proteins , Signal Transduction , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Signal Transduction/drug effects , Casein Kinase II/metabolism , Casein Kinase II/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Animals , Female , Mice , Cell Line, Tumor , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology
9.
Mol Cancer ; 23(1): 84, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678239

ABSTRACT

The cell cycle is a crucial biological process that is involved in cell growth, development, and reproduction. It can be divided into G1, S, G2, and M phases, and each period is closely regulated to ensure the production of two similar daughter cells with the same genetic material. However, many obstacles influence the cell cycle, including the R-loop that is formed throughout this process. R-loop is a triple-stranded structure, composed of an RNA: DNA hybrid and a single DNA strand, which is ubiquitous in organisms from bacteria to mammals. The existence of the R-loop has important significance for the regulation of various physiological processes. However, aberrant accumulation of R-loop due to its limited resolving ability will be detrimental for cells. For example, DNA damage and genomic instability, caused by the R-loop, can activate checkpoints in the cell cycle, which in turn induce cell cycle arrest and cell death. At present, a growing number of factors have been proven to prevent or eliminate the accumulation of R-loop thereby avoiding DNA damage and mutations. Therefore, we need to gain detailed insight into the R-loop resolution factors at different stages of the cell cycle. In this review, we review the current knowledge of factors that play a role in resolving the R-loop at different stages of the cell cycle, as well as how mutations of these factors lead to the onset and progression of diseases.


Subject(s)
Cell Cycle , DNA Damage , R-Loop Structures , Humans , Cell Cycle/genetics , Animals , Genomic Instability , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Mutation
10.
Biomed Pharmacother ; 175: 116663, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688170

ABSTRACT

Cancer is caused by a complex interaction of factors that interrupt the normal growth and division of cells. At the center of this process is the intricate relationship between DNA damage and the cellular mechanisms responsible for maintaining genomic stability. When DNA damage is not repaired, it can cause genetic mutations that contribute to the initiation and progression of cancer. On the other hand, the DNA damage response system, which involves the phosphorylation of the histone variant H2AX (γH2AX), is crucial in preserving genomic integrity by signaling and facilitating the repair of DNA double-strand breaks. This review provides an explanation of the molecular dynamics of H2AX in the context of DNA damage response. It emphasizes the crucial role of H2AX in recruiting and localizing repair machinery at sites of chromatin damage. The review explains how H2AX phosphorylation, facilitated by the master kinases ATM and ATR, acts as a signal for DNA damage, triggering downstream pathways that govern cell cycle checkpoints, apoptosis, and the cellular fate decision between repair and cell death. The phosphorylation of H2AX is a critical regulatory point, ensuring cell survival by promoting repair or steering cells towards apoptosis in cases of catastrophic genomic damage. Moreover, we explore the therapeutic potential of targeting H2AX in cancer treatment, leveraging its dual function as a biomarker of DNA integrity and a therapeutic target. By delineating the pathways that lead to H2AX phosphorylation and its roles in apoptosis and cell cycle control, we highlight the significance of H2AX as both a prognostic tool and a focal point for therapeutic intervention, offering insights into its utility in enhancing the efficacy of cancer treatments.


Subject(s)
DNA Damage , DNA Repair , Histones , Neoplasms , Humans , Histones/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Phosphorylation , Signal Transduction , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy
11.
Methods Enzymol ; 695: 1-27, 2024.
Article in English | MEDLINE | ID: mdl-38521581

ABSTRACT

G-quadruplex (G4) DNA or RNA poses a unique nucleic acid structure in genomic transactions. Because of the unique topology presented by G4, cells have exquisite mechanisms and pathways to metabolize G4 that arise in guanine-rich regions of the genome such as telomeres, promoter regions, ribosomal DNA, and other chromosomal elements. G4 resolvases are often represented by a class of molecular motors known as helicases that disrupt the Hoogsteen hydrogen bonds in G4 by harnessing the chemical energy of nucleoside triphosphate hydrolysis. Of special interest to researchers in the field, including us, is the human FANCJ DNA helicase that efficiently resolves G4 DNA structures. Notably, FANCJ mutations are linked to Fanconi Anemia and are prominent in breast and ovarian cancer. Since our discovery that FANCJ efficiently resolves G4 DNA structures 15 years ago, we and other labs have characterized mechanistic aspects of FANCJ-catalyzed G4 resolution and its biological importance in genomic integrity and cellular DNA replication. In addition to its G4 resolvase function, FANCJ is also a classic DNA helicase that acts on conventional duplex DNA structures, which are relevant to the enzyme's role in interstrand cross link repair, double-strand break repair via homologous recombination, and response to replication stress. Here, we describe detailed procedures for the purification of recombinant FANCJ protein and characterization of its G4 resolvase and duplex DNA helicase activity.


Subject(s)
DNA Helicases , G-Quadruplexes , Humans , DNA Helicases/genetics , DNA Helicases/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , Recombinases/genetics , Recombinases/metabolism , DNA/metabolism , DNA Repair , DNA Replication , Recombinant Proteins/metabolism
12.
Metallomics ; 16(2)2024 02 07.
Article in English | MEDLINE | ID: mdl-38299785

ABSTRACT

The ageing process is associated with alterations of systemic trace element (TE) homeostasis increasing the risk, e.g. neurodegenerative diseases. Here, the impact of long-term modulation of dietary intake of copper, iron, selenium, and zinc was investigated in murine cerebellum. Four- and 40-wk-old mice of both sexes were supplied with different amounts of those TEs for 26 wk. In an adequate supply group, TE concentrations were in accordance with recommendations for laboratory mice while suboptimally supplied animals received only limited amounts of copper, iron, selenium, and zinc. An additional age-adjusted group was fed selenium and zinc in amounts exceeding recommendations. Cerebellar TE concentrations were measured by inductively coupled plasma-tandem mass spectrometry. Furthermore, the expression of genes involved in TE transport, DNA damage response, and DNA repair as well as selected markers of genomic stability [8-oxoguanine, incision efficiency toward 8-oxoguanine, 5-hydroxyuracil, and apurinic/apyrimidinic sites and global DNA (hydroxy)methylation] were analysed. Ageing resulted in a mild increase of iron and copper concentrations in the cerebellum, which was most pronounced in the suboptimally supplied groups. Thus, TE changes in the cerebellum were predominantly driven by age and less by nutritional intervention. Interestingly, deviation from adequate TE supply resulted in higher manganese concentrations of female mice even though the manganese supply itself was not modulated. Parameters of genomic stability were neither affected by age, sex, nor diet. Overall, this study revealed that suboptimal dietary TE supply does not substantially affect TE homeostasis in the murine cerebellum.


Subject(s)
Selenium , Trace Elements , Male , Female , Mice , Animals , Trace Elements/metabolism , Selenium/metabolism , Copper/metabolism , Manganese , Zinc/metabolism , Diet , Iron , Homeostasis , Genomic Instability
13.
Life Sci Space Res (Amst) ; 40: 81-88, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38245352

ABSTRACT

Ionizing radiation poses significant risks to astronauts during deep space exploration. This study investigates the impact of radiation on nucleophosmin (NPM), a protein involved in DNA repair, cell cycle regulation, and proliferation. Using X-rays, a common space radiation, we found that radiation suppresses NPM expression. Knockdown of NPM increases DNA damage after irradiation, disrupts cell cycle distribution and enhances cellular radiosensitivity. Additionally, NPM interacts with globular actin (G-actin), affecting its translocation and centrosome binding during mitosis. These findings provide insights into the role of NPM in cellular processes in responding to radiation. This article enhances our comprehension of radiation-induced genomic instability and provides a foundational platform for prospective investigations within the realm of space radiation and its implications for cancer therapy.


Subject(s)
Actins , Nucleophosmin , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , X-Rays , Prospective Studies
14.
Biochem Cell Biol ; 102(2): 135-144, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38113480

ABSTRACT

Understanding the complex network of protein-protein interactions (PPI) that govern cellular functions is essential for unraveling the molecular basis of biological processes and diseases. Mass spectrometry (MS) has emerged as a powerful tool for studying protein dynamics, enabling comprehensive analysis of protein function, structure, post-translational modifications, interactions, and localization. This article provides an overview of MS techniques and their applications in proteomics studies, with a focus on the replication fork proteome. The replication fork is a multi-protein assembly involved in DNA replication, and its proper functioning is crucial for maintaining genomic integrity. By combining quantitative MS labeling techniques with various data acquisition methods, researchers have made significant strides in elucidating the complex processes and molecular mechanisms at the replication fork. Overall, MS has revolutionized our understanding of protein dynamics, offering valuable insights into cellular processes and potential targets for therapeutic interventions.


Subject(s)
DNA Replication , Proteome , Proteome/metabolism , Proteomics/methods , Mass Spectrometry , Protein Processing, Post-Translational
15.
Cells ; 12(22)2023 11 15.
Article in English | MEDLINE | ID: mdl-37998365

ABSTRACT

In metazoans, the largest sirtuin, SIRT1, is a nuclear protein implicated in epigenetic modifications, circadian signaling, DNA recombination, replication, and repair. Our previous studies have demonstrated that SIRT1 binds replication origins and inhibits replication initiation from a group of potential initiation sites (dormant origins). We studied the effects of aging and SIRT1 activity on replication origin usage and the incidence of transcription-replication collisions (creating R-loop structures) in adult human cells obtained at different time points during chronological aging and in cancer cells. In primary, untransformed cells, SIRT1 activity declined and the prevalence of R-loops rose with chronological aging. Both the reduction in SIRT1 activity and the increased abundance of R-loops were also observed during the passage of primary cells in culture. All cells, regardless of donor age or transformation status, reacted to the short-term, acute chemical inhibition of SIRT1 with the activation of excessive replication initiation events coincident with an increased prevalence of R-loops. However, cancer cells activated dormant replication origins, genome-wide, during long-term proliferation with mutated or depleted SIRT1, whereas, in primary cells, the aging-associated SIRT1-mediated activation of dormant origins was restricted to rDNA loci. These observations suggest that chronological aging and the associated decline in SIRT1 activity relax the regulatory networks that protect cells against excess replication and that the mechanisms protecting from replication-transcription collisions at the rDNA loci manifest as differentially enhanced sensitivities to SIRT1 decline and chronological aging.


Subject(s)
R-Loop Structures , Sirtuin 1 , Humans , DNA, Ribosomal/genetics , Sirtuin 1/genetics , Sirtuin 1/metabolism , DNA Replication/genetics , Aging/genetics
16.
Bio Protoc ; 13(21): e4869, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37969755

ABSTRACT

Fork stability is key to genome DNA duplication and genetic integrity. Long non-coding RNAs (LncRNAs) may play vital roles in fork stabilization and chromatin remodeling. Existing techniques such as NCC-RNA sequencing are useful to identify LncRNAs on nascent chromatin DNA. However, there is still a lack of methods for LncRNAs purification directly from replicative forks, hindering a deep understanding of the functions of LncRNAs in fork regulation. Here, we provide a step-by-step protocol named iROND (isolate RNAs on nascent DNA). iROND was developed and modified from iPOND, a well-known method for purifying fork-associated proteins. iROND relies on click chemistry reaction of 5'-ethynyl-2'-deoxyuridine (EdU)-labeled forks and biotin. After streptavidin pull down, fork-associated LncRNAs and proteins are purified simultaneously. iROND is compatible with downstream RNA sequencing, qPCR confirmation, and immunoblotting. Integrated with functional methods such as RNA fluorescent in situ hybridization (RNA FISH) and DNA fiber assay, it is feasible to screen fork-binding LncRNAs in defined cell lines and explore their functions. In summary, we provide a purification pipeline of fork-associated LncRNAs. iROND is also useful for studying other types of fork-associated non-coding RNAs. Key features • Purify long non-coding RNAs (LncRNAs) directly from replication forks. • Connects to RNA sequencing for screening easily. • Allows testing various genotoxic stress responses. • Provides LncRNA candidate list for downstream functional research.

17.
Semin Cancer Biol ; 97: 86-103, 2023 12.
Article in English | MEDLINE | ID: mdl-38029866

ABSTRACT

TGFß signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFß as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFß is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFß-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFß signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.


Subject(s)
Neoplasms , Transforming Growth Factor beta , Humans , Transforming Growth Factor beta/metabolism , Signal Transduction , Transcription Factors , Neoplasms/genetics , Cell Cycle/genetics , Epithelial-Mesenchymal Transition/genetics
18.
Front Cell Infect Microbiol ; 13: 1241305, 2023.
Article in English | MEDLINE | ID: mdl-37674581

ABSTRACT

Maintenance of dNTPs pools in Trypanosoma brucei is dependent on both biosynthetic and degradation pathways that together ensure correct cellular homeostasis throughout the cell cycle which is essential for the preservation of genomic stability. Both the salvage and de novo pathways participate in the provision of pyrimidine dNTPs while purine dNTPs are made available solely through salvage. In order to identify enzymes involved in degradation here we have characterized the role of a trypanosomal SAMHD1 orthologue denominated TbHD82. Our results show that TbHD82 is a nuclear enzyme in both procyclic and bloodstream forms of T. brucei. Knockout forms exhibit a hypermutator phenotype, cell cycle perturbations and an activation of the DNA repair response. Furthermore, dNTP quantification of TbHD82 null mutant cells revealed perturbations in nucleotide metabolism with a substantial accumulation of dATP, dCTP and dTTP. We propose that this HD domain-containing protein present in kinetoplastids plays an essential role acting as a sentinel of genomic fidelity by modulating the unnecessary and detrimental accumulation of dNTPs.


Subject(s)
SAM Domain and HD Domain-Containing Protein 1 , Trypanosoma brucei brucei , Deoxyribonucleotides/metabolism , Trypanosoma brucei brucei/cytology , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , SAM Domain and HD Domain-Containing Protein 1/metabolism , Genomic Instability , Genome, Protozoan , DNA Damage , Cell Cycle
19.
Article in English | MEDLINE | ID: mdl-37770150

ABSTRACT

Though telomeres play a crucial role in maintaining genomic stability in cancer cells and have emerged as attractive therapeutic targets in anticancer therapy, the relationship between telomere dysfunction and genomic instability induced by irradiation is still unclear. In this study, we identified that protection of telomeres 1 (POT1), a single-stranded DNA (ssDNA)-binding protein, was upregulated in γ-irradiated HeLa cells and in cancer patients who exhibit radiation tolerance. Knockdown of POT1 delayed the repair of radiation-induced telomeric DNA damage which was associated with enhanced H3K9 trimethylation and enhanced the radiosensitivity of HeLa cells. The depletion of POT1 also resulted in significant genomic instability, by showing a significant increase in end-to-end chromosomal fusions, and the formation of anaphase bridges and micronuclei. Furthermore, knockdown of POT1 disturbed telomerase recruitment to telomere, and POT1 could interact with phosphorylated ATM (p-ATM) and POT1 depletion decreased the levels of p-ATM induced by irradiation, suggesting that POT1 could regulate the telomerase recruitment to telomeres to repair irradiation-induced telomeric DNA damage of HeLa cells through interactions with p-ATM. The enhancement of radiosensitivity in cancer cells can be achieved through the combination of POT1 and telomerase inhibitors, presenting a potential approach for radiotherapy in cancer treatment.


Subject(s)
Telomerase , Uterine Cervical Neoplasms , Humans , Female , Shelterin Complex , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/radiotherapy , HeLa Cells , Telomerase/genetics , Telomere/genetics , Genomic Instability , DNA Damage
20.
Antioxidants (Basel) ; 12(7)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37507883

ABSTRACT

Glioblastoma (GBM) is an aggressive, common brain cancer known to disrupt redox biology, affecting behavior and DNA integrity. Past research remains inconclusive. To further understand this, an investigation was conducted on physical training's effects on behavior, redox balance, and genomic stability in GBMA models. Forty-seven male C57BL/6J mice, 60 days old, were divided into GBM and sham groups (n = 15, n = 10, respectively), which were further subdivided into trained (Str, Gtr; n = 10, n = 12) and untrained (Sut, Gut; n = 10, n = 15) subsets. The trained mice performed moderate aerobic exercises on a treadmill five to six times a week for a month while untrained mice remained in their enclosures. Behavior was evaluated using open-field and rotarod tests. Post training, the mice were euthanized and brain, liver, bone marrow, and blood samples were analyzed for redox and genomic instability markers. The results indicated increased latency values in the trained GBM (Gtr) group, suggesting a beneficial impact of exercise. Elevated reactive oxygen species in the parietal tissue of untrained GBM mice (Gut) were reduced post training. Moreover, Gtr mice exhibited lower tail intensity, indicating less genomic instability. Thus, exercise could serve as a promising supplemental GBM treatment, modulating redox parameters and reducing genomic instability.

SELECTION OF CITATIONS
SEARCH DETAIL
...