Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 14(3)2023 02 22.
Article in English | MEDLINE | ID: mdl-36980820

ABSTRACT

In dairy cattle, identifying polymorphisms that contribute to complex economical traits such as residual feed intake (RFI) is challenging and demands accurate genotyping. In this study, we compared imputed genotypes (n = 192 cows) to those obtained using the TaqMan and high-resolution melting (HRM) methods (n = 114 cows), for mutations in the FABP4 gene that had been suggested to have a large effect on RFI. Combining the whole genome sequence (n = 19 bulls) and the cows' BovineHD BeadChip allowed imputing genotypes for these mutations that were verified by Sanger sequencing, whereas, an error rate of 11.6% and 10.7% were encountered for HRM and TaqMan, respectively. We show that this error rate seriously affected the linkage-disequilibrium analysis that supported this gene candidacy over other BTA14 gene candidates. Thus, imputation produced superior genotypes and should also be regarded as a method of choice to validate the reliability of the genotypes obtained by other methodologies that are prone to genotyping errors due to technical conditions. These results support the view that RFI is a complex trait and that searching for the causative sequence variation underlying cattle RFI should await the development of statistical methods suitable to handle additive and epistatic interactions.


Subject(s)
Genome , Female , Cattle/genetics , Animals , Male , Genotype , Reproducibility of Results , Linkage Disequilibrium
2.
Plants (Basel) ; 11(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35890499

ABSTRACT

Recent advances in next generation sequencing (NGS) technologies have led the surge of genomic resources for the improvement legume crops. Advances in high throughput genotyping (HTG) and high throughput phenotyping (HTP) enable legume breeders to improve legume crops more precisely and efficiently. Now, the legume breeder can reshuffle the natural gene combinations of their choice to enhance the genetic potential of crops. These genomic resources are efficiently deployed through molecular breeding approaches for genetic augmentation of important legume crops, such as chickpea, cowpea, pigeonpea, groundnut, common bean, lentil, pea, as well as other underutilized legume crops. In the future, advances in NGS, HTG, and HTP technologies will help in the identification and assembly of superior haplotypes to tailor the legume crop varieties through haplotype-based breeding. This review article focuses on the recent development of genomic resource databases and their deployment in legume molecular breeding programmes to secure global food security.

3.
Methods Mol Biol ; 2481: 29-42, 2022.
Article in English | MEDLINE | ID: mdl-35641757

ABSTRACT

Genome-wide association studies (GWAS) in crops requires genotyping platforms that are capable of producing accurate high density genotyping data on hundreds of plants in a cost-effective manner. Currently there are multiple commercial platforms available that are being effectively used across crops. These platforms include genotyping arrays such as the Illumina Infinium arrays and the Applied Biosystems Axiom Arrays along with a variety of resequencing methods. These methods are being used to genotype tens of thousands of markers up to millions of markers on GWAS panels. They are being used on crops with simple genomes to crops with very complex, large, polyploid genomes. Depending on the crop and the goal of the GWAS, there are several options and practical considerations to take into account when selecting a genotyping technology to ensure that the right coverage, accuracy, and cost for the study is achieved.


Subject(s)
Crops, Agricultural , Genome-Wide Association Study , Crops, Agricultural/genetics , Genome , Genotype , High-Throughput Nucleotide Sequencing/methods
4.
Genes (Basel) ; 13(3)2022 03 09.
Article in English | MEDLINE | ID: mdl-35328039

ABSTRACT

Microarray-based genomic selection is a central tool to increase the genetic gain of economically significant traits in dairy cattle. Yet, the effectivity of this tool is slightly limited, as estimates based on genotype data only partially explain the observed heritability. In the analysis of the genomes of 17 Israeli Holstein bulls, we compared genotyping accuracy between whole-genome sequencing (WGS) and microarray-based techniques. Using the standard GATK pipeline, the short-variant discovery within sequence reads mapped to the reference genome (ARS-UCD1.2) was compared to the genotypes from Illumina BovineSNP50 BeadChip and to an alternative method, which computationally mimics the hybridization procedure by mapping reads to 50 bp spanning the BeadChip source sequences. The number of mismatches between the BeadChip and WGS genotypes was low (0.2%). However, 17,197 (40% of the informative SNPs) had extra variation within 50 bp of the targeted SNP site, which might interfere with hybridization-based genotyping. Consequently, with respect to genotyping errors, BeadChip varied significantly and systematically from WGS genotyping, introducing null allele-like effects and Mendelian errors (<0.5%), whereas the GATK algorithm of local de novo assembly of haplotypes successfully resolved the genotypes in the extra-variable regions. These findings suggest that the microarray design should avoid polymorphic genomic regions that are prone to extra variation and that WGS data may be used to resolve erroneous genotyping, which may partially explain missing heritability.


Subject(s)
Genome , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Genomics , Genotype , Haplotypes/genetics , Male , Polymorphism, Single Nucleotide/genetics
5.
J Plant Physiol ; 257: 153351, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33412425

ABSTRACT

Climate change during the last 40 years has had a serious impact on agriculture and threatens global food and nutritional security. From over half a million plant species, cereals and legumes are the most important for food and nutritional security. Although systematic plant breeding has a relatively short history, conventional breeding coupled with advances in technology and crop management strategies has increased crop yields by 56 % globally between 1965-85, referred to as the Green Revolution. Nevertheless, increased demand for food, feed, fiber, and fuel necessitates the need to break existing yield barriers in many crop plants. In the first decade of the 21st century we witnessed rapid discovery, transformative technological development and declining costs of genomics technologies. In the second decade, the field turned towards making sense of the vast amount of genomic information and subsequently moved towards accurately predicting gene-to-phenotype associations and tailoring plants for climate resilience and global food security. In this review we focus on genomic resources, genome and germplasm sequencing, sequencing-based trait mapping, and genomics-assisted breeding approaches aimed at developing biotic stress resistant, abiotic stress tolerant and high nutrition varieties in six major cereals (rice, maize, wheat, barley, sorghum and pearl millet), and six major legumes (soybean, groundnut, cowpea, common bean, chickpea and pigeonpea). We further provide a perspective and way forward to use genomic breeding approaches including marker-assisted selection, marker-assisted backcrossing, haplotype based breeding and genomic prediction approaches coupled with machine learning and artificial intelligence, to speed breeding approaches. The overall goal is to accelerate genetic gains and deliver climate resilient and high nutrition crop varieties for sustainable agriculture.


Subject(s)
Agriculture/methods , Crops, Agricultural/genetics , Genome, Plant , Genomics , Plant Breeding/methods , Agriculture/classification
6.
Mol Plant ; 10(8): 1047-1064, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28669791

ABSTRACT

There is a rapidly rising trend in the development and application of molecular marker assays for gene mapping and discovery in field crops and trees. Thus far, more than 50 SNP arrays and 15 different types of genotyping-by-sequencing (GBS) platforms have been developed in over 25 crop species and perennial trees. However, much less effort has been made on developing ultra-high-throughput and cost-effective genotyping platforms for applied breeding programs. In this review, we discuss the scientific bottlenecks in existing SNP arrays and GBS technologies and the strategies to develop targeted platforms for crop molecular breeding. We propose that future practical breeding platforms should adopt automated genotyping technologies, either array or sequencing based, target functional polymorphisms underpinning economic traits, and provide desirable prediction accuracy for quantitative traits, with universal applications under wide genetic backgrounds in crops. The development of such platforms faces serious challenges at both the technological level due to cost ineffectiveness, and the knowledge level due to large genotype-phenotype gaps in crop plants. It is expected that such genotyping platforms will be achieved in the next ten years in major crops in consideration of (a) rapid development in gene discovery of important traits, (b) deepened understanding of quantitative traits through new analytical models and population designs, (c) integration of multi-layer -omics data leading to identification of genes and pathways responsible for important breeding traits, and (d) improvement in cost effectiveness of large-scale genotyping. Crop breeding chips and genotyping platforms will provide unprecedented opportunities to accelerate the development of cultivars with desired yield potential, quality, and enhanced adaptation to mitigate the effects of climate change.


Subject(s)
Climate Change , Crops, Agricultural/genetics , Breeding , Genotype , Polymorphism, Single Nucleotide/genetics
7.
Front Plant Sci ; 6: 1037, 2015.
Article in English | MEDLINE | ID: mdl-26640470

ABSTRACT

Pea (Pisum sativum L.) is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22-25% protein, complex starch and fiber constituents, and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tons produced in 2013. Pea breeding has achieved great success since the time of Mendel's experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress toward deciphering the pea genome.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-480418

ABSTRACT

Single nucleotide polymorphism( SNP) is a major source of genetic differences, and the number of SNP is extremely large. Consequently, a high-throughput, rapid and cost-effective technique is essential for SNP typing. Recently, a set of solutions aimed directly at the bottlenecks in SNP detection were put forward, which including direct PCR from human whole blood, adapter-ligation mediated allele-specific amplification, gene polymorphism detection in one tube, microplate array parallel gel electrophoresis and microchip electrophoresis. These methods have been successfully applied in pharmacogenomics, disease-related research, herbal medicine identification and quality control. The results showed that the advantages of the genotyping platforms are highly specific, sensitive, easy to operate and inexpensive with a good prospect of application. The principles and applications of the genotyping platforms in detail were described in this paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...