Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Sci Total Environ ; : 176756, 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39378944

ABSTRACT

Data scarcity hinders global conservation initiatives, and there is a pressing demand for spatially detailed soil and species data to restore human-altered tropical forests. We, therefore, aimed to generate foundational soil environment and habitat suitability data and high-resolution soil maps to aid restoration efforts in a critical ecosystem of the threatened Indo-Burma Biodiversity Hotspot region, i.e., Tarap Hill Reserve (THR) in Bangladesh. Using multiple soil depths and vegetation data, we answered three major questions. (QI) How do spatial distribution and the relationships between soil physicochemical properties (i.e., pH, sand, silt, and clay percentages, organic carbon, and nutrients - N, P, K, Ca, Mg, Fe, and Zn) vary from surface to deeper soils (top 1 m)? (QII) How do different forest management interventions, i.e., old-growth forests (OGF), mixed plantations (MXP), and mono-specific plantations (MOP), influence soil properties, nutrients, and carbon in different soil depths? (QIII) Which spatial interpolation methods are best suited for making more accurate soil property predictions at different depths? Our analyses reveal decreasing availability of critical nutrients like N, P, Mg, and Fe from surface to subsurface soils, while pH, soil organic carbon, and clay content increased with depth. Several soil properties showed significant interactions, although the strength of the interactions changed from surface to deeper soils. Besides, forest management interventions significantly influenced soil functionality by having higher nutrient availability and soil organic carbon in OGF than MXP and MOP. Predictive performances of the deterministic and geostatistical interpolation methods varied for different soil properties in different soil depths, and soil maps revealed substantial heterogeneity in the distribution of soil properties across space and along depths. This study represents a pioneering step in data-driven tropical forest restoration, and our novel findings and high-resolution soil maps could guide future studies focusing on species habitat preferences, restoration ecology, and spatial conservation planning in the Indo-Burma Biodiversity Hotspot region and elsewhere in the tropics.

2.
Sci Total Environ ; 953: 176094, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39244055

ABSTRACT

Elevated ammonium (NH4-N) contents in groundwater are a global concern, yet the mobilization and enrichment mechanisms controlling NH4-N within riverside aquifers (RAS) remain poorly understood. RAS are important zones for nitrogen cycling and play a vital role in regulating groundwater NH4-N contents. This study conducted an integrated assessment of a hydrochemistry dataset using a combination of hydrochemical analyses and multivariate geostatistical methods to identify hydrochemical compositions and NH4-N distribution in the riverside aquifer within Central Yangtze River Basin, ultimately elucidating potential NH4-N sources and factors controlling NH4-N enrichment in groundwater ammonium hotspots. Compared to rivers, these hotspots exhibited extremely high levels of NH4-N (5.26 mg/L on average), which were mainly geogenic in origin. The results indicated that N-containing organic matter (OM) mineralization, strong reducing condition in groundwater and release of exchangeable NH4-N in sediment are main factors controlling these high concentrations of NH4-N. The Eh representing redox state was the dominant variable affecting NH4-N contents (50.17 % feature importance), with Fe2+ and dissolved organic carbon (DOC) representing OM mineralization as secondary but important variables (26 % and 5.11 % feature importance, respectively). This study proposes a possible causative mechanism for the formation of these groundwater ammonium hotspots in RAS. Larger NH4-N sources through OM mineralization and greater NH4-N storage under strong reducing condition collectively drive NH4-N enrichment in the riverside aquifer. The evolution of depositional environment driven by palaeoclimate and the unique local environment within the RAS likely play vital roles in this process.

3.
Environ Monit Assess ; 196(10): 899, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235534

ABSTRACT

Monitoring the land use/land cover (LU/LC) changes that have occurred with rapid population growth and urbanization since the Industrial Revolution is important for the optimal configuration of landscape patterns and ensuring the sustainability of ecological functions. Spatiotemporal dynamic pattern of LU/LC change using high-resolution land use data is an indicator to evaluate the landscape ecological risk through landscape pattern index analysis. In this study, the landscape ecological risk index (LERi) based on LU/LC change was calculated using remote sensing images of Landsat TM (Thematic Mapper) and OLI (Operational Land Imager) Rdata of a Gediz Mainstream Sub-basin in Turkiye between 1992 and 2022, and the spatial distribution regularity of LERi values was determined with spatial statistical analysis. According to the results, it was determined that the LERi values of the study area changed by 45% in 30 years. The highest change is in the very high-risk class, with an increase of 10.96%, and the least change occurred in the very low-risk class, with a decrease of 1.29%. According to the obtained statistical analysis results, it was determined that the global spatial autocorrelation values analyzed at different grain levels showed positive autocorrelation for both years and that the LERi values tended to have strong spatial clustering. As a result, it is emphasized that strict control measures should be taken for areas showing High-High (HH) autocorrelation type located in the southeast and north-southwest line of the study area at the local level, and ecological restoration applications should be given priority in these areas.


Subject(s)
Environmental Monitoring , Spatio-Temporal Analysis , Environmental Monitoring/methods , Turkey , Conservation of Natural Resources , Urbanization , Ecosystem , Risk Assessment , Satellite Imagery , Ecology , Remote Sensing Technology
4.
Huan Jing Ke Xue ; 45(7): 4312-4320, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022976

ABSTRACT

In order to explore the spatial differentiation characteristics and variation law of soil Cd content in a high geological background area, 14 421 topsoil samples were collected from topsoil in the karst area of Guiyang City. Global Moran's I index, cold hot spot analysis, semi-variance function, and Kriging interpolation were used to reveal the spatial structure and distribution law of soil Cd content. The influence of environmental factors on soil Cd content and its main controlling factors were analyzed through analysis of variance and geographic detector. The results showed that: ① The Cd content of karst surface soil in Guiyang varied from 0.03 to 1.36 mg·kg-1, with an average of 0.440 mg·kg-1, which was 1.77 times and 5.95 times the Guizhou soil Cd background value and Chinese soil Cd background value, respectively. The over-standard rate of soil Cd was 30%, which was 4.29 times that of 7% of soil Cd in China. ② There was a significant spatial positive correlation of soil Cd content, showing an aggregation trend in the global space, whereas in the local region, the northeast and southwest were hot spots, and the north was a cold spot. The nugget coefficient of soil Cd content was 10.37%, indicating that soil Cd was mainly affected by structural factors. ③ In terms of spatial distribution, soil Cd showed different accumulation trends. In some massive soils, such as Xifeng County, Xiuwen County, Qingzhen City, Huaxi District, and Nanming District, the soil ω(Cd)was less than 0.3 mg·kg-1. The soil ω(Cd)was between 0.3 and 0.6 mg·kg-1,and soil Cd in Baiyun District, Wudang District, Guanshan Lake area, and Yunyan area as a whole lied within this range. The soil ω(Cd)between 0.6 and 0.9 mg·kg-1 was concentrated in the southwest of Qingzhen City, the south of Huaxi District, and the north of Kaiyang County, whereas soil ω(Cd) between 0.9 and 1.2 mg·kg-1 was mainly concentrated in the southwest of Qingzhen City. The extreme value of soil Cd content ( > 1.2 mg·kg-1) was mostly distributed in Kaiyang County, Xiuwen County, Qingzhen City, and Huaxi District. ④ The results of analysis of variance and geo-detector showed that different environmental factors had significant effects on the spatial differentiation of soil Cd, but their explanatory power on soil Cd content varied: stratum (0.176 5) > soil type (0.026 0) > organic matter (0.025 1) > altitude (0.010 5) > parent rock (0.007 3) > land use (0.006 4) > pH (0.001 3), and the interaction between stratum and arbitrary environmental factors was the greatest. Therefore, stratum was the main factor affecting the spatial differentiation of soil Cd content.

5.
Environ Sci Pollut Res Int ; 31(24): 34953-34961, 2024 May.
Article in English | MEDLINE | ID: mdl-38714620

ABSTRACT

The safety of human health and agricultural production depends on the quality of farmland soil. Risk assessment of heavy metal pollution sources could effectively reduce the hazard of soil pollution from various sources. This study has identified and quantitatively analyzed pollution sources with geostatistical analysis and the APCS-MLR model. The potential ecological risk index was combined with the APCS-MLR model which has quantitatively calculated the source contribution. The results revealed that As, Cr, Cd, Pb, Zn, and Cu were enriched in soil. Geostatistical analysis and the APCS-MLR model have apportioned four pollution sources. The Mn and Ni were attributed to natural sources; As and Cr were from agricultural activities; Cu and Zn were originated from natural sources; Cd and Pb were derived from atmospheric deposition. Atmospheric deposition and agricultural activities were the largest contributors to ecological risk of heavy metals in soil, which accounted for 56.21% and 36.01% respectively. Atmospheric deposition and agricultural activities are classified as priority sources of pollution. The combination of source analysis receptor model and risk assessment is an effective method to quantify source contribution. This study has quantified the ecological risks of soil heavy metals from different sources, which will provide a reliable method for the identification of primary harmfulness sources of pollution for future studies.


Subject(s)
Environmental Monitoring , Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , Risk Assessment , Environmental Monitoring/methods , Soil Pollutants/analysis , Soil/chemistry , Agriculture , Environmental Pollution
6.
Environ Sci Technol ; 58(17): 7529-7542, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644662

ABSTRACT

We investigated the fluorescent dissolved organic matter (FDOM) composition in two watersheds with variable land cover and wastewater infrastructure, including sanitary sewers and septic systems. A four-component parallel factor analysis model was constructed from 295 excitation-emission matrices recorded for stream samples to examine relationships between FDOM and geospatial parameters. The contributions of humic acid- and fulvic acid-like fluorescence components (e.g., C1, C2, C3) were fairly consistent across a 12 month period for the 27 sampling sites. In contrast, the protein-like fluorescence component (C4) and a related ratiometric wastewater indicator (C4/C3) exhibited high variability in urban tributaries, suggesting that some sites were impacted by leaking sewer infrastructure. Principal component analysis indicated that urban areas clustered with impervious surfaces and sanitary sewer density, and cross-covariance analysis identified strong positive correlations between C4, impervious surfaces, and sanitary sewer density at short lag distances. The presence of wastewater was confirmed by detection of sucralose (up to 1,660 ng L-1) and caffeine (up to 1,740 ng L-1). Our findings not only highlight the potential for C4 to serve as an indicator of nearby, compromised sanitary sewer infrastructure, but also suggest that geospatial data can be used to predict areas vulnerable to wastewater contamination.


Subject(s)
Wastewater , Wastewater/chemistry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Fluorescence
7.
J Med Entomol ; 61(3): 667-677, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38555621

ABSTRACT

A spatiotemporal investigation of hematophagous fly prevalence was conducted over a 1-year period on 12 beef cattle farms located in major livestock areas of Bangkok, Thailand, using Vavoua traps. The survey revealed 5,018 hematophagous flies belonging to Muscidae and Tabanidae, with the 3 dominant species identified as Stomoxys calcitrans (Linnaeus) (2,354; 46.91%), Musca crassirostris Stein (1,528; 30.45%), and Haematobia exigua de Meijere (922; 18.37%). The abundance of S. calcitrans per trap per week was significantly higher during the rainy season (45.64 ±â€…14.10), followed by the cold and dry seasons (6.39 ±â€…2.16 and 3.04 ±â€…1.27, respectively). The relative abundance of S. calcitrans reached the highest apparent density per trap per day (ADT) index of 9.83 in August 2022 during the rainy season. Subsequently, there was a rapid decline, and the ADT index dropped to nearly zero in December 2022 during the cold season. This low abundance continued through the dry months from March to May 2023. The higher rainfall and relative humidity could significantly contribute to the high relative abundance of S. calcitrans. In contrast, M. crassirostris and H. exigua showed population fluctuations that were not significantly associated with seasonal changes and weather conditions. Remote sensing data and spatial regression analyses using ordinary least squares regression showed the high spatial density of S. calcitrans in the north direction of the Khlong Sam Wa district during the rainy season; it shifted toward the south in the cold and dry seasons, corresponding with rainfall.


Subject(s)
Muscidae , Seasons , Animals , Thailand , Muscidae/physiology , Cattle , Animal Distribution , Spatio-Temporal Analysis
8.
Environ Geochem Health ; 46(2): 42, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227078

ABSTRACT

In the present study, the status of water quality, environmental contamination in the lower stretch of Subarnarekha River with respect to potentially toxic elements (PTEs), its seasonal distribution, and ecotoxicological health impacts were investigated. For this purpose, a combination of indexing approaches and geospatial methods was used. The estimated water quality index (WQI) has shown that the river water falls under "moderate to very poor" category during the pre-monsoon and "moderate to poor" category in the post-monsoon season. The abundance of PTEs (Pb, Cu, Ni, Cd, Fe, and Cr) was on the higher side during the pre-monsoon in comparison with the post-monsoon season. The results of contamination index (Cd) and heavy metal evaluation index (HEI) explain that Subarnarekha River has low-to-moderate levels of contamination with PTEs in the majority of sampling sites. However, HPI indicated that the river water is moderate-to-highly contaminated with PTEs in both seasons. Principal component analysis (PCA) and cluster analysis (CA) reveal that anthropogenic sources are prime contributors to PTEs contamination in Subarnarekha River. The potential non-cancerous health concerns for child and adults due to Cr and Pb in some sampling stations along the river stretch have been observed. The carcinogenic risk (CR) has been established for Cr, Pb, and Cd in Subarnarekha River with Cr (> 10-4) as the most unsafe element. Monte Carlo simulation (MCS) indicates a high risk of cancer hazards due to Cr (values > 1E-04) in present as well as future for both child and adults.


Subject(s)
Cadmium , Rivers , Adult , Child , Humans , Lead , Monte Carlo Method , Water Quality , India , Risk Assessment
9.
Environ Sci Pollut Res Int ; 30(37): 88132-88154, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37436631

ABSTRACT

The coastal areas of Bangladesh have poor accessibility to fresh drinking water and the groundwater is not suitable for drinking, cooking, and other domestic uses due to high levels of salinity and potentially toxic elements. The current study focuses on understanding of the distribution of some physicochemical parameters (temperature, pH, EC, TDS, and salinity) and chemical elements (Fe, Mn, Zn, Ca, Mg, Na, K, Cu, Co, Pb, As, Cr, Cd, and Ni) with health perspective in drinking water from the southwestern coastal area of Bangladesh. The physicochemical properties of the water samples were examined with a multiparameter meter, while the elemental concentrations were analyzed using atomic absorption spectrometer. Water quality index (WQI) and irrigation indices were utilized to determine the drinking water quality and irrigation feasibility, respectively, whereas hazard quotients (HQs) and hazard index (HI) were used to assess the probable pathways and the associated potential risks to human health. The concentrations of some toxic elements in measured samples were relatively higher compared to drinking water guidelines, indicating that ground and surface water are not apt for drinking and/or domestic uses. The multivariate statistical approaches linked the source of the pollutants in the studied water body mostly to the geogenic origin including saline water intrusion. WQI values ranged from 18 to 430, reflecting excellent to unsuitable categories of water quality. The assessment of human health risks due to exposure to contaminated water demonstrated both carcinogenic and non-carcinogenic health risks in the exposed residents of the study area. Therefore, appropriate long-term coastal area management strategies should be adopted in the study region for environmental sustainability. The findings of this research will be supportive in understanding the actual situation of fresh drinking water in the area for policymakers, planners, and environmentalists to take effective necessary measures to ensure safe drinking water in the study area.


Subject(s)
Drinking Water , Groundwater , Metals, Heavy , Water Pollutants, Chemical , Humans , Water Quality , Environmental Monitoring , Bangladesh , Water Pollution , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Risk Assessment , Metals, Heavy/analysis
10.
Sci Total Environ ; 891: 164478, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37268116

ABSTRACT

Mosses are particularly suitable for recording the accumulation of atmospheric substance inputs in large areas at relatively many locations. In Europe, this has been done every five years since 1990 as part of the European Moss Survey. In this framework, mosses were collected at up to 7312 sites in up to 34 countries and chemically analyzed for metals (since 1990), nitrogen (since 2005), persistent organic pollutants (since 2010) and microplastic (since 2015). The present investigation aimed at determining the nitrogen accumulated in three-year-old shoots from mosses collected in Germany in 2020 by quality-controlled sampling and chemical analysis according to the European Moss Survey Protocol (ICP Vegetation 2020). The spatial structure of the measurement values was analyzed by means of Variogram Analysis, and the respective function was used for Kriging-Interpolation. In addition to mapping the nitrogen values according to the international classification, maps based on 10 percentile classes were calculated. Maps for the Moss Survey 2020 data were compared with respective maps produced from the 2005 and 2015 Moss Survey data. Trends in Germany-wide nitrogen medians over the past three campaigns (2005, 2015 and 2020) show that nitrogen medians decreased by -2 % between 2005 and 2015 and increased by +8 % between 2015 and 2020. These differences are not significant and do not match the emission trends. Therefore, emission register data needs to be controlled by monitoring nitrogen deposition with technical and biological samplers and deposition modelling.


Subject(s)
Air Pollutants , Bryophyta , Metals, Heavy , Nitrogen/analysis , Plastics/analysis , Environmental Monitoring/methods , Germany , Europe , Bryophyta/chemistry , Air Pollutants/analysis , Metals, Heavy/analysis
11.
Heliyon ; 9(3): e14394, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36938436

ABSTRACT

Various inaccurate traditional models have resulted in major ambiguities and gaps in the interpretation of Anatolian plate deformation directions. To address this issue, a GIS-based spatial statistical analysis method was used for the first time to detect the directional distribution of deformation along the Anatolian Plate in Turkey. Two strategies were used in this study: firstly, identifying the abnormally active seismic areas by detecting significant hotspot and cold spot clusters and confirming this detection using optimized hotspot analysis for earthquake events that occurred from 1900 to the end of 2019. Secondly, detecting the directional distribution of deformation using a Standard Deviational Ellipse (SDE) by calculating the standard deviation of the x and y coordinates from the mean center for each set of earthquake events in the Anaconda Python Platform and ArcGIS 10.8 software. Our improved geostatistical analysis results confirmed the existence of abnormal seismic hazard zones within the study area and three deformation directions: the east-west trend, the southeast-northwest trend, and the south-north trend.

12.
Int J Biometeorol ; 67(4): 553-563, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36941512

ABSTRACT

The aim of this study was to investigate the geographical spatial distribution of creatine kinase isoenzyme (CK-MB) in order to provide a scientific basis for clinical examination. The reference values of CK-MB of 8697 healthy adults in 137 cities in China were collected by reading a large number of literates. Moran index was used to determine the spatial relationship, and 24 factors were selected, which belonged to terrain, climate, and soil indexes. Correlation analysis was conducted between CK-MB and geographical factors to determine significance, and 9 significance factors were extracted. Based on R language to evaluate the degree of multicollinearity of the model, CK-MB Ridge model, Lasso model, and PCA model were established, through calculating the relative error to choose the best model PCA, testing the normality of the predicted values, and choosing the disjunctive kriging interpolation to make the geographical distribution. The results show that CK-MB reference values of healthy adults were generally correlated with latitude, annual sunshine duration, annual mean relative humidity, annual precipitation amount, and annual range of air temperature and significantly correlated with annual mean air temperature, topsoil gravel content, topsoil cation exchange capacity in clay, and topsoil cation exchange capacity in silt. The geospatial distribution map shows that on the whole, it is higher in the north and lower in the south, and gradually increases from the southeast coastal area to the northwest inland area. If the geographical factors are obtained in a location, the CK-MB model can be used to predict the CK-MB of healthy adults in the region, which provides a reference for us to consider regional differences in clinical diagnosis.


Subject(s)
Climate , Isoenzymes , Adult , Humans , Reference Values , Soil , Creatine Kinase
13.
Foods ; 12(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36766209

ABSTRACT

Heavy metal(loid)s pollution in farmland soil is not only a serious environmental but also a human health-related issue. Accurate understanding and evaluation of heavy metal pollution levels in the soil are very important for sustainable agricultural development and food safety. Mountainous and hilly areas have the dual functions of industrial development and agricultural production, and the farmland soil in these areas is more susceptible to heavy metal pollution. In this study, the single factor index, Nemerow index, geo-accumulation index, enrichment factor index, and potential ecological risk indices, which are mainly used to assess the contamination and risk of heavy metals in farmland soils. The sources of heavy metals in agricultural soils of the study area were analyzed using correlation analysis and principal component analysis. Finally, geostatistical methods were used to map the heavy metal contamination of farmland soils. An average concentration of all heavy metals (except As) in farmland soils of the study area exceeded the corresponding background values, as indicated by the obtained results. The results of the principal component analysis showed that the heavy metal sources in the soils of the study area can be classified into two groups. The five pollutant index methods all showed the most serious Hg pollution in the study area. The integrated pollutant mapping results showed that the risk of heavy metal pollution in the study area was mostly moderate, except for the western and central parts of the region. This study enhances understanding of the pollution levers of heavy metals in Yiyuan farmland soils, and also can facilitate the monitoring of heavy metal contaminants at the primary stage of the food chain and assess the risk of the presence of heavy metal contaminants in food, thus improving the health of the residents.

14.
Environ Geochem Health ; 45(5): 1723-1737, 2023 May.
Article in English | MEDLINE | ID: mdl-35633438

ABSTRACT

This study investigated mercury pollution at two e-waste recycling sites in Ghana-Dagomba Line in Kumasi and Agbogbloshie in Accra. A total of 129 soil samples taken at 100 m and 50 m resolutions, respectively, for Dagomba Line and Agbogbloshie, were analysed for mercury using a Zeeman atomic absorption spectrometry. Mercury concentrations from the recycling sites (ranging from 0.11 to 7.57 mg/kg Dagomba Line, and 0.01-4.36 mg/kg at Agbogbloshie) were significantly higher than that of the surrounding areas (0.01-0.17 mg/kg in Kumasi and 0.01-2.18 mg/kg in Accra) and unpolluted control sites (0.05 mg/kg in Kumasi and 0.02 mg/kg in Accra). The dismantling sites at both locations had the highest mercury concentrations. Furthermore, the concentrations were significantly higher at the Dagomba Line site in Kumasi than at Agbogbloshie, even though the Dagomba Line site is relatively recent. The mercury concentrations at both sites exceeded the pollution prevention and abatement level of 0.1 mg/kg. However, the estimated human health risk showed no potential human health effects. Moreover, the mercury concentrations in water and sediment (0.12-7.69 ng/L and 0.02-0.28 ng/L for Dagomba Line and Agbogbloshie, respectively) were below the US EPA standards. Findings from this study show that e-waste recycling can contaminate the topsoil with mercury, irrespective of the scale of the activity.


Subject(s)
Electronic Waste , Mercury , Humans , Mercury/analysis , Ghana , Electronic Waste/analysis , Recycling , Water/analysis , Environmental Monitoring
15.
Article in English | MEDLINE | ID: mdl-36497982

ABSTRACT

A detailed investigation of geogenic radon potential (GRP) was carried out near Graiguenamanagh town (County Kilkenny, Ireland) by performing a spatial regression analysis on radon-related variables to evaluate the exposure of people to natural radiation (i.e., radon, thoron and gamma radiation). The study area includes an offshoot of the Caledonian Leinster Granite, which is locally intruded into Ordovician metasediments. To model radon release potential at different points, an ordinary least squared (OLS) regression model was developed in which soil gas radon (SGR) concentrations were considered as the response value. Proxy variables such as radionuclide concentrations obtained from airborne radiometric surveys, soil gas permeability, distance from major faults and a digital terrain model were used as the input predictors. ArcGIS and QGIS software together with XLSTAT statistical software were used to visualise, analyse and validate the data and models. The proposed GRP models were validated through diagnostic tests. Empirical Bayesian kriging (EBK) was used to produce the map of the spatial distribution of predicted GRP values and to estimate the prediction uncertainty. The methodology described here can be extended for larger areas and the models could be utilised to estimate the GRPs of other areas where radon-related proxy values are available.


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , Radiation Monitoring , Radon , Soil Pollutants, Radioactive , Humans , Radon/analysis , Air Pollutants, Radioactive/analysis , Radiation Monitoring/methods , Bayes Theorem , Soil Pollutants, Radioactive/analysis , Soil , Air Pollution, Indoor/analysis
16.
Chemosphere ; 309(Pt 1): 136662, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36195127

ABSTRACT

The main objectives of this research were to (i) investigate the concentration; (ii) characterize the distribution; (iii) determine the sources apportionment; (iv) estimate environmental and health risks of heavy metals in soil from mountain beech forest. A total of 76 soil samples from 20 pure beech forest stands from Bosnia and Herzegovina (BA), Bulgaria (BG), Check Republic (CZ), Germany (DE), Italy (IT), Poland (PL), Romania (RO), Serbia (RS), Slovakia (SK), Slovenia (SL), and Spain (ES) were collected. The content of major elements was measured by X-ray fluorescence spectroscopy (XRF). The content of heavy metals was measured by inductively coupled plasma-optical emission spectrometry (ICP/OES). Heavy metals had a specific concentration range, which followed in soil samples from depth 0-40 cm the common order (low to high): Hg < Cd < As < Co < Pb < Ni < Cu < Cr < Zn, and from depth 40-80 cm: Hg < Cd < As < Pb < Co < Ni < Cu < Cr < Zn. The grouping of the examined parameters according to rock types, soil types, and localities indicated the separation of carbonate rocks from other substrates, luvisol, and rendzina from other soil types, and samples from BA, SL, and IT from other localities. According to sources apportionment As, Pb and Zn are of anthropogenic origin, Cd, Co, Cr, and Ni are of geogenic origin, while the middle position of Cu and Hg indicates a combined contribution of both sources. Elements Cd and Hg indicated severe to extremely severe enrichment with a mean value of 24.3 and 70.6, respectively. Based on the determined values Ni, Cr, As and Cd do not pose a health risk.


Subject(s)
Fagus , Mercury , Metals, Heavy , Soil Pollutants , Soil/chemistry , Soil Pollutants/analysis , Cadmium/analysis , Lead/analysis , Environmental Monitoring/methods , Risk Assessment , Metals, Heavy/analysis , Forests , Carbonates/analysis , Mercury/analysis , China
17.
Forensic Sci Int Genet ; 58: 102677, 2022 05.
Article in English | MEDLINE | ID: mdl-35228005

ABSTRACT

The profiles of 2188 SA males obtained with 10 Y-STR highly informative markers were analyzed for their information content for forensic and population studies. The samples comprised a total of 16 populations, represented by Bantu-speaking groups, KhoeSan descendants, out-of-Africa descendants and admixed groups. The country hosts approximately 58 million inhabitants, 80% native and the remaining with ancestry external to Africa and admixed. The forensic parameters indicated high levels of diversity in all populations and lower in the Nguni, who showed elevated number of repeated haplotypes, thus displaying the lowest DC values. Population comparative analysis with MDS showed concordant results with the historical record. Non-hierarchical and hierarchical AMOVA over ethnolinguistic groups and administrative divisions showed significant variation in all cases, with higher differences due to ethnicity than to geopolitical subdivision. The haplotypes were further analyzed by hierarchical kmeans clustering. The identified clusters differed in their relative contribution to the gene pool of the 16 analyzed populations. Geostatistical analysis of the clusters evidenced areas of higher density for some clusters in correspondence with language, while other clusters were more homogeneously distributed. In addition, a few rare microvariants were identified with very restricted geographic occurrence. The results emphasize the forensic value of a highly informative set of markers in a country with high genetic diversity and complex population history.


Subject(s)
Chromosomes, Human, Y , Genetics, Population , Black People/genetics , Genetic Variation , Haplotypes , Humans , Male , Microsatellite Repeats , South Africa
18.
Sci Total Environ ; 802: 149909, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34525690

ABSTRACT

Groundwater of alluvial fan plains is the foremost water source, especially in arid/semiarid regions. Its contaminants are big issues for water supply and public health concern. To reveal the groundwater chemistry, contaminants sources and health threats in alluvial aquifers, 81 groundwaters were collected from a typical alluvial fan plain of northern China for nitrogen, fluoride and major ions analysis. Statistical analysis and hydrochemical diagrams as well as human health risk assessment were performed. Nitrate is widely distributed and 53% of groundwaters exceed the permissible limit with the maximum concentration up to 326 mg/L. The distributions of nitrite, ammonia and fluoride contaminants are sporadic in spatial, and the concentrations of fluoride in groundwaters are slightly beyond the permissible limit of 1 mg/L. The hydrochemical facies shift from HCO3-Ca or Mixed HCO3-Na·Ca type to Mixed Cl-Mg·Ca and ClCa type with the increase of nitrate content. Two factors (Factor-1 and Factor-2) are extracted by factor analysis and account 63% of the total variances. The positive loading of F- and negative loading of NO3- on Factor-2 reveal geogenic and anthropogenic origins, respectively. The significant positive loadings of TDS, TH, SO42-, Cl-, Ca2+, Mg2+ on Factor-1 reveal the governing mechanisms on groundwater chemistry by intermixed sources of geogenic origins and anthropogenic inputs. Hydrogeochemical evolution in the study area is driven by both water-rock interaction and anthropogenic forces. Anthropogenic inputs/influences are the dominated forces increasing groundwater nitrate content and salinity in the piedmont zone and the residential and industrial zone of the southeastern lower parts, and would pose potential non-carcinogenic risks to various populations via oral intake pathway. Rational measures should be taken to protect groundwater quality out of the threats of anthropogenic pollution. The geogenic fluoride in groundwater would threat the health of children through oral pathway and should be also concerned. CAPSULE: The driving forces of groundwater chemistry in alluvial fan plains were revealed using integrated approach of factor analysis and geostatistical modelling.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Fluorides/analysis , Humans , Nitrates/analysis , Water Pollutants, Chemical/analysis
19.
J Vet Res ; 66(4): 459-471, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36846030

ABSTRACT

Introduction: African swine fever (ASF) is a lethal haemorrhagic disease of Suidae, present in Poland since 2014. The natural reservoir of ASF in Europe is the wild boar (Sus scrofa); however, human activity facilitates long-distance introductions of the disease. In ASF control it is important to identify areas at increased risk of infection. Such identification and estimation of the disease's progress and subsequent spread will help to identify the specific preventive action needs in given zones. Serving this purpose, this study is a spatial and statistical analysis of ASF spread through noted outbreak data. Material and Methods: The spatial-temporal analysis was conducted on the basis of data including the time and location of all ASF outbreaks both in wild boars and domestic pigs in Poland in 2014-2021. Results: The analysis indicates possible routes and directions for further ASF spread in Poland, estimates the annual increase of the affected area (approx. 25,000 km2 every year since 2017) and marks trends. The strong method-independent correlation between the year and the surface area affected by African swine fever indicated a near-linear generalised trend. Conclusion: Given the growth trend, we can expect ASF to expand further into new territories of the country; however, it is important to realise that there is still a significant area to protect, because 60% of Poland remains ASF-free.

20.
Environ Monit Assess ; 194(1): 23, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34904192

ABSTRACT

Activities like agriculture contribute to the pollution of aquatic systems by fungicides, such as benomyl/carbendazim. This chemical inhibits the activity of acetylcholinesterase (AChE), having teratogenic, oncogenic, reproductive, and hepatic effects on aquatic and soil organisms. This paper presents the results of a study conducted in the Tenango dam, Mexico, aimed at detecting and determining the spatial and temporal variability of benomyl/carbendazim fungicide in the dam's water and its possible impact on Nile tilapia (Oreochromis niloticus), farmed and commercialized in the site. Five site visits were made during 2015. Benomyl/carbendazim was quantified at 34 georeferenced stations. Thirty O. niloticus specimens were collected per visit. The quality of water and O. niloticus specimens was evaluated according to the Mexican standards. The fungicide concentrations in the O. niloticus muscle and the AChE activity were measured. Seasonal and spatial variations of benomyl/carbendazim were determined using geostatistical methods (ordinary kriging [OK] and universal kriging [UK]). Geostatistical analyses demonstrated that agriculture contributes to the increased amounts of the chemical in specific areas. Even though the fungicide levels in water varied over time, they did not represent a risk to O. niloticus according to the current standards. The specimens met the quality criteria for their commercialization; however, they had low weights and small sizes. The benomyl/carbendazim concentration in the muscle increased with the size and exhibited a negative correlation with the AChE activity, thus indicating a potential harmful effect.


Subject(s)
Benomyl , Cichlids , Acetylcholinesterase , Animals , Benzimidazoles , Carbamates , Environmental Monitoring , Mexico , Spatial Analysis , Water
SELECTION OF CITATIONS
SEARCH DETAIL