Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 330
Filter
1.
Food Chem ; 458: 140174, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38964109

ABSTRACT

Fu Brick Tea (FBT) is characterized by Fungus Aroma (FA), which determines the quality of FBT products. However, the aroma constituents and their interactive mechanism for FA remain unclear. In this study, the FBT sample with the optimal FA characteristics was selected from 29 FBTs. Then, 19 components with OAV ≥ 1 were identified as the odorants involved in the FA formation. The aroma recombination test suggested that the FA was potentially produced by the synergistic interplay among the 15 key odorants, including (E,E)-2,4-heptadienal, (E,E)-2,4-nonadienal, (E)-2-nonenal, (E,Z)-2,6-nonadienal, (E)-2-octenal, (E)-ß-ionone, 4-ketoisophorone, dihydroactinidiolide, (E)-ß-damascenone, 1-octen-3-ol, linalool, geraniol, heptanal, hexanal, and phenylacetaldehyde. And, the synergistic effects between them were preliminarily studied by aroma omissions, such as modulatory effects, masking effects, compensatory effects, and novelty effects, ultimately contributing to the FA. In all, this work helps us better understand the formation of the FA and provides a basis for the improvement of FBT production technology.

2.
J Neuroimmunol ; 393: 578400, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38991453

ABSTRACT

Sleep insufficiency is a significant health problem worldwide, and adolescent sleep restriction (SR) could induce multiple neurodevelopmental disorders in the central nervous system (CNS). Microglial-mediated neuroinflammation plays a vital role in multiple neurological diseases, and recent research showed the regulation effect of immunoproteasome on microglia functions. Geraniol (GER), an important ingredient in many essential oils, possesses diverse pharmacological properties like anti-inflammatory and antioxidant. The present study was designed to evaluate the neuroprotective effect of GER on SR in adolescent mice and further investigate the underlying mechanisms. Our results displayed that 14 days of chronic sleep restriction (CSR) induced cognitive decline, and anxiety-like and attention-deficit behaviors, which were mitigated by GER pretreatment. GER administration also reversed microglial pro-inflammatory response under CSR stimulation in the anterior cingulate cortex (ACC) regions by reducing the expression and secretion of cytokines like IL-1ß and TNF-α. Mechanism research showed that LMP7 mRNA was selectively up-regulated under CSR treatment but down-regulated by GER administration. Proteasome activity and protein expression of LMP7 were consistent with mRNA data. ONX-0914 was applied to inhibit LMP7 selectively, and data validated that GER might alleviate CSR-induced neuroinflammation by regulating LMP7. Our study provides evidence that LMP7 is a critical regulator of CSR-induced proinflammation, and geraniol might be a promising therapy against CSR-induced neurodevelopmental disorders.

3.
Front Plant Sci ; 15: 1411825, 2024.
Article in English | MEDLINE | ID: mdl-39027668

ABSTRACT

Considering the stricter European regulations for chemical pesticides (e.g. abolishment of the use of chemical soil fumigation products, such as methyl bromide), the need for more sustainable plant protection products is strongly increasing. In this research, Product X, an innovative mixture of bio-nematicidal compounds was developed and evaluated for efficacy. Product X showed a direct nematicidal effect against the root-knot nematode Meloidogyne incognita. In pot trials with tomato plants infected with M. incognita, Product X treatment lead to a significant reduction in nematode-induced gall formation. mRNA-sequencing indicated alterations in phytohormone levels and ROS-metabolism in tomato roots upon treatment with Product X, which was subsequently biochemically validated. Increased levels of abscisic acid and peroxidase activity seem to be the main factors in the response of tomato plants to Product X. Long-term administration of Product X did not yield negative effects on tomato growth or yield. In conclusion, Product X provides a new interesting mix of bio-active compounds in the combat against root-knot nematodes.

4.
Arch Pharm (Weinheim) ; : e2400430, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982314

ABSTRACT

Geraniol, a primary component of several essential oils, has been associated with broad-spectrum antiprotozoal activities, although moderate to weak. This study primarily concentrated on the synthesis of hydrazinated geraniol derivatives as potential antiprotozoal agents. The synthesised compounds were tested in vitro against different parasitic protozoans of clinical relevance, including Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense, Trypanosoma cruzi and Leishmania infantum. Compounds 6, 8, 13, 14 and 15 demonstrated low micromolar activity against the different parasites. Compounds 8, 13, 14 and 15 had the highest efficacy against Trypanosoma brucei rhodesiense, as indicated by their respective IC50 values of 0.74, 0.56, 1.26 and 1.00 µM. Compounds 6, 14 and 15 displayed the best activity against Trypanosoma brucei brucei, with IC50 values of 1.49, 1.48 and 1.85 µM, respectively. The activity of compounds 6, 14 and 15 also extended to intracellular Trypanosoma cruzi, with IC50 values of 5.14, 6.30 and 4.90 µM, respectively. Compound 6, with an IC50 value of 11.73 µM, and compound 14, with an IC50 value of 8.14 µM, demonstrated some modest antileishmanial activity.

5.
Yakugaku Zasshi ; 144(6): 675-683, 2024.
Article in Japanese | MEDLINE | ID: mdl-38825476

ABSTRACT

Recently, feeding damage by the olive weevil Pimelocerus (Dyscerus) perforatus Roelofs, which utilizes olive trees (Olea europaea Linne) as a host plant, has become the biggest obstacle to olive cultivation in Japan. We previously identified several volatile plant-derived natural products that exhibit repellent activity against olive weevils. In this study, we conducted a pilot test of repellents in an olive orchard along with the use of insecticide. During three consecutive years from 2021 to 2023, the first year was the observation period, and the second and third years were set aside for a trial period for o-vanillin and geraniol as repellents, respectively. Using o-vanillin, the number of adult olive weevil outbreaks decreased to almost half a year in the experimental area, the use of geraniol then resulted in a drastic reduction of the number of individual olive weevils in the experimental area. In contrast, adults and larvae outbreaks increased in the control area without a repellent, despite the use of insecticide. These results indicate that the volatile repellents drove the olive weevils away and kept them at bay in the field. Based on the observations, we will be able to provide a new approach for the control of olive cultivation, including fruit and leaves used for commercial purposes, following integrated pest management (IPM) practices, such as reducing environmental poisoning from intense insecticides, and returning olive weevils to their original habitat outside of olive orchards.


Subject(s)
Acyclic Monoterpenes , Insect Repellents , Olea , Weevils , Olea/chemistry , Animals , Pilot Projects , Insecticides , Terpenes , Japan
6.
J Ethnopharmacol ; 333: 118459, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38897034

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In Brazilian popular medicine, Lippia alba leaves are used in teas to treat pain and inflammatory diseases. AIM OF THE STUDY: to evaluate the chemical composition, antinociceptive, and anti-inflammatory activities of Lippia alba essential oil and its major compound geraniol. MATERIAL AND METHODS: Lippia alba leaves were collected in Pará state, Brazil. The leaf essential oil was obtained using a modified Clevenger-type extractor. Then, the oil was analyzed by GC and GC-MS analyses. To evaluate the toxicity of LaEO and geraniol, the doses of 50, 300, and 2000 mg/kg were used in a mouse model. For antinociception tests, abdominal contortion, hot plate, and formalin tests were used; all groups were treated with LaEO and geraniol at doses of 25, 50, and 100 mg/kg; and to evaluate inflammation using the ear edema model. RESULTS: The constituents identified in the highest content were oxygenated monoterpenes: geraniol (37.5%), geranial (6.7%) and neral (3.8%). The animals treated with LaEO and geraniol demonstrated atypical behaviors with aspects of lethargy and drowsiness, characteristics of animals in a state of sedation; the relative weights showed no significant difference compared to the controls. In the abdominal contortion test, LaEO at 25 mg/kg, 50 mg/kg doses, and 100 mg/kg reduced the number of contortions, representing a percentage reduction of 84.64%, 81.23%, and 66.21% respectively. In the hot plate test, LaEO and geraniol increased the latency time at doses of 25, 50, and 100 mg/kg in all test periods; there was no statistical difference between LaEO and geraniol. In the first phase of the formalin test, only doses of 25 mg/kg and 100 mg/kg of LaEO showed significant activity, reducing the latency time by 53.40% and 58.90%. LaEO at doses of 25 mg/kg and 100 mg/kg reduced the size of the edema, demonstrating an anti-inflammatory activity of 59.38% (25 mg/kg) and 50% (100 mg/kg). CONCLUSION: Lippia alba essential oil and geraniol showed central/peripheral analgesic and anti-inflammatory potential and can be used as an alternative or complementary treatment to conventional drugs. More studies are needed to evaluate its action mechanisms and its analgesic effects.


Subject(s)
Acyclic Monoterpenes , Analgesics , Anti-Inflammatory Agents , Edema , Lippia , Oils, Volatile , Plant Leaves , Animals , Lippia/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Brazil , Analgesics/pharmacology , Analgesics/isolation & purification , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Male , Plant Leaves/chemistry , Edema/drug therapy , Edema/chemically induced , Acyclic Monoterpenes/pharmacology , Plants, Medicinal/chemistry , Pain/drug therapy , Behavior, Animal/drug effects , Dose-Response Relationship, Drug , Pain Measurement/drug effects
7.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892454

ABSTRACT

Ferulic acid (Fer) and geraniol (Ger) are natural compounds whose antioxidant and anti-inflammatory activity confer beneficial properties, such as antibacterial, anticancer, and neuroprotective effects. However, the short half-lives of these compounds impair their therapeutic activities after conventional administration. We propose, therefore, a new prodrug (Fer-Ger) obtained by a bio-catalyzed ester conjugation of Fer and Ger to enhance the loading of solid lipid microparticles (SLMs) designed as Fer-Ger delivery and targeting systems. SLMs were obtained by hot emulsion techniques without organic solvents. HPLC-UV analysis evidenced that Fer-Ger is hydrolyzed in human or rat whole blood and rat liver homogenates, with half-lives of 193.64 ± 20.93, 20.15 ± 0.75, and 3.94 ± 0.33 min, respectively, but not in rat brain homogenates. Studies on neuronal-differentiated mouse neuroblastoma N2a cells incubated with the reactive oxygen species (ROS) inductor H2O2 evidenced the Fer-Ger ability to prevent oxidative injury, despite the fact that it appears ROS-promoting. The amounts of Fer-Ger encapsulated in tristearin SLMs, obtained in the absence or presence of glucose, were 1.5 ± 0.1%, allowing the control of the prodrug release (glucose absence) or to sensibly enhance its water dissolution rate (glucose presence). These new "green" carriers can potentially prolong the beneficial effects of Fer and Ger or induce neuroprotection as nasal formulations.


Subject(s)
Acyclic Monoterpenes , Coumaric Acids , Prodrugs , Prodrugs/chemistry , Prodrugs/pharmacology , Animals , Coumaric Acids/chemistry , Rats , Mice , Humans , Hydrolysis , Acyclic Monoterpenes/chemistry , Acyclic Monoterpenes/pharmacology , Cell Line, Tumor , Esters/chemistry , Terpenes/chemistry , Terpenes/pharmacology , Reactive Oxygen Species/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology
8.
Metab Eng ; 84: 83-94, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38897449

ABSTRACT

Monoterpene indole alkaloids (MIAs) are a group of plant-derived natural products with high-value medicinal properties. However, their availability for clinical application is limited due to challenges in plant extraction. Microbial production has emerged as a promising strategy to meet the clinical demands for MIAs. The biosynthetic pathway of cis-trans nepetalactol, which serves as the universal iridoid scaffold for all MIAs, has been successfully identified and reconstituted. However, bottlenecks and challenges remain to construct a high-yielding platform strain for cis-trans nepetalactol production, which is vital for subsequent MIAs biosynthesis. In the present study, we focused on engineering of Pichia pastoris cell factories to enhance the production of geraniol, 8-hydroxygeraniol, and cis-trans nepetalactol. By targeting the biosynthetic pathway from acetyl-CoA to geraniol in both peroxisomes and cytoplasm, we achieved comparable geraniol titers in both compartments. Through protein engineering, we found that either G8H or CPR truncation increased the production of 8-hydroxygeraniol, with a 47.8-fold and 14.0-fold increase in the peroxisomal and cytosolic pathway strain, respectively. Furthermore, through a combination of dynamical control of ERG20, precursor and cofactor supply engineering, diploid engineering, and dual subcellular compartmentalization engineering, we achieved the highest ever reported production of cis-trans nepetalactol, with a titer of 4429.4 mg/L using fed-batch fermentation in a 5-L bioreactor. We anticipate our systematic metabolic engineering strategies to facilitate the development of P. pastoris cell factories for sustainable production of MIAs and other plant natural products.


Subject(s)
Metabolic Engineering , Acyclic Monoterpenes/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Terpenes/metabolism
9.
BMC Genomics ; 25(1): 540, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822238

ABSTRACT

The citral-type is the most common chemotype in Cinnamomum bodinieri Levl (C. bodinieri), which has been widely used in the daily necessities, cosmetics, biomedicine, and aromatic areas due to their high citral content. Despite of this economic prospect, the possible gene-regulatory roles of citral biosynthesis in the same geographic environment remains unknown. In this study, the essential oils (EOs) of three citral type (B1, B2, B3) and one non-citral type (B0) varieties of C. bodinieri were identified by GC-MS after hydrodistillation extraction in July. 43 components more than 0.10% were identified in the EOs, mainly composed of monoterpenes (75.8-91.84%), and high content citral (80.63-86.33%) were identified in citral-type. Combined transcriptome and metabolite profiling analysis, plant-pathogen interaction(ko04626), MAPK signaling pathway-plant(ko04016), starch and sucrose metabolism(ko00500), plant hormone signal transduction(ko04075), terpenoid backbone biosynthesis (ko00900) and monoterpenoid biosynthesis (ko00902) pathways were enriched significantly. The gene expression of differential genes were linked to the monoterpene content, and the geraniol synthase (CbGES), alcohol dehydrogenase (CbADH), geraniol 8-hydroxylase-like (CbCYP76B6-like) and 8-hydroxygeraniol dehydrogenase (Cb10HGO) were upregulated in the citral-type, indicating that they were associated with high content of geraniol and citral. The activities of CbGES and CbADH in citral type were higher than in non-citral type, which was corroborated by enzyme-linked immunosorbent assay (ELISA). This study on the accumulation mechanism of citral provides a theoretical basis for the development of essential oil of C. bodinieri.


Subject(s)
Acyclic Monoterpenes , Cinnamomum , Gene Expression Profiling , Monoterpenes , Cinnamomum/metabolism , Cinnamomum/genetics , Acyclic Monoterpenes/metabolism , Monoterpenes/metabolism , Transcriptome , Oils, Volatile/metabolism , Gene Expression Regulation, Plant , Genes, Plant
10.
Biomed Pharmacother ; 176: 116771, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795639

ABSTRACT

Anxiety-like conditions can interfere with daily activities as the adaptive mechanism fails to cope with stress. These conditions are often linked with increased oxidative stress, and abrupt neurotransmission and electroencephalography (EEG) wave pattern. Geraniol, a monoterpenoid, has antioxidant and anti-inflammatory activities, as well as brain-calming effects. Therefore, in this study, geraniol was tested for the potential anxiolytic effects in a rat model of anxiety. The rats were exposed to an electric foot shock (1 mA for 1 s) to develop anxiety-like symptoms. Treatment was carried out using geraniol (10 and 30 mg/kg) and the standard diazepam drug. The behavior of the rats was analyzed using the open field test, light-dark test, and social interaction test. Afterward, the rats were decapitated to collect samples for neurochemical and biochemical analyses. The cortical-EEG wave pattern was also obtained. The study revealed that the electric foot shock induced anxiety-like symptoms, increased oxidative stress, and altered hippocampal neurotransmitter levels. The power of low-beta and high-beta was amplified with the increased coupling of delta-beta waves in anxiety group. However, the treatment with geraniol and diazepam normalized cortical-EEG wave pattern and hippocampal serotonin and catecholamines profile which was also reflected by reduced anxious behavior and normalized antioxidant levels. The study reports an anxiolytic potential of geraniol, which can be further explored in future.


Subject(s)
Acyclic Monoterpenes , Anti-Anxiety Agents , Anxiety , Behavior, Animal , Electroencephalography , Hippocampus , Oxidative Stress , Rats, Wistar , Synaptic Transmission , Animals , Acyclic Monoterpenes/pharmacology , Oxidative Stress/drug effects , Anxiety/drug therapy , Male , Hippocampus/drug effects , Hippocampus/metabolism , Anti-Anxiety Agents/pharmacology , Rats , Synaptic Transmission/drug effects , Behavior, Animal/drug effects , Electroshock , Antioxidants/pharmacology , Terpenes/pharmacology , Diazepam/pharmacology , Disease Models, Animal , Brain Waves/drug effects
11.
Neurochem Int ; 177: 105748, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703789

ABSTRACT

Adaptation to psychosocial stress is psychologically distressing, initiating/promoting comorbidity with alcohol use disorders. Emerging evidence moreover showed that ethanol (EtOH) exacerbates social-defeat stress (SDS)-induced behavioral impairments, neurobiological sequelae, and poor therapeutic outcomes. Hence, this study investigated the effects of geraniol, an isoprenoid monoterpenoid alcohol with neuroprotective functions on EtOH escalated SDS-induced behavioral impairments, and neurobiological sequelae in mice. Male mice chronically exposed to SDS for 14 days were repeatedly fed with EtOH (2 g/kg, p. o.) from days 8-14. From days 1-14, SDS-EtOH co-exposed mice were concurrently treated with geraniol (25 and 50 mg/kg) or fluoxetine (10 mg/kg) orally. After SDS-EtOH translational interactions, arrays of behavioral tasks were examined, followed by investigations of oxido-inflammatory, neurochemicals levels, monoamine oxidase-B and acetylcholinesterase activities in the striatum, prefrontal-cortex, and hippocampus. The glial fibrillary acid protein (GFAP) expression was also quantified in the prefrontal-cortex immunohistochemically. Adrenal weights, serum glucose and corticosterone concentrations were measured. EtOH exacerbated SDS-induced low-stress resilience, social impairment characterized by anxiety, depression, and memory deficits were attenuated by geraniol (50 and 100 mg/kg) and fluoxetine. In line with this, geraniol increased the levels of dopamine, serotonin, and glutamic-acid decarboxylase enzyme, accompanied by reduced monoamine oxidase-B and acetylcholinesterase activities in the prefrontal-cortex, hippocampus, and striatum. Geraniol inhibited SDS-EtOH-induced adrenal hypertrophy, corticosterone, TNF-α, IL-6 release, malondialdehyde and nitrite levels, with increased antioxidant activities. Immunohistochemical analyses revealed that geraniol enhanced GFAP immunoreactivity in the prefrontal-cortex relative to SDS-EtOH group. We concluded that geraniol ameliorates SDS-EtOH interaction-induced behavioral changes via normalization of neuroimmune-endocrine and neurochemical dysregulations in mice brains.


Subject(s)
Acyclic Monoterpenes , Ethanol , Stress, Psychological , Terpenes , Animals , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/therapeutic use , Male , Stress, Psychological/psychology , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/complications , Mice , Ethanol/toxicity , Ethanol/pharmacology , Terpenes/pharmacology , Terpenes/therapeutic use , Brain/drug effects , Brain/metabolism , Social Defeat
12.
Bol. latinoam. Caribe plantas med. aromát ; 23(3): 382-389, mayo 2024. ilus, tab, graf
Article in English | LILACS | ID: biblio-1538151

ABSTRACT

The extraction of geraniol from palmarosa oil using hydrotropic solvents was investigated. Palmarosa oil possesses an appealing rose aroma and properties like anti - inflammatory, antifungal, and antioxidant due to the presence of geraniol. The extraction of geraniol from palmarosa oil by using distillation methods like steam dis tillation and fractional distillation was a laborious process. So hydrotropes were tried for extraction. The geraniol yield and purity depend on parameters like concentration of hydrotrope, solvent volume ratio, and time period. Using the Box Benkhem Desig n (BBD), the extraction process was optimized. One of the major advantages of using hydrotropic solvents is that they were classified as green solvents, and recovery of solvents is also possible. To reduce the extraction time probe sonication is carried ou t. Different hydrotropic solvents with probe sonication are done on palmarosa oil by altering various process parameters to study the separation, yield, and purity.


Se investigó la extracción de geraniol del aceite de palmarosa utilizando solventes hidrotrópicos. El aceite de palmarosa posee un atractivo aroma a rosa y propiedades antiinflamatorias, antifúngicas y antioxidantes debido a la pr esencia de geraniol. La extracción de geraniol del aceite de palmarosa mediante métodos de destilación como la destilación por vapor y la destilación fraccionada ha sido un proceso laborioso. Por lo tanto, se probaron los hidrotropos para la extracción. El rendimiento y la pureza del geraniol dependen de parámetros como la concentración del hidrotropo, la relación de volumen del solvente y el período de tiempo. Se optimizó el proceso de extracción usando el diseño Box Benkhem (BBD). Una de las principales v entajas de usar solventes hidrotrópicos es que se clasifican como solventes verdes y también es posible recuperar los solventes. Para reducir el tiempo de extracción, se lleva a cabo una sonda de ultrasonido. Se realizan diferentes solventes hidrotropos co n sonda de ultrasonido en el aceite de palmarosa alterando varios parámetros del proceso para estudiar la separación, el rendimiento y la pureza.


Subject(s)
Cymbopogon/chemistry , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry
13.
Z Naturforsch C J Biosci ; 79(7-8): 163-177, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38635829

ABSTRACT

About 10 million people are diagnosed with cancer each year. Globally, it is the second leading cause of death after heart disease, and by 2035, the death toll could reach 14.6 million. Several drugs and treatments are available to treat cancer, but survival rates remain low. Many studies in recent years have shown that plant-derived monoterpenes, particularly geraniol and citral, are effective against various cancers, including breast, liver, melanoma, endometrial, colon, prostate, and skin cancers. This trend has opened new possibilities for the development of new therapeutics or adjuvants in the field of cancer therapy. These monoterpenes can improve the efficacy of chemotherapy by modulating many signaling molecules and pathways within tumors. Analysis of reports on the anticancer effects published in the past 5 years provided an overview of the most important results of these and related properties. Also, the molecular mechanisms by which they exert their anticancer effects in cell and animal studies have been explained. Therefore, this review aims to highlight the scope of geraniol and citral as complementary or alternative treatment options in cancer therapy.


Subject(s)
Acyclic Monoterpenes , Neoplasms , Terpenes , Acyclic Monoterpenes/therapeutic use , Acyclic Monoterpenes/pharmacology , Humans , Neoplasms/drug therapy , Animals , Terpenes/therapeutic use , Terpenes/chemistry , Monoterpenes/therapeutic use , Monoterpenes/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology
14.
Biotechnol Bioeng ; 121(7): 2091-2105, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38568751

ABSTRACT

Peroxisomal compartmentalization has emerged as a highly promising strategy for reconstituting intricate metabolic pathways. In recent years, significant progress has been made in the peroxisomes through harnessing precursor pools, circumventing metabolic crosstalk, and minimizing the cytotoxicity of exogenous pathways. However, it is important to note that in methylotrophic yeasts (e.g. Pichia pastoris), the abundance and protein composition of peroxisomes are highly variable, particularly when peroxisome proliferation is induced by specific carbon sources. The intricate subcellular localization of native proteins, the variability of peroxisomal metabolic pathways, and the lack of systematic characterization of peroxisome targeting signals have limited the applications of peroxisomal compartmentalization in P. pastoris. Accordingly, this study established a high-throughput screening method based on ß-carotene biosynthetic pathway to evaluate the targeting efficiency of PTS1s (Peroxisome Targeting Signal Type 1) in P. pastoris. First, 25 putative endogenous PTS1s were characterized and 3 PTS1s with high targeting efficiency were identified. Then, directed evolution of PTS1s was performed by constructing two PTS1 mutant libraries, and a total of 51 PTS1s (29 classical and 22 noncanonical PTS1s) with presumably higher peroxisomal targeting efficiency were identified, part of which were further characterized via confocal microscope. Finally, the newly identified PTS1s were employed for peroxisomal compartmentalization of the geraniol biosynthetic pathway, resulting in more than 30% increase in the titer of monoterpene compared with when the pathway was localized to the cytosol. The present study expands the synthetic biology toolkit and lays a solid foundation for peroxisomal compartmentalization in P. pastoris.


Subject(s)
Metabolic Engineering , Peroxisomes , Peroxisomes/metabolism , Peroxisomes/genetics , Metabolic Engineering/methods , Peroxisomal Targeting Signals/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Pichia/genetics , Pichia/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism
15.
Metab Eng ; 83: 183-192, 2024 May.
Article in English | MEDLINE | ID: mdl-38631459

ABSTRACT

Monoterpenes and monoterpenoids such as (S)-limonene and geraniol are valuable chemicals with a wide range of applications, including cosmetics, pharmaceuticals, and biofuels. Saccharomyces cerevisiae has proven to be an effective host to produce various terpenes and terpenoids. (S)-limonene and geraniol are produced from geranyl pyrophosphate (GPP) through the enzymatic actions of limonene synthase (LS) and geraniol synthase (GES), respectively. However, a major hurdle in their production arises from the dual functionality of the Erg20, a farnesyl pyrophosphate (FPP) synthase, responsible for generating GPP. Erg20 not only synthesizes GPP by condensing isopentenyl pyrophosphate (IPP) with dimethylallyl pyrophosphate but also catalyzes further condensation of IPP with GPP to produce FPP. In this study, we have tackled this issue by harnessing previously developed Erg20 mutants, Erg20K197G (Erg20G) and Erg20F96W, N127W (Erg20WW), which enhance GPP accumulation. Through a combination of these mutants, we generated a novel Erg20WWG mutant with over four times higher GPP accumulating capability than Erg20WW, as observed through geraniol production levels. The Erg20WWG mutant was fused to the LS from Mentha spicata or the GES from Catharanthus roseus for efficient conversion of GPP to (S)-limonene and geraniol, respectively. Further improvements were achieved by localizing the entire mevalonate pathway and the Erg20WWG-fused enzymes in peroxisomes, while simultaneously downregulating the essential ERG20 gene using the glucose-sensing HXT1 promoter. In the case of (S)-limonene production, additional Erg20WWG-LS was expressed in the cytosol. As a result, the final strains produced 1063 mg/L of (S)-limonene and 1234 mg/L of geraniol by fed-batch biphasic fermentations with ethanol feeding. The newly identified Erg20WWG mutant opens doors for the efficient production of various other GPP-derived chemicals including monoterpene derivatives and cannabinoids.


Subject(s)
Acyclic Monoterpenes , Limonene , Saccharomyces cerevisiae , Terpenes , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Limonene/metabolism , Terpenes/metabolism , Acyclic Monoterpenes/metabolism , Metabolic Engineering , Mutation , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Polyisoprenyl Phosphates/metabolism , Diterpenes/metabolism , Diphosphates
16.
Aging (Albany NY) ; 16(6): 5000-5026, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38517361

ABSTRACT

D-galactose (D-gal) administration was proven to induce cognitive impairment and aging in rodents' models. Geraniol (GNL) belongs to the acyclic isoprenoid monoterpenes. GNL reduces inflammation by changing important signaling pathways and cytokines, and thus it is plausible to be used as a medicine for treating disorders linked to inflammation. Herein, we examined the therapeutic effects of GNL on D-gal-induced oxidative stress and neuroinflammation-mediated memory loss in mice. The study was conducted using six groups of mice (6 mice per group). The first group received normal saline, then D-gal (150 mg/wt) dissolved in normal saline solution (0.9%, w/v) was given orally for 9 weeks to the second group. In the III group, from the second week until the 10th week, mice were treated orally (without anesthesia) with D-gal (150 mg/kg body wt) and GNL weekly twice (40 mg/kg body wt) four hours later. Mice in Group IV were treated with GNL from the second week up until the end of the experiment. For comparison of young versus elderly mice, 4 month old (Group V) and 16-month-old (Group VI) control mice were used. We evaluated the changes in antioxidant levels, PI3K/Akt levels, and Nrf2 levels. We also examined how D-gal and GNL treated pathological aging changes. Administration of GNL induced a significant increase in spatial learning and memory with spontaneously altered behavior. Enhancing anti-oxidant and anti-inflammatory effects and activating PI3K/Akt were the mechanisms that mediated this effect. Further, GNL treatment upregulated Nrf2 and HO-1 to reduce oxidative stress and apoptosis. This was confirmed using 99mTc-HMPAO brain flow gamma bioassays. Thus, our data suggested GNL as a promising agent for treating neuroinflammation-induced cognitive impairment.


Subject(s)
Acyclic Monoterpenes , Cognitive Dysfunction , Galactose , Humans , Mice , Animals , Galactose/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Neuroinflammatory Diseases , NF-E2-Related Factor 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Oxidative Stress , Aging/metabolism , Cognitive Dysfunction/drug therapy , Antioxidants/pharmacology , Disease Models, Animal , Inflammation/drug therapy
17.
J Bioenerg Biomembr ; 56(3): 193-204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38446318

ABSTRACT

Blood-brain barrier breakdown and ROS overproduction are important events during the progression of ischemic stroke aggravating brain damage. Geraniol, a natural monoterpenoid, possesses anti-apoptotic, cytoprotective, anti-oxidant, and anti-inflammatory activities. Our study aimed to investigate the effect and underlying mechanisms of geraniol in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced human brain microvascular endothelial cells (HBMECs). Apoptosis, caspase-3 activity, and cytotoxicity of HBMECs were evaluated using TUNEL, caspase-3 activity, and CCK-8 assays, respectively. The permeability of HBMECs was examined using FITC-dextran assay. Reactive oxygen species (ROS) production was measured using the fluorescent probe DCFH-DA. The protein levels of zonula occludens-1 (ZO-1), occludin, claudin-5, ß-catenin, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were determined by western blotting. Geraniol showed no cytotoxicity in HBMECs. Geraniol and ROS scavenger N-acetylcysteine (NAC) both attenuated OGD/R-induced apoptosis and increase of caspase-3 activity and the permeability to FITC-dextran in HBMECs. Geraniol relieved OGD/R-induced ROS accumulation and decrease of expression of ZO-1, occludin, claudin-5, and ß-catenin in HBMECs. Furthermore, we found that geraniol activated Nrf2/HO-1 pathway to inhibit ROS in HBMECs. In conclusion, geraniol attenuated OGD/R-induced ROS-dependent apoptosis and permeability in HBMECs through activating the Nrf2/HO-1 pathway.


Subject(s)
Acyclic Monoterpenes , Apoptosis , Endothelial Cells , Glucose , Heme Oxygenase-1 , NF-E2-Related Factor 2 , Reactive Oxygen Species , Humans , Apoptosis/drug effects , Acyclic Monoterpenes/pharmacology , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Glucose/metabolism , Heme Oxygenase-1/metabolism , Oxygen/metabolism , Brain/metabolism , Brain/blood supply , Microvessels/metabolism , Microvessels/pathology , Microvessels/drug effects
18.
Colloids Surf B Biointerfaces ; 237: 113841, 2024 May.
Article in English | MEDLINE | ID: mdl-38492412

ABSTRACT

Geraniol (Ger) is an essential oil molecule with excellent biological activity. High hydrophobicity and volatility limit its practical application. Cyclodextrins (CDs) are water-soluble cyclic oligosaccharides with hydrophobic cavities. Physical encapsulation of CDs to improve the solubility and stability of essential oil molecules is not satisfactory. Therefore, this study synthesized the γ-CD derivative (γ-CD-Ger) by grafting Ger onto γ-CD using a bromide-mediated method. Compared to the inclusion complexes (γ-CD/Ger) formed by both, the derivatives exhibit better solubility and thermal stability. The derivative has better antibacterial activity when the ratio of γ-CD to Ger was 1:2. In addition, the derivatives did not exhibit cytotoxic and hemolytic properties. These results indicate that this research provides a water-soluble antibacterial agent with a wide range of promising applications and offers new ideas for the application of alcohol hydrophobic molecules in aqueous systems.


Subject(s)
Acyclic Monoterpenes , Cyclodextrins , Oils, Volatile , gamma-Cyclodextrins , gamma-Cyclodextrins/pharmacology , gamma-Cyclodextrins/chemistry , Solubility , Anti-Bacterial Agents/pharmacology , Cyclodextrins/pharmacology , Cyclodextrins/chemistry , Water/chemistry
19.
Appl Microbiol Biotechnol ; 108(1): 245, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421431

ABSTRACT

Terpenes are valuable industrial chemicals whose demands are increasingly being met by bioengineering microbes such as E. coli. Although the bioengineering efforts commonly involve installing the mevalonate (MVA) pathway in E. coli for terpene production, the less studied methylerythritol phosphate (MEP) pathway is a more attractive target due to its higher energy efficiency and theoretical yield, despite its tight regulation. In this study, we integrated an additional copy of the entire MEP pathway into the E. coli genome for stable, marker-free terpene production. The genomically integrated strain produced more monoterpene geraniol than a plasmid-based system. The pathway genes' transcription was modulated using different promoters to produce geraniol as the reporter of the pathway flux. Pathway genes, including dxs, idi, and ispDF, expressed from a medium-strength promoter, led to the highest geraniol production. Quantifying the MEP pathway intermediates revealed that the highest geraniol producers had high levels of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), but moderate levels of the pathway intermediates upstream of these two building blocks. A principal component analysis demonstrated that 1-deoxy-D-xylulose 5-phosphate (DXP), the product of the first enzyme of the pathway, was critical for determining the geraniol titer, whereas MEP, the product of DXP reductoisomerase (Dxr or IspC), was the least essential. This work shows that an intricate balance of the MEP pathway intermediates determines the terpene yield in engineered E. coli. The genetically stable and intermediate-balanced strains created in this study will serve as a chassis for producing various terpenes. KEY POINTS: • Genome-integrated MEP pathway afforded higher strain stability • Genome-integrated MEP pathway produced more terpene than the plasmid-based system • High monoterpene production requires a fine balance of MEP pathway intermediates.


Subject(s)
Acyclic Monoterpenes , Mevalonic Acid , Terpenes , Escherichia coli/genetics , Monoterpenes , Phosphates
20.
Genes (Basel) ; 15(2)2024 01 24.
Article in English | MEDLINE | ID: mdl-38397145

ABSTRACT

Rehmannia glutinosa, a member of the Scrophulariaceae family, has been widely used in traditional Chinese medicine since ancient times. The main bioactive component of R. glutinosa is catalpol. However, the biogenesis of catalpol, especially its downstream pathway, remains unclear. To identify candidate genes involved in the biosynthesis of catalpol, transcriptomes were constructed from R. glutinosa using the young leaves of three cultivars, Beijing No. 3, Huaifeng, and Jin No. 9, as well as the tuberous roots and adventitious roots of the Jin No. 9 cultivar. As a result, 71,142 unigenes with functional annotations were generated. A comparative analysis of the R. glutinosa transcriptomes identified over 200 unigenes of 13 enzymes potentially involved in the downstream steps of catalpol formation, including 9 genes encoding UGTs, 13 for aldehyde dehydrogenases, 70 for oxidoreductases, 44 for CYP450s, 22 for dehydratases, 30 for decarboxylases, 19 for hydroxylases, and 10 for epoxidases. Moreover, two novel genes encoding geraniol synthase (RgGES), which is the first committed enzyme in catalpol production, were cloned from R. glutinosa. The purified recombinant proteins of RgGESs effectively converted GPP to geraniol. This study is the first to discover putative genes coding the tailoring enzymes mentioned above in catalpol biosynthesis, and functionally characterize the enzyme-coding gene in this pathway in R. glutinosa. The results enrich genetic resources for engineering the biosynthetic pathway of catalpol and iridoids.


Subject(s)
Acyclic Monoterpenes , Iridoid Glucosides , Plants, Medicinal , Rehmannia , Plants, Medicinal/genetics , Rehmannia/genetics , Rehmannia/metabolism , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...