Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Heliyon ; 10(11): e31803, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841494

ABSTRACT

Raft-forming liquid formulations incorporating ginger extract solid dispersion (GE-SD) were developed to achieve prolonged delivery of 6-gingerol in the stomach and thus increase the effectiveness of gastric ulcer treatment. The solubility of 6-gingerol in 0.1 N HCl (pH 1.2) was maximized (15 mg/mL) by combining ginger extract with PVP K30 at 1:3 w/w ratio to produce a solid dispersion. The nature of GE-SD was confirmed by PXRD and FT-IR analysis. PXRD pattern showed miscibility of GE and PVP K30 in amorphous solid dispersion and the FT-IR spectra confirmed the formation of hydrogen bond between GE and PVP K30. GE-SD-loaded raft-forming liquids were prepared using sodium alginate as a gel former and HPMC as a release-controlling agent. The formulations exhibited rapid floating behavior in 0.1 N HCl (<30 s) and remained afloat on the surface over 8 h. The formed raft structures provided sufficient strength (>7.5 g) and allowed sustained release of more than 70 % of the 6-gingerol content over 8 h in 0.1 N HCl. Raft-forming formulations incorporating ginger extract demonstrated anti-inflammatory activity by inhibiting nitric oxide production in LPS-stimulated RAW 264.7 macrophage cells (IC50 = 5.13 ± 0.07 µg/mL). Exposure to the formulations also had a significant cytotoxic effect on AGS human gastric adenocarcinoma cells with an IC50 of 17.45 ± 0.29 µg/mL. In addition, the raft-forming formulations enhanced the migratory behavior of L929 mouse fibroblasts in the scratch wound model. Taken together, these findings reveal the benefits of gastro-retentive, GE-SD-loaded raft-forming liquid formulations for improving the treatment of gastric ulcers.

2.
J Am Ceram Soc ; 107(4): 2081-2092, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38855017

ABSTRACT

Since antiquity, the medicinal properties of naturally sourced biomolecules such as ginger (Zingiber officinale) extract are documented in the traditional Indian and Chinese medical systems. However, limited work is performed to assess the potential of ginger extracts for bone-tissue engineering. Our work demonstrates the direct incorporation of ginger extract on iron oxide-magnesium oxide (Fe2O3 and MgO) co-doped hydroxyapatite (HA) for enhancement in the biological properties. The addition of Fe2O3 and MgO co-doping system and ginger extract with HA increases the osteoblast viability up to ~ 1.4 times at day 11. The presence of ginger extract leads to up to ~ 9 times MG-63 cell viability reduction. The co-doping does not adversely affect the release of ginger extract from the graft surface in the biological medium at pH 7.4 for up to 28 days. Assessment of antibacterial efficacy according to the modified ISO 22196: 2011 standard method indicates that the combined effects of Fe2O3, MgO, and ginger extract lead to ~ 82 % more bacterial cell reduction, compared to the control HA against S. aureus. These ginger extract-loaded artificial bone grafts with enhanced biological properties may be utilized as a localized site-specific delivery vehicle for various bone tissue engineering applications.

3.
Cureus ; 16(3): e55964, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38601383

ABSTRACT

Background Glass ionomer cement (GIC) is widely recognized for its self-adhesive characteristics and biocompatibility, making it commonly used as a restorative material. However, challenges related to limited antibacterial effectiveness and relatively low mechanical properties have hindered its widespread clinical use. Clove and ginger are recognized for their potent antimicrobial activity against numerous pathogenic microorganisms. The present study aims to enhance the clinical applicability of GIC by modifying it with clove and ginger extract. Aim The objective of the study is to assess the antimicrobial effectiveness and compressive strength of GIC modified with ginger and clove extract. Materials and methods Ginger and clove extracts were prepared and incorporated into conventional GIC at three concentrations for each, creating ginger-modified GIC groups (Group A, Group B, and Group C) and clove-modified GIC groups (Group D, Group E, and Group F), with Group G as the control (conventional GIC without modification). The antimicrobial assessment was conducted on disc-shaped GIC specimens (3.0 mm height x 6.0 mm diameter) prepared using molds. Bacterial strains were used to evaluate antimicrobial properties, with minimum inhibitory concentration (MIC) assays conducted at intervals of one to four hours for both modified and unmodified groups. Compressive strength specimens were prepared using cylindrical molds (6.0 mm height × 4.0 mm diameter), according to the ISO (International Organization for Standardization) guidelines. The evaluation was conducted using a Zwick universal testing machine (ElectroPuls® E3000, Instron, Bangalore, India), with the highest force at the point of specimen fracture recorded to determine compressive strength. Statistical analysis was conducted utilizing a one-way analysis of variance (ANOVA) alongside Tukey's post hoc test, with a significance threshold set at p < 0.01. Results The antimicrobial effectiveness of clove and ginger-modified GIC was assessed through a MIC assay, revealing a statistically significant improvement in antimicrobial potency against Streptococcus mutans and Lactobacillus within the modified groups compared to the control group (p < 0.01). Increased extract concentration correlated with enhanced antimicrobial activity. Clove-modified GIC exhibited superior antimicrobial efficacy compared to ginger extract. Compressive strength was higher in clove-modified GIC groups (p < 0.01), with Group F showing a maximum value of 175.88 MPa, while other modified groups demonstrated similar results to the control, with a value of 166.81 MPa (p > 0.01). Conclusion The study concludes that both clove-modified GIC and ginger-modified GIC exhibited antimicrobial activity against Streptococcus mutans and Lactobacillus species. The antimicrobial activity was notably higher in clove-modified GIC compared to ginger-modified GIC. Additionally, the compressive strength of clove-modified GIC surpassed all other groups. Thus, clove-modified GIC emerges as a promising restorative material for addressing recurrent caries. Future investigation is necessary to assess the long-term durability of the material.

4.
BMC Plant Biol ; 24(1): 131, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383294

ABSTRACT

Early blight (EB), caused by Alternaria solani, is a serious problem in tomato production. Plant growth-promoting rhizobacteria promote plant growth and inhibit plant disease. The present study explored the bio-efficacy of synergistic effect of rhizobacterial isolates and ginger powder extract (GPE) against tomato EB disease, singly and in combination. Six fungal isolates from symptomatic tomato plants were identified as A. solani on the basis of morphological features i.e., horizontal septation (6.96 to 7.93 µm), vertical septation (1.50 to 2.22 µm), conidia length (174.2 to 187.6 µm), conidial width (14.09 to 16.52 µm), beak length (93.06 to 102.26 µm), and sporulation. Five of the twenty-three bacterial isolates recovered from tomato rhizosphere soil were nonpathogenic to tomato seedlings and were compatible with each other and with GPE. Out of five isolates tested individually, three isolates (St-149D, Hyd-13Z, and Gb-T23) showed maximum inhibition (56.3%, 48.3%, and 42.0% respectively) against mycelial growth of A. solani. Among combinations, St-149D + GPE had the highest mycelial growth inhibition (76.9%) over the untreated control. Bacterial strains molecularly characterized as Pseudomonas putida, Bacillus subtilis, and Bacillus cereus and were further tested in pot trials through seed bacterization for disease control. Seeds treated with bacterial consortia + GPE had the highest disease suppression percentage (78.1%), followed by St-149D + GPE (72.2%) and Hyd-13Z + GPE (67.5%). Maximum seed germination was obtained in the bacterial consortia + GPE (95.0 ± 2.04) followed by St-149D + GPE (92.5 ± 1.44) and Hyd-13Z + GPE (90.0 ± 2.04) over control (73.8 ± 2.39) and chemical control as standard treatment (90.0 ± 2). Ginger powder extracts also induce the activation of defence-related enzymes (TPC, PO, PPO, PAL, and CAT) activity in tomato plants. These were highly significant in the testing bacterial inoculants against A. solani infection in tomato crops.


Subject(s)
Agricultural Inoculants , Plant Extracts , Solanum lycopersicum , Zingiber officinale , Animals , Powders , Alternaria , Bacteria , Plant Diseases/microbiology
5.
Vet Res Commun ; 48(1): 139-152, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37572186

ABSTRACT

This study explored the effects of the essential oil of Ocimum basilicum (EOOB) and ginger extract (GE) during the transportation of pearl gentian grouper from water quality, serum biochemistry, oxidative stress, meat flavor, and gill tissue morphology. Fish (450 ± 50 g) were allocated to the following 5 treatments: control group (fish transported in water only), 5 mg/LEOOB, 10 mg/LEOOB, 3 mg/LGE, and 6 mg/LGE and transported in insulation boxes (66 × 51 × 37.8 cm) for 72 h. Samples were taken at 0, 12, 36, 60, and 72 h immediately after transport. It was found that 10 mg/LEOOB and 6 mg/LGE could reduce the levels of total ammonia nitrogen (TAN), dissolved oxygen (DO), water pH, serum glucose (GLU), cortisol (COR), liver superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GPX), increase the activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), as well as significantly increase the total free amino acid (TFAA) content in muscle compared to the control group (P < 0.05). In addition, by observing the microstructure of gill tissue, it was found that compared with untreated grouper, the morphological damage of gill tissue in EOOB and GE treatment was alleviated. These results indicated that adding appropriate amounts of EOOB and GE to transport water could improve the water quality, relieve stress, and lower energy metabolism of grouper during transport. The results of this research will help to improve the survival rate of grouper after transportation and decrease economic losses to fishery.


Subject(s)
Bass , Ocimum basilicum , Oils, Volatile , Plant Extracts , Zingiber officinale , Animals , Gills/metabolism , Oxidative Stress , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Liver/metabolism
6.
Microb Pathog ; 186: 106462, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030019

ABSTRACT

To treat the systemic infections caused by Candida albicans (C. albicans), various drugs have been used, however, infections still persisted due to virulence factors and increasing antifungal resistance. As a solution to this problem, we synthesized selenium nanoparticles (SeNPs) by using Bacillus cereus bacteria. This is the first study to report a higher (70 %) reduction of selenite ions into SeNPs in under 6 h. The as-synthesized, biogenic SeNPs were used to deliver bioactive constituents of aqueous extract of ginger for inhibiting the growth and biofilm (virulence factors) in C. albicans. UV-visible spectroscopy revealed a characteristic absorption at 280 nm, and Raman spectroscopy showed a characteristic peak shift at 253 cm-1 for the biogenic SeNPs. The synthesized SeNPs are spherical with 240-250 nm in size as determined by electron microscopy. Fourier transform infrared spectroscopy confirmed the functionalization of antifungal constituents of ginger over the SeNPs (formation of Ginger@SeNPs nanoconjugates). In contrast to biogenic SeNPs, nanoconjugates were active against C. albicans for inhibiting growth and biofilm formation. In order to reveal antifungal mechanism of nanoconjugates', real-time polymerase chain reaction (RT-PCR) analysis was performed, according to RT-PCR analysis, the nanoconjugates target virulence genes involved in C. albicans hyphae and biofilm formation. Nanoconjugates inhibited 25 % growth of human embryonic kidney (HEK) 293 cell line, indicating moderate cytotoxicity of active nanoconjugates in an in-vitro cytotoxicity study. Therefore, biogenic SeNPs conjugated with ginger dietary extract may be a potential antifungal agent and drug carrier for inhibiting C. albicans growth and biofilm formation.


Subject(s)
Bacillus , Nanoparticles , Selenium , Zingiber officinale , Humans , Selenium/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Candida albicans/metabolism , Virulence Factors , Nanoconjugates , HEK293 Cells , Nanoparticles/chemistry , Bacillus/metabolism , Biofilms
7.
J Biomol Struct Dyn ; : 1-13, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37937794

ABSTRACT

In this study, we have successfully synthesized magnetic Fe3O4 nanoparticles adorned with samarium (Sm-MNPs) utilizing ginger extract for the very first time. Furthermore, a comprehensive characterization of the nanoparticles along with an exploration of their physicochemical attributes was conducted. The biological functionalities of the synthesized nanoparticles were investigated through a thorough examination of their interaction with calf thymus DNA (ctDNA) using diverse spectroscopic techniques encompassing ultraviolet-visible (UV-Vis) and fluorescence spectroscopy at varying temperatures. Subsequently, we evaluated the cytotoxicity of the magnetic nanoparticles using a colorectal cancer cell model (HCT116 cells) and a tetrazolium colorimetric assay (MTT assay). The characterization of the ginger extract-coated magnetic nanoparticles (ginger-Sm-MNPs) revealed their superparamagnetic nature, nanocrystalline structure, spherical morphology, hydrodynamic size of 155 nm, and uniform distribution. The outcomes from UV-Vis and fluorescence spectroscopy affirmed the binding of ginger-Sm-MNPs with ctDNA. Additionally, the MTT assay demonstrated that the cytotoxicity of ginger-Sm-MNPs surpassed that of both magnetite nanoparticles and ginger extract. Notably, the inhibitory concentrations (IC50) for the green-synthesized nanoparticles after 24 and 48 h of incubation were determined as 198.1 and 135.8 µg/mL, respectively. In conclusion, our study findings suggest the potential utility of ginger-Sm-MNPs as a promising candidate for various biomedical applications.Communicated by Ramaswamy H. Sarma.

8.
Plants (Basel) ; 12(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37631148

ABSTRACT

Iron is essential for numerous biological processes; however, an iron imbalance can contribute to a number of diseases. An excess of iron can accumulate in the body and subsequently induce the production of reactive oxygen species (ROS), leading to oxidative tissue damage and organ dysfunction. The liver, a major iron storage site, is vulnerable to this iron-induced oxidative damage; however, this issue can be overcome by the chelation of excess iron. This study aimed to investigate the effect of 6-gingerol-rich ginger (Zingiber officinale) extract on iron chelation, antioxidation, and hepatoprotective function in protecting against iron-induced oxidative liver cell injury. In experiments, 6-gingerol was confirmed to be a main bioactive component of the ginger extract and possessed free radical scavenging activity, decreasing ABTS•+ and DPPH• radical levels, and inhibiting AAPH-induced red blood cell hemolysis. Interestingly, the extract significantly reduced the levels of labile cellular iron (LCI), intracellular ROS, and lipid peroxidation products (TBARS) in iron-loaded human hepatoma (Huh7) cells. In conclusion, this work highlights the iron chelation property of 6-gingerol-rich ginger extract and its antioxidant activity, which could potentially protect the liver from iron-induced oxidative tissue damage.

9.
Food Sci Nutr ; 11(8): 4853-4860, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37576053

ABSTRACT

Antibiotic resistance is rising across the world. For a very long time, bitter ginger (Zingiber zerumbet) has been used as one of the most popular herbal remedies to treat a wide range of common diseases. Ginger has been shown to have antioxidant and antibacterial activity. It has various bioactive chemicals that might be utilized as an alternative treatment option for many infectious diseases. The present study aimed to examine the biochemical profile of ginger, antioxidant, and antibacterial activity against selective endodontic microbes. Antioxidant was measured using DPPH and antibacterial activity was performed using disk diffusion tests. Streptococcus mutants, Enterococcus faecalis, Staphylococcus spp., and Lactobacillus spp. were tested for antibacterial activity. Before evaluating the dried extracts, all solvents were eliminated using rotary evaporation. The obtained IC50 value revealed that ethanol extract had the greatest antioxidant activity. Concerning each bacterium, the plant extracts demonstrated considerable antibacterial activity (p = .001). Ethanol extracts showed the strongest antibacterial activity against the studied microorganisms. This study highlights that the Zingiber zerumbet (Z. zerumbet) is a strong antibacterial herb against multidrug-resistant (MDR) gram-positive bacteria. It may also be employed as a possible natural antioxidant source.

10.
Poult Sci ; 102(10): 102903, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37506621

ABSTRACT

Newcastle disease (ND), avian influenza (AI, H5N8), and infectious bronchitis (IB) are important diseases in the poultry industry and cause significant losses. Vaccination is the most practical method for controlling infectious diseases. To reduce vaccination costs and several disorders in poultry farms, using herbal water supplements for immunomodulation with vaccination is critical to improving or preventing some conditions in the poultry industry. However, drinking water supplementation of ginger extract (GE)/propolis extract (PE) alone/in combination may increase broilers' humoral and cellular immunity due to the immunomodulatory effects of ginger and propolis. This protocol aimed to see how GE/PE alone or in combination improved the immunity, immune organ gene expression, and histology of the immune organs of broilers for 35 d after vaccination against NDV, H5N8, IBV, and IBDV. The chicks were dispensed into 5 groups according to GE and/or PE with vaccination. The control group was offered normal drinking water without any supplements or vaccinations. The GE group was supplemented with ginger extract (1 mL/L drinking water) in the drinking water before and after vaccination for 2 and 3 d, respectively. The GE+PE group was supplemented with GE (0.5 mL/L drinking water) and PE (0.5 mL/L drinking water) in the drinking water before and after vaccination for 2 and 3 d, respectively. The PE group was supplemented with propolis extract (1 mL/L drinking water) in the drinking water before and after vaccination for 2 and 3 d, respectively. The fifth group was the vaccinated untreated group. This experiment showed the immunomodulatory properties of GE and/or PE against 3 common diseases, NDV, AI, and IB, in broiler chicken farms for 35 d applied to a vaccination program. Thus, ginger extract and propolis extract supplementation in drinking water increased antibody titer, INF, IL10, and IL2 and TLR3 gene expression in the bursa of Fabricius, thymus, and spleen, respectively, as well as cellular immunity as indicated by increased CD3, CD4, and CD8 in the bursa of Fabricius, thymus, and spleen, respectively, with normal lymphocytes in the medulla of the bursa, thymus, and spleen. In conclusion, propolis extracts alone or with GE improved all of the metrics mentioned above without harming the histology of the immune organs.


Subject(s)
Drinking Water , Poultry Diseases , Propolis , Viral Vaccines , Animals , Chickens , Propolis/pharmacology , Plant Extracts/pharmacology , Thymus Gland , Poultry Diseases/prevention & control , Vaccination/veterinary , Antibodies, Viral
11.
J Funct Biomater ; 14(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36662085

ABSTRACT

Fabrication of ZnO nanoparticles (NPs) via green process has received enormous attention for its application in biomedicine. Here, a simple and cost-effective green route is reported for the synthesis of ZrO2-doped ZnO/reduced graphene oxide nanocomposites (ZnO/ZrO2/rGO NCs) exploiting ginger rhizome extract. Our aim was to improve the anticancer performance of ZnO/ZrO2/rGO NCs without toxicity to normal cells. The preparation of pure ZnO NPs, ZnO/ZrO2 NCs, and ZnO/ZrO2/rGO NCs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), photoluminescence (PL), and dynamic light scattering (DLS). XRD spectra of ZnO/ZrO2/rGO NCs exhibited two distinct sets of diffraction peaks, ZnO wurtzite structure, and ZrO2 phases (monoclinic + tetragonal). The SEM and TEM data show that ZrO2-doped ZnO particles were uniformly distributed on rGO sheets with the excellent quality of lattice fringes without alterations. PL spectra intensity and particle size of ZnO decreased after ZrO2-doping and rGO addition. DLS data demonstrated that green prepared samples show excellent colloidal stability in aqueous suspension. Biological results showed that ZnO/ZrO2/rGO NCs display around 3.5-fold higher anticancer efficacy in human lung cancer (A549) and breast cancer (MCF7) cells than ZnO NPs. A mechanistic approach suggested that the anticancer response of ZnO/ZrO2/rGO NCs was mediated via oxidative stress evident by the induction of the intracellular reactive oxygen species level and the reduction of the glutathione level. Moreover, green prepared nanostructures display good cytocompatibility in normal cell lines; human lung fibroblasts (IMR90) and breast epithelial (MCF10A) cells. However, the cytocompatibility of ZnO/ZrO2/rGO NCs in normal cells was better than those of pure ZnO NPs and ZnO/ZrO2 NCs. Augmented anticancer potential and improved cytocompatibility of ZnO/ZrO2/rGO NCs was due to ginger extract mediated beneficial synergism between ZnO, ZrO2, and rGO. This novel investigation emphasizes the significance of medicinal herb mediated ZnO-based NCs synthesis for biomedical research.

12.
Ann Med Surg (Lond) ; 84: 104865, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36536711

ABSTRACT

Background: This study was aimed to evaluate the effect of ginger extract addition to pre-operative high calorie drink to reduce nausea, vomiting, anxiety level, and lactate level as a parameter for metabolic derangement in patients undergoing surgery. Materials and methods: A prospective single-blinded randomized controlled trial design, with a study subject elective surgical procedures patient at the Department of Surgery, Dr Hasan Sadikin Hospital, Bandung. Patient were divided into two groups, group A with standard high calorie drink, and group B standard high calorie drink with ginger extract addition. Anxiety was measured by HARS score and the occurrence of nausea and vomiting were assessed after the operation. The difference of lactate levels was compared before and after operation in two groups. The data distribution was calculated by kolmogorov-smirnov for continues variables. Normal distribution was calculated by t-test, non-normal distribution was calculated by Mann-U Whitney. Nominal data calculated by chi-square test and ordinal data calculated by Mann-U Whitney. Results: 40 subjects were randomly divided into two groups. The occurrence of nausea and vomiting were lower in group B patients (p < 0.0285). HARS score anxiety level was lowered in group B patients (p < 0.0293). Lactate level was lowered in group B patients, although is not statistically significant (p 0.54). Conclusion: Addition of ginger extract in pre-operative high calorie drink reduce postoperative nausea, vomiting, and anxiety level.

13.
Food Sci Technol Int ; : 10820132221136590, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36384295

ABSTRACT

In the present study, the effect of marinade solutions of Ginger Extract in conjunction with Citric Acid (5 levels) and marinating time (24 and 48 h) on physicochemical properties of camel meat were investigated. Marinade uptake (%), pH, and color indexes of marinated samples were measured. Moreover, pH, cooking loss (%), Warner Bratzler Shear Force (WBSF), tenderness (%) were evaluated to document changes in meat quality after cooking. Microstructural changes of collagenous fibers were observed via SEM. Overall, ginger extract marination without citric acid resulted in a significant increase in marinade uptake, pH, tenderness, L*, a*, and b*, however, a significant decrease was observed in WBSF. Moreover, Ginger Extract accompanied with citric acid marination resulted in a significant decrease in marinade uptake, L* and a*, and WBSF, while a significant increase in pH, tenderness, and b* was observed after both marinating and cooking (P ≤ 0.05). There was no significant difference in cooking loss amongst all samples (P ≥ 0.05). As regards sensory characteristics, ginger extract marination either with citric acid or without that resulted in a significant increase in tenderness, juiciness, flavor, and odor indices (P ≤ 0.05). The appearance score of marinated camel meat with ginger extract was significantly higher than non-marinated controls (P ≤ 0.05).

14.
Gels ; 8(11)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36421559

ABSTRACT

Ginger, a natural plant belonging to the Zingeberaceae family, has been reported to have reasonable anti-inflammatory effects. The current study aimed to examine ginger extract transdermal delivery by generating niosomal vesicles as a promising nano-carrier incorporated into emulgel prepared with sesame oil. Particle size, viscosity, in vitro release, and ex vivo drug penetration experiments were performed on the produced formulations (ginger extract loaded gel, ginger extract loaded emulgel, ginger extract niosomal gel, and ginger extract niosomal emulgel). Carrageenan-induced edema in rat hind paw was employed to estimate the in vivo anti-inflammatory activity. The generated ginger extract formulations showed good viscosity and particle size. The in vitro release of ginger extract from niosomal formulation surpassed other formulations. In addition, the niosomal emulgel formulation showed improved transdermal flux and increased drug permeability through rabbit skin compared to other preparations. Most importantly, carrageenan-induced rat hind paw edema test confirmed the potential anti-inflammatory efficacy of ginger extract niosomal emulgel, compared to other formulations, as manifested by a significant decrease in paw edema with a superior edema inhibition potency. Overall, our findings suggest that incorporating a niosomal formulation within sesame oil-based emulgel might represent a plausible strategy for effective transdermal delivery of anti-inflammatory drugs like ginger extract.

15.
Membranes (Basel) ; 12(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36422140

ABSTRACT

Synthetic antibiotics have captured the market in recent years, but the side effects of these products are life-threatening. In recent times, researchers have focused their research on natural-based products such as natural herbal oils, which are eco-friendly, biocompatible, biodegradable, and antibacterial. In this study, polyethylene oxide (PEO) and aqueous ginger extract (GE) were electrospun to produce novel antibacterial nanomembrane sheets as a function of PEO and GE concentrations. A GE average particle size of 91.16 nm was achieved with an extensive filtration process, inferring their incorporation in the PEO nanofibres. The presence of the GE was confirmed by Fourier transform infrared spectroscopy (FTIR) through peaks of phenol and aromatic groups. The viscoelastic properties of PEO/GE solutions were analysed in terms of PEO and GE concentrations. Increasing PEO and GE concentrations increased the solution's viscosity. The dynamic viscosity of 3% was not changed with increasing shear rate, indicating Newtonian fluid behaviour. The dynamic viscosity of 4 and 5 wt% PEO/GE solutions containing 10% GE increased exponentially compared to 3 wt%. In addition, the shear thinning behaviour was observed over a frequency range of 0.05 to 100 rad/s. Scanning Electron Microscopy (SEM) analysis also specified an increase in the nanofibre's diameter with increasing PEO concentration, while SEM images displayed smooth morphology with beadless nanofibres at different PEO/GE concentrations. In addition, PEO/GE nanomembranes inhibited the growth of Staphylococcus aureus, as presented by qualitative antibacterial results. The extent of PEO/GE nanomembrane's antibacterial activity was further investigated by the agar dilution method, which inhibited the 98.79% Staphylococcus aureus population at 30% GE concentration.

16.
Bioprocess Biosyst Eng ; 45(12): 1905-1917, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36269380

ABSTRACT

Recent studies demonstrated that the speed of synthesis, biocompatibility, and antimicrobial activity of gold (Au) and silver (Ag) metals is enhanced when biosynthesized in nano-sized particles. In the present study, Au- and Ag-based nanoparticles (NPs) were synthesized via a biological process using aqueous Ginger root extract and characterized by various spectroscopic methods. The NPs have hexagonal and spherical shapes. The average particle size for Au and Ag NPs was 20 and 15 nm, respectively. The dynamic light scattering (DLS) technique has shown that the zeta potential values of synthesized NPs were 4.8 and - 7.11 mv, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis of Ginger root extract revealed 25 compounds. The synthesized NPs showed significant activity against Staphylococcus aureus and Escherichia (E). coli in vitro, with IC50 and IC90 values for Au and Ag NPs, respectively, noted to be 7.5 and 7.3 µg/ml and 15 and 15.2 µg/ml for both bacterial strains. The protein leakage level was tremendous and morphological changes occurred in bacteria treated with biosynthesized NPs. These results suggest that the biosynthesized metallic NPs have the suitable potential for application as antibacterial agents with enhanced activities.


Subject(s)
Metal Nanoparticles , Zingiber officinale , Gold/pharmacology , Gold/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Zingiber officinale/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/chemistry , Bacteria/metabolism , Microbial Sensitivity Tests
17.
Antioxidants (Basel) ; 11(10)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36290780

ABSTRACT

Ginger extracts have been shown to have health-promoting pharmacological activity and beneficial effects, including antioxidant and anticancer properties. The extraction of ginger by natural deep eutectic solvents (NaDES) has been shown to enhance bioactivity, but the cytotoxicity of NaDES extracts needs to be further determined. Signaling through the CXC chemokine receptor 4 (CXCR4) expressed on colorectal cancer (CRC) cells has a pivotal role in tumor cell chemosensitivity. Oxaliplatin is a third-generation platinum compound used as an effective chemotherapeutic drug for CRC treatment. However, whether ginger extract and oxaliplatin could induce a synergistic cytotoxic effect in oxaliplatin-resistant CRC cells through modulating CXCR4 expression is not known. In this study, oxaliplatin-resistant HCT-116 (HCT-116/R) cells were generated first. Ginger was extracted using the NaDES mixture betaine/lactate/water (1:2:2.5). Lactobacillus reuteri fermentation of NaDES-ginger extract increased the total polyphenol content (12.42 mg gallic acid/g in non-fermented NaDES-ginger extract and 23.66 mg gallic acid/g in fermented NaDES-ginger extract). It also increased the antioxidant activity by about 20−30% compared to non-fermented NaDES-ginger extract. In addition, it achieved low cytotoxicity to normal colonic mucosal cells and enhanced the anticancer effect on HCT-116/R cells. On the other hand, the inhibition of NF-κB activation by fermented NaDES-ginger extract significantly decreased the CXCR4 expression (p < 0.05) in HCT-116/R cells. The inactivation of NF-κB by pharmacological inhibitor pyrrolidine dithiocarbamate further enhanced the fermented NaDES-ginger extract-reduced CXCR4 expression levels (p < 0.05). Moreover, fermented NaDES-ginger extract could synergistically increase the cytotoxicity of oxaliplatin by inhibiting CXCR4 expression and inactivating NF-κB, resulting in HCT-116/R cell death. These findings demonstrate that fermented NaDES-ginger extract reduces the NF-kB-mediated activation of CXCR4 and enhances oxaliplatin-induced cytotoxicity in oxaliplatin-resistant CRC cells.

18.
J Proteomics ; 269: 104723, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36096434

ABSTRACT

Ginger extract has been reported to possess antioxidant properties. However, components isolated from ginger have been rarely reported to inhibit oxidation. Herein, the antioxidant properties of ginger and purified components derived from it (6-gingerol, zingerone, rutin, quercetin, and kaempferol) were confirmed by using HPLC and were further used to investigate its effect on lamb meat. Myofibrillar proteins isolated (MPI) from lamb meat were incubated with ginger and its constituents under induced Fenton oxidation (1.0 mmol/L FeCl3, 0.1 mmol/L Asc, and 20 mmol/L H2O2) for 1, 3,5, and 7 h. Incubating meat protein isolate in the absence of ginger extract or its components resulted in a substantial drop in sulfhydryl groups, an increase in protein carbonyl content, and a corresponding increase in TBARS content. However, ginger extract and its constituents demonstrated antioxidant properties, which might be attributed to their hydroxyl groups and suitable solubilizing side chains. Overall, ginger extract exhibited the highest antioxidant capabilities of all treated samples, suggesting that ginger extracts may be used as a natural antioxidant in meat and lipid/protein-containing processed products. SIGNIFICANCE OF THE STUDY: Ginger extract is also frequently used as a herbal medicine due to its anti-inflammatory, anti-cancer, and antibacterial qualities. Nonvolatile pungent chemicals found in ginger, such as gingerol, shogaols, paradols, and zingerone, as well as kaempferol, rutin, and other phenolic compounds, have been confirmed in ginger extract and have been shown to have antioxidant action driven by free radical elimination. Despite these findings, ginger extract and its pure constituent components have seldom been shown to have the ability to slow protein and lipid oxidation in meat and meat-related products. The effect of ginger extracts on the oxidative stability of myofibriller protein isolate has never been investigated. Exploiting the phenolic content of ginger extract may result in a discovery that would have a huge influence on both the ginger and meat industries as well as other food processing sectors. The first aim of our study was to confirm the presence of six selected phenolic compounds (rutin, kaempferol, 6-gingerol, zingerone, naringenin, and quercetin) in ginger as reported by literature, and the second objective was to determine the efficacy of ginger extracts and its purified constituents on myofibrillar protein isolate treated under induced Fenton oxidation.


Subject(s)
Kaempferols , Zingiber officinale , Animals , Anti-Bacterial Agents , Anti-Inflammatory Agents/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Catechols , Fatty Alcohols/chemistry , Fatty Alcohols/pharmacology , Zingiber officinale/chemistry , Zingiber officinale/metabolism , Guaiacol/analogs & derivatives , Hydrogen Peroxide/metabolism , Meat Proteins , Phenols , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protein Carbonylation , Quercetin , Rutin , Sheep , Thiobarbituric Acid Reactive Substances
19.
Materials (Basel) ; 15(16)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36013904

ABSTRACT

Nanocomposites based on iron oxide/titanium oxide nanoparticles were prepared by employing green synthesis, which involved phytochemical-mediated reduction using ginger extract. XRD confirmed the composite formation, while scanning electron microscopy (SEM), dynamic light scattering (DLS), and energy-dispersive X-ray spectroscopy (EDX) was employed to investigate the particle size, particle morphology, and elemental analysis. SEM indicated the formation of particles with non-uniform shape and size distribution, while EDX confirmed the presence of Fe, Ti and oxygen in their elemental state. The surface effects were investigated by Fourier transform infrared radiation (FTIR) and impedance spectroscopy (IS) at room temperature. IS confirmed the co-existence of grains and grain boundaries. Thus, FTIR and IS analysis helped establish a correlation between enhanced surface activity and the synthesis route adopted. It was established that the surface activity was sensitive to the synthesis route adopted. The sample density, variation in grain size, and electrical resistivity were linked with surface defects, and these defects were related to temperature. The disorder and defects created trap centers at the sample's surface, leading to adsorption of CO2 from the environment.

20.
Iran Biomed J ; 26(4): 330-9, 2022 07 01.
Article in English | MEDLINE | ID: mdl-36029169

ABSTRACT

Background: Multiple sclerosis (MS) is the most prevalent neurological disability of young adults. Anti-inflammatory drugs have relative effects on MS. The anti-inflammatory and antioxidative effects of Zingiber officinale (ginger) have been proven in some experimental and clinical investigations. The aim of this study was to evaluate the effects of ginger extract on preventing myelin degradation in a rat model of MS. Methods: Forty nine male Wistar rats were used in this study and divided into four control groups: the normal group, cuprizone-induced group, sham group (cuprizone [CPZ] + sodium carboxymethyl cellulose [NaCMC]), standard control group (fingolimod + cuprizone), including three experimental groups of CPZ, each receiving three different doses of ginger extract: 150, 300, and 600mg/kg /kg/day. Results: Ginger extract of 600 mg/kg prevented corpus callosum from demyelination; however, a significant difference was observed in the fingolimod group (p < 0.05). Difference in the CPZ group was quite significant (p < 0.05). Conclusion: Treatment with ginger inhibited demyelination and alleviated remyelination of corpus callosum in rats. Therefore, it could serve as a therapeutic agent in the MS.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Zingiber officinale , Animals , Anti-Inflammatory Agents/therapeutic use , Corpus Callosum/metabolism , Cuprizone , Demyelinating Diseases/chemically induced , Demyelinating Diseases/drug therapy , Demyelinating Diseases/prevention & control , Disease Models, Animal , Fingolimod Hydrochloride , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Myelin Sheath/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...