Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.043
Filter
2.
Hum Genomics ; 18(1): 74, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956740

ABSTRACT

BACKGROUND: Evidence has revealed a connection between cuproptosis and the inhibition of tumor angiogenesis. While the efficacy of a model based on cuproptosis-related genes (CRGs) in predicting the prognosis of peripheral organ tumors has been demonstrated, the impact of CRGs on the prognosis and the immunological landscape of gliomas remains unexplored. METHODS: We screened CRGs to construct a novel scoring tool and developed a prognostic model for gliomas within the various cohorts. Afterward, a comprehensive exploration of the relationship between the CRG risk signature and the immunological landscape of gliomas was undertaken from multiple perspectives. RESULTS: Five genes (NLRP3, ATP7B, SLC31A1, FDX1, and GCSH) were identified to build a CRG scoring system. The nomogram, based on CRG risk and other signatures, demonstrated a superior predictive performance (AUC of 0.89, 0.92, and 0.93 at 1, 2, and 3 years, respectively) in the training cohort. Furthermore, the CRG score was closely associated with various aspects of the immune landscape in gliomas, including immune cell infiltration, tumor mutations, tumor immune dysfunction and exclusion, immune checkpoints, cytotoxic T lymphocyte and immune exhaustion-related markers, as well as cancer signaling pathway biomarkers and cytokines. CONCLUSION: The CRG risk signature may serve as a robust biomarker for predicting the prognosis and the potential viability of immunotherapy responses. Moreover, the key candidate CRGs might be promising targets to explore the underlying biological background and novel therapeutic interventions in gliomas.


Subject(s)
Biomarkers, Tumor , Glioma , Tumor Microenvironment , Humans , Glioma/genetics , Glioma/immunology , Glioma/pathology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Prognosis , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Gene Expression Regulation, Neoplastic/genetics , Nomograms , Female , Male , Gene Expression Profiling , Middle Aged
3.
Article in English | MEDLINE | ID: mdl-38956806

ABSTRACT

Objective: This study analyzed the influence of p120-catenin (CTNND1) on the malignant characteristics of glioma and elucidated the potential underlying mechanism. Methods: The p120 expression level was assessed in the brain tissues of 42 glioma patients and 10 patients with epilepsy by using the immunohistochemical method. Meanwhile, quantitative PCR technology was employed to assess the expression of P120 in the brain tissues of 71 glioma patients and 13 epilepsy patients. LN229, U251, and U87 glioma cells were used for in vitro analysis and categorized into four treatment groups: siRNA-BC group (no RNA sequence was transfected), siRNA-NC group (transfected control RNA sequences with no effect), and siRNA-1 and siRNA-2 groups (two p120-specific interfering RNA transfection). p120 expression in these treatment groups was quantified by western blotting assay. The migratory and invasive capabilities of glioma cells were studied by wound healing assay and Transwell invasion assay, respectively, under different treatment conditions. MTT assay and cell cycle and apoptosis assay were used to determine glioma cell proliferation and apoptosis, respectively. Enzyme-labeled assay was performed to measure intracellular calcium ion concentration. Immunofluorescence assay was performed for determining microtubule formation and glioma cell distribution. Results: Brain tissues of the glioma group exhibited a remarkable increase in the p120 expression level as compared to brain tissues of the nontumor group (P < 0.05). Furthermore, a strong positive correlation was noted between the malignancy degree in glioma brain tissues and p120 expression in Western blotting (r = 0.906, P = 0.00) and QT-PCR (F=830.6, P<0.01). Compared to the BC and NC groups, the siRNA transfection groups showed a significant suppression in p120 expression in glioma cells (P < 0.05), with a marked attenuation in the invasive, migratory, and proliferative capabilities of glioma cells as well as an increase in apoptotic potential (P < 0.05). Enzyme-labeled assay showed a remarkable increase in calcium concentration in glioma cells after siRNA treatment. Immunofluorescence assay revealed that the microtubule formation ability of glioma cells reduced after siRNA treatment. Conclusion: p120 has a pivotal involvement in facilitating glioma cell invasion and proliferation by potentially modulating these processes through its involvement in microtubule formation and regulation of intracellular calcium ion levels.

4.
Article in English | MEDLINE | ID: mdl-38956913

ABSTRACT

BACKGROUND: Gliomas are the most frequent, heterogeneous group of tumors arising from glial cells, characterized by difficult monitoring, poor prognosis, and fatality. Tissue biopsy is an established procedure for tumor cell sampling that aids diagnosis, tumor grading, and prediction of prognosis. MATERIALS AND METHODS: We studied and compared the levels of liquid biopsy markers in patients with different grades of glioma. Also, we tried to prove the potential association between glioma and specific blood group antigens. RESULTS: 78 patients were found, among whom the maximum percentage with glioblastoma had blood group O+ (53.8%). The second highest frequency had blood group A+ (20.4%), followed by B+ (9.0%) and A- (5.1%), and the least with O-. Liquid biopsy biomarkers included Alanine Aminotransferase (ALT), Lactate Dehydrogenase (LDH), lymphocytes, Urea, Alkaline phosphatase (AST), Neutrophils, and C-Reactive Protein (CRP). The levels of all the components increased significantly with the severity of the glioma, with maximum levels seen in glioblastoma (grade IV), followed by grade III and grade II, respectively. CONCLUSION: Gliomas have significant clinical challenges due to their progression with heterogeneous nature and aggressive behavior. A liquid biopsy is a non-invasive approach that aids in setting up the status of the patient and figuring out the tumor grade; therefore, it may show diagnostic and prognostic utility. Additionally, our study provides evidence to prove the role of ABO blood group antigens in the development of glioma. However, future clinical research on liquid biopsy will improve the sensitivity and specificity of these tests and confirm their clinical usefulness to guide treatment approaches.

.

5.
NMC Case Rep J ; 11: 163-168, 2024.
Article in English | MEDLINE | ID: mdl-38966338

ABSTRACT

Chronic encapsulated intracerebral hematoma is a rare type of intracerebral hemorrhage. Reportedly, it is associated with vascular malformations, including arteriovenous malformations, cavernous hemangiomas, microaneurysms, and venous malformations. Recently, an association between chronic encapsulated intracerebral hematoma and stereotactic radiosurgery for arteriovenous malformations has been reported. In general, as the hematoma enlarges, symptoms progress slowly. In this report, we present a case of a 50-year-old woman who had undergone clivus chordoma resection and carbon ion therapy for the clivus respectively 27 and 20 years before developing chronic encapsulated intracerebral hematoma with rapidly progressing disturbance of consciousness. She was referred to our hospital because of difficulty walking due to left hemiparesis. Head computed tomography and magnetic resonance imaging showed a cystic lesion in the right temporal lobe with perifocal edema. On the second day of hospitalization, the patient's consciousness worsened. We suspected a malignant glioma and performed an emergency craniotomy; however, the pathological diagnosis was chronic encapsulated intracerebral hematoma. After the rehabilitation therapy, the patient became ambulatory and was discharged. To the date of reporting, the patient remained recurrence-free. Chronic encapsulated intracerebral hematoma may be due to invasive craniotomy or carbon ion therapy. It usually progresses slowly; however, in some cases, such as this one, it may cause rapid deterioration of consciousness.

6.
Acta Med Philipp ; 58(3): 82-86, 2024.
Article in English | MEDLINE | ID: mdl-38966838

ABSTRACT

Although melanoma only accounts for 1% of skin cancers, it is responsible for most skin cancer deaths. Glioblastoma multiforme, a high-grade astrocytoma, is the most aggressive and devastating primary brain tumor. These two diseases remain to be the biggest therapeutic challenge in both specialties of dermatology and neuro-oncology. A 53-year-old Filipino male who presented with a 2-year history of generalized dark brown and black patches on the body developed weakness and numbness of the left extremities. Biopsy and immunohistochemical staining of the skin revealed nodular melanoma with adjacent regressing melanoma. Biopsy of the intracranial mass showed glioblastoma multiforme. One month after the partial excision of the intracranial mass, the patient expired due to brain herniation. Nodular melanoma and glioblastoma multiforme may occur concomitantly in a patient. A review of the literature suggests a shared genetic predisposition. Its existence carries a poor prognosis and requires early detection to start aggressive treatment.

7.
J Neurosurg ; : 1-9, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968626

ABSTRACT

OBJECTIVE: Malignant gliomas constitute the most common type of primary malignant brain tumors. Most previous studies have evaluated the epidemiology of malignant gliomas in developed countries. Hence, there is a lack of evidence in this regard from developing countries. This study is the first epidemiological report on the status of malignant glioma in Iran between 2009 and 2017. METHODS: Data from the Iranian National Population-based Cancer Registry (covering 98% of the Iranian population) on CNS tumors recorded from 2009 to 2017 were used for analysis. Age-adjusted incidence rates were calculated by sex, tumor histology, tumor site, and year of diagnosis. Trend analysis of incidence rates was also performed. Survival data were recorded and the Cox proportional hazards model was used to evaluate underlying risk factors. RESULTS: A total of 8484 patients were diagnosed with malignant glioma between 2009 and 2017 in Iran. The overall age-adjusted incidence rate of malignant gliomas over the 9-year period was 1.71 per 100,000 persons. The most common histology of malignant gliomas was glioblastoma (81.4%). A significant increase in the incidence of malignant gliomas was found between 2009 and 2012. The median overall survival was 13.0 (95% CI 12.6-13.5) months over the study period. Older age groups, higher tumor grade, male sex, the first half of the study period, and receiving no treatment were significantly associated with worse prognoses. CONCLUSIONS: This study is the latest epidemiological report on the status of malignant gliomas in Iran. Although the overall incidence rate was lower than the rates in developed countries, several findings were consistent with those in prior reports.

8.
Int J Nanomedicine ; 19: 6757-6776, 2024.
Article in English | MEDLINE | ID: mdl-38983132

ABSTRACT

Glioma is a primary malignant tumor in the central nervous system. In recent years, the treatment of glioma has developed rapidly, but the overall survival of glioma patients has not significantly improved. Due to the presence of the blood-brain barrier and intracranial tumor barrier, many drugs with good effects to cure glioma in vitro cannot be accurately transported to the corresponding lesions. In order to enable anti-tumor drugs to overcome the barriers and target glioma, nanodrug delivery systems have emerged recently. It is gratifying that liposomes, as a multifunctional nanodrug delivery carrier, which can be compatible with hydrophilic and hydrophobic drugs, easily functionalized by various targeted ligands, biodegradable, and hypoimmunogenic in vivo, has become a quality choice to solve the intractable problem of glioma medication. Therefore, we focused on the liposome nanodrug delivery system, and summarized its current research progress in glioma. Hopefully, this review may provide new ideas for the research and development of liposome-based nanomaterials for the clinical treatment of glioma.


Subject(s)
Antineoplastic Agents , Blood-Brain Barrier , Brain Neoplasms , Glioma , Liposomes , Nanostructures , Glioma/drug therapy , Liposomes/chemistry , Humans , Brain Neoplasms/drug therapy , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Animals , Nanostructures/chemistry , Nanostructures/therapeutic use , Drug Delivery Systems/methods , Nanomedicine/methods , Drug Carriers/chemistry
9.
Int J Radiat Biol ; : 1-17, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38986056

ABSTRACT

PURPOSE: This comprehensive review aims to provide a unique clinical perspective on the latest advances and ongoing boron neutron capture therapy (BNCT) trials for various cancers. METHODS: We critically analyzed clinical data from BNCT trials for head and neck cancer, glioblastoma, melanoma, meningioma, breast cancer, and liver tumors. We investigated differences in tumor responses and normal tissue toxicities among trials and discussed potential contributing factors. We also identified the limitations of early BNCT trials and proposed strategies to optimize future trial design. RESULTS: BNCT has shown promising results in treating head and neck cancer, with high response rates and improved survival in patients with recurrent disease. In glioblastoma, BNCT combined with surgery and chemotherapy has demonstrated survival benefits compared to standard treatments. BNCT has also been successfully used for recurrent high-grade meningiomas and shows potential for melanomas, extramammary Paget's disease, and liver tumors. However, differences in tumor responses and toxicities were observed among trials, potentially attributable to variations in treatment protocols, patient characteristics, and evaluation methods. CONCLUSIONS: BNCT is a promising targeted radiotherapy for various cancers. Further optimization and well-designed randomized controlled trials are needed to establish its efficacy and safety. Future studies should focus on standardizing treatment protocols and addressing limitations to guide clinical decision-making and research priorities.

10.
BMC Cancer ; 24(1): 818, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982347

ABSTRACT

BACKGROUND: Glioma is the most common primary brain tumor with high mortality and disability rates. Recent studies have highlighted the significant prognostic consequences of subtyping molecular pathological markers using tumor samples, such as IDH, 1p/19q, and TERT. However, the relative importance of individual markers or marker combinations in affecting patient survival remains unclear. Moreover, the high cost and reliance on postoperative tumor samples hinder the widespread use of these molecular markers in clinical practice, particularly during the preoperative period. We aim to identify the most prominent molecular biomarker combination that affects patient survival and develop a preoperative MRI-based predictive model and clinical scoring system for this combination. METHODS: A cohort dataset of 2,879 patients was compiled for survival risk stratification. In a subset of 238 patients, recursive partitioning analysis (RPA) was applied to create a survival subgroup framework based on molecular markers. We then collected MRI data and applied Visually Accessible Rembrandt Images (VASARI) features to construct predictive models and clinical scoring systems. RESULTS: The RPA delineated four survival groups primarily defined by the status of IDH and TERT mutations. Predictive models incorporating VASARI features and clinical data achieved AUC values of 0.85 for IDH and 0.82 for TERT mutations. Nomogram-based scoring systems were also formulated to facilitate clinical application. CONCLUSIONS: The combination of IDH-TERT mutation status alone can identify the most distinct survival differences in glioma patients. The predictive model based on preoperative MRI features, supported by clinical assessments, offers a reliable method for early molecular mutation prediction and constitutes a valuable scoring tool for clinicians in guiding treatment strategies.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Glioma , Isocitrate Dehydrogenase , Magnetic Resonance Imaging , Telomerase , Humans , Glioma/genetics , Glioma/mortality , Glioma/diagnostic imaging , Glioma/pathology , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Female , Male , Magnetic Resonance Imaging/methods , Isocitrate Dehydrogenase/genetics , Middle Aged , Telomerase/genetics , Mutation , Adult , Nomograms , Prognosis , Aged
11.
CNS Neurosci Ther ; 30(7): e14850, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39021287

ABSTRACT

INTRODUCTION: Glioma is the most frequent and lethal form of primary brain tumor. The molecular mechanism of oncogenesis and progression of glioma still remains unclear, rendering the therapeutic effect of conventional radiotherapy, chemotherapy, and surgical resection insufficient. In this study, we sought to explore the function of HEC1 (highly expressed in cancer 1) in glioma; a component of the NDC80 complex in glioma is crucial in the regulation of kinetochore. METHODS: Bulk RNA and scRNA-seq analyses were used to infer HEC1 function, and in vitro experiments validated its function. RESULTS: HEC1 overexpression was observed in glioma and was indicative of poor prognosis and malignant clinical features, which was confirmed in human glioma tissues. High HEC1 expression was correlated with more active cell cycle, DNA-associated activities, and the formation of immunosuppressive tumor microenvironment, including interaction with immune cells, and correlated strongly with infiltrating immune cells and enhanced expression of immune checkpoints. In vitro experiments and RNA-seq further confirmed the role of HEC1 in promoting cell proliferation, and the expression of DNA replication and repair pathways in glioma. Coculture assay confirmed that HEC1 promotes microglial migration and the transformation of M1 phenotype macrophage to M2 phenotype. CONCLUSION: Altogether, these findings demonstrate that HEC1 may be a potential prognostic marker and an immunotherapeutic target in glioma.


Subject(s)
Brain Neoplasms , Glioma , Macrophages , RNA-Seq , Humans , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Prognosis , Macrophages/metabolism , Single-Cell Analysis , Male , Female , Tumor Microenvironment/genetics , Cell Line, Tumor , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Middle Aged , Cell Proliferation , Single-Cell Gene Expression Analysis , Cytoskeletal Proteins
12.
Genes Dis ; 11(5): 101106, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39022129

ABSTRACT

Programmed cell death 2 (PDCD2) is related to cancer progression and chemotherapy sensitivity. The role of PDCD2 in solid cancers (excluding hematopoietic malignancies) and their diagnosis and prognosis remains unclear. The TCGA, CGGA, GEPIA, cBioPortal, and GTEx databases were analyzed for expression, prognostic value, and genetic modifications of PDCD2 in cancer patients. Functional enrichment analysis, CCK8, colony formation assay, transwell assay, and xenograft tumor model were undertaken to study the PDCD2's biological function in glioma (GBMLGG). The PDCD2 gene was associated with solid cancer progression. In the functional enrichment analysis results, PDCD2 was shown to participate in several important GBMLGG biological processes. GBMLGG cells may be inhibited in their proliferation, migration, invasion, and xenograft tumor growth by knocking down PDCD2. Our research can provide new insights into solid cancer prognostic biomarkers of PDCD2.

13.
Neurooncol Adv ; 6(1): vdae069, 2024.
Article in English | MEDLINE | ID: mdl-39022644

ABSTRACT

Background: Homozygous deletion of the tumor suppression genes cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) is a strong adverse prognostic factor in IDH-mutant gliomas, particularly astrocytoma. However, the impact of hemizygous deletion of CDKN2A/B is unknown. Furthermore, the influence of CDKN2A/B status in IDH-mutant and 1p/19q-codeleted oligodendroglioma remains controversial. We examined the impact of CDKN2A/B status classification, including hemizygous deletions, on the prognosis of IDH-mutant gliomas. Methods: We enrolled 101 adults with IDH-mutant glioma between December 2002 and November 2021. CDKN2A/B deletion was evaluated with multiplex ligation-dependent probe amplification (MLPA). Immunohistochemical analysis of p16/MTAP and promoter methylation analysis with methylation-specific MLPA was performed for cases with CDKN2A/B deletion. Kaplan - Meier plots and Cox proportion hazards model analyses were performed to evaluate the impact on overall (OS) and progression-free survival. Results: Of 101 cases, 12 and 4 were classified as hemizygous and homozygous deletion, respectively. Immunohistochemistry revealed p16-negative and MTAP retention in cases with hemizygous deletion, whereas homozygous deletions had p16-negative and MTAP loss. In astrocytoma, OS was shorter in the order of homozygous deletion, hemizygous deletion, and copy-neutral groups (median OS: 38.5, 59.5, and 93.1 months, respectively). Multivariate analysis revealed hazard ratios of 9.30 (P = .0191) and 2.44 (P = .0943) for homozygous and hemizygous deletions, respectively. Conclusions: CDKN2A/B hemizygous deletions exerted a negative impact on OS in astrocytoma. Immunohistochemistry of p16/MTAP can be utilized to validate hemizygous or homozygous deletions in combination with conventional molecular diagnosis.

14.
Neurooncol Adv ; 6(1): vdae105, 2024.
Article in English | MEDLINE | ID: mdl-39022645

ABSTRACT

Despite rapid advances in the field of immunotherapy, including the success of immune checkpoint inhibition in treating multiple cancer types, clinical response in high-grade gliomas (HGGs) has been disappointing. This has been in part attributed to the low tumor mutational burden (TMB) of the majority of HGGs. Hypermutation is a recently characterized glioma signature that occurs in a small subset of cases, which may open an avenue to immunotherapy. The substantially elevated TMB of these tumors most commonly results from alterations in the DNA mismatch repair pathway in the setting of extensive exposure to temozolomide or, less frequently, from inherited cancer predisposition syndromes. In this review, we discuss the genetics and etiology of hypermutation in HGGs, with an emphasis on the resulting genomic signatures, and the state and future directions of immuno-oncology research in these patient populations.

15.
Neurooncol Adv ; 6(1): vdae103, 2024.
Article in English | MEDLINE | ID: mdl-39022648

ABSTRACT

Background: Seizures are a common sequela for patients suffering from gliomas. Molecular properties are known to influence the initiation of seizures that may influence tumor growth. Different levels of gene expression with seizures related to gliomas remain unclear. We analyzed RNA sequencing of gliomas to further probe these differences. Methods: Total RNA sequencing was obtained from The Cancer Genome Atlas-Lower-Grade Glioma project, comprised of 2021 World Health Organization classification low-grade gliomas, including IDH-mutant and IDH-wild type, to distinguish differential expression in patients who did and did not experience seizures. Utilizing QIAGEN Ingenuity Pathways Analysis, we identified canonical and functional pathways to characterize differential expression. Results: Of 289 patients with gliomas, 83 (28.7%) had available information regarding seizure occurrence prior to intervention and other pertinent variables of interest. Of these, 50 (60.2%) were allocated to the seizure group. When comparing the level of RNA expression from these tumors between the seizure and non-seizure groups, 52 genes that were significantly differentially regulated were identified. We found canonical pathways that were altered, most significantly RhoGDI and semaphorin neuronal repulsive signaling. Functional gene analysis revealed tumors that promoted seizures had significantly increased functional gene sets involving neuronal differentiation and synaptogenesis. Conclusions: In the setting of gliomas, differences in tumor gene expression exist between individuals with and without seizures, despite similarities in patient demographics and other tumor characteristics. There are significant differences in gene expression associated with neuron development and synaptogenesis, ultimately suggesting a mechanistic role of a tumor-neuron synapse in seizure initiation.

16.
Noncoding RNA Res ; 9(4): 1178-1189, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39022676

ABSTRACT

As the deadliest type of primary brain tumor, gliomas represent a significant worldwide health concern. Circular RNA (circRNA), a unique non-coding RNA molecule, seems to be one of the most alluring target molecules involved in the pathophysiology of many kinds of cancers. CircRNAs have been identified as prospective targets and biomarkers for the diagnosis and treatment of numerous disorders, particularly malignancies. Recent research has established a clinical link between temozolomide (TMZ) resistance and certain circRNA dysregulations in glioma tumors. CircRNAs may play a therapeutic role in controlling or overcoming TMZ resistance in gliomas and may provide guidance for a novel kind of individualized glioma therapy. To address the biological characteristics of circRNAs and their potential to induce resistance to TMZ, this review has highlighted and summarized the possible roles that circRNAs may play in molecular pathways of drug resistance, including the Ras/Raf/ERK PI3K/Akt signaling pathway and metabolic processes in gliomas.

17.
Noncoding RNA Res ; 9(4): 1061-1068, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39022681

ABSTRACT

The segmentally duplicated Pregnancy-specific glycoprotein (PSG) locus on chromosome 19q13 may be one of the most rapidly evolving in the human genome. It comprises ten coding genes (PSG1-9, 11) and one predominantly non-coding gene (PSG10) that are expressed in the placenta and gut, in addition to several poorly characterized long non-coding RNAs. We report that long non-coding RNA PSG8-AS1 has an oligodendrocyte-specific expression pattern and is co-expressed with genes encoding key myelin constituents. PSG8-AS1 exhibits two peaks of expression during human brain development coinciding with the most active periods of oligodendrogenesis and myelination. PSG8-AS1 orthologs were found in the genomes of several primates but significant expression was found only in the human, suggesting a recent evolutionary origin of its proposed role in myelination. Additionally, because co-deletion of chromosomes 1p/19q is a genomic marker of oligodendroglioma, expression of PSG8-AS1 was examined in these tumors. PSG8-AS1 may be a promising diagnostic biomarker for glioma, with prognostic value in oligodendroglioma.

18.
Neuro Oncol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023130

ABSTRACT

BACKGROUND: Pediatric low-grade glioma incidence has been rising in the U.S., mirroring the rising rates of pediatric and maternal obesity. Recently, children of obese mothers were demonstrated to develop brain tumors at higher rates. Importantly, obesity in the U.S. is largely driven by diet, given the prevalence of high fat and high sugar (HFHS) food choices. Since high-fat diet exposure can increase embryonic neuroglial progenitor cell (NPC) proliferation, the potential cells of origin for low-grade glioma, we hypothesized that in utero exposure to an obesogenic diet would modify pediatric brain penetrance and latency by affecting the tumor cell of origin. METHODS: We employed several murine models of the Neurofibromatosis type 1 (NF1) pediatric brain tumor predisposition syndrome, in which optic pathway gliomas (Nf1-OPGs) arise from NPCs in the embryonic third ventricular zone (TVZ). We exposed dams and offspring to an obesogenic HFHS diet or control chow and analysed fetal neurodevelopment at E19.5 and tumor formation at 6w-3mo. RESULTS: Progeny from HFHS diet-exposed dams demonstrated increased TVZ NPC proliferation and glial differentiation. Dietary switch cohorts confirmed that these effects were dependent upon maternal diet, rather than maternal weight. Obesogenic diet (Ob) similarly accelerated glioma formation in a high-penetrance Nf1-OPG strain and increased glioma penetrance in two low-penetrance Nf1-OPG strains. In contrast, Ob exposure in the postnatal period alone did not recapitulate these effects. CONCLUSIONS: These findings establish maternal obesogenic diet as a risk factor for murine Nf1-OPG formation, acting in part through in utero effects on the tumor cell of origin.

19.
Acta Neurochir (Wien) ; 166(1): 300, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023552

ABSTRACT

BACKGROUND: Post-neurosurgical meningitis (PNM) constitutes a grave complication associated with substantial morbidity and mortality. This study aimed to determine the risk factors predisposing patients to PNM following surgery for low- and high-grade gliomas. METHODS: We conducted a retrospective analysis encompassing all patients who underwent glioma surgery involving craniotomy at Turku University Hospital, Turku, Finland, between 2011 and 2018. Inclusion criteria for PNM were defined as follows: (1) Positive cerebrospinal fluid (CSF) culture, (2) CSF leukocyte count ≥ 250 × 106/L with granulocyte percentage ≥ 50%, or (3) CSF lactate concentration ≥ 4 mmol/L, detected after glioma surgery. Glioma grades 3-4 were classified as high-grade (n = 261), while grades 1-2 were designated as low-grade (n = 84). RESULTS: Among the 345 patients included in this study, PNM developed in 7% (n = 25) of cases. The median time interval between glioma surgery and diagnosis of PNM was 12 days. Positive CSF cultures were observed in 7 (28%) PNM cases, with identified pathogens encompassing Staphylococcus epidermidis (3), Staphylococcus aureus (2), Enterobacter cloacae (1), and Pseudomonas aeruginosa (1). The PNM group exhibited a higher incidence of reoperations (52% vs. 18%, p < 0.001) and revision surgery (40% vs. 6%, p < 0.001) in comparison to patients without PNM. Multivariable analysis revealed that reoperation (OR 2.63, 95% CI 1.04-6.67) and revision surgery (OR 7.08, 95% CI 2.55-19.70) were significantly associated with PNM, while glioma grade (high-grade vs. low-grade glioma, OR 0.81, 95% CI 0.30-2.22) showed no significant association. CONCLUSIONS: The PNM rate following glioma surgery was 7%. Patients requiring reoperation and revision surgery were at elevated risk for PNM. Glioma grade did not exhibit a direct link with PNM; however, the presence of low-grade gliomas may indirectly heighten the PNM risk through an increased likelihood of future reoperations. These findings underscore the importance of meticulous post-operative care and infection prevention measures in glioma surgeries.


Subject(s)
Brain Neoplasms , Glioma , Neurosurgical Procedures , Postoperative Complications , Humans , Glioma/surgery , Glioma/pathology , Male , Middle Aged , Female , Retrospective Studies , Brain Neoplasms/surgery , Adult , Aged , Risk Factors , Neurosurgical Procedures/adverse effects , Neoplasm Grading , Reoperation , Young Adult , Meningitis/etiology , Craniotomy/adverse effects
20.
World J Clin Oncol ; 15(6): 687-690, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38946838

ABSTRACT

Glioma is one of the most common primary intracranial tumors, characterized by invasive growth and poor prognosis. Actin cytoskeletal rearrangement is an essential event in tumor cell migration. Scinderin (SCIN), an actin severing and capping protein that regulates the actin cytoskeleton, is involved in the proliferation and migration of certain cancer cells. However, its biological role and molecular mechanism in glioma remain unclear. Lin et al explored the role and mechanism of SCIN in gliomas. The results showed that SCIN mechanically affected cytoskeleton remodeling and inhibited the formation of lamellipodia via RhoA/FAK signaling pathway. This study identifies the cancer-promoting role of SCIN and provides a potential therapeutic target for SCIN in glioma treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...