Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
1.
Front Pharmacol ; 15: 1396292, 2024.
Article in English | MEDLINE | ID: mdl-38989154

ABSTRACT

Plant extracts are increasingly recognized for their potential in modulating (postprandial) blood glucose levels. In this context, root extracts are of particular interest due to their high concentrations and often unique spectrum of plant bioactives. To identify new plant species with potential glucose-lowering activity, simple and robust methodologies are often required. For this narrative review, literature was sourced from scientific databases (primarily PubMed) in the period from June 2022 to January 2024. The regulatory targets of glucose homeostasis that could be modulated by bioactive plant compounds were used as search terms, either alone or in combination with the keyword "root extract". As a result, we present a comprehensive methodological toolbox for studying the glucose homeostasis modulating properties of plant extracts and its constituents. The described assays encompass in-vitro investigations involving enzyme inhibition (α-amylase, α-glucosidase, dipeptidyl peptidase 4), assessment of sodium-dependent glucose transporter 1 activity, and evaluation of glucose transporter 4 translocation. Furthermore, we describe a patch-clamp technique to assess the impact of extracts on KATP channels. While validating in-vitro findings in living organisms is imperative, we introduce two screenable in-vivo models (the hen's egg test and Drosophila melanogaster). Given that evaluation of the bioactivity of plant extracts in rodents and humans represents the current gold standard, we include approaches addressing this aspect. In summary, this review offers a systematic guide for screening plant extracts regarding their influence on key regulatory elements of glucose homeostasis, culminating in the assessment of their potential efficacy in-vivo. Moreover, application of the presented toolbox might contribute to further close the knowledge gap on the precise mechanisms of action of plant-derived compounds.

2.
Int J Mol Sci ; 25(4)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38396865

ABSTRACT

Antipsychotic drug (APD) medication can lead to metabolic dysfunctions and weight gain, which together increase morbidity and mortality. Metabolically active visceral adipose tissue (VAT) in particular plays a crucial role in the etiopathology of these metabolic dysregulations. Here, we studied the effect of 12 weeks of drug medication by daily oral feeding of clozapine and haloperidol on the perirenal fat tissue as part of VAT of male and female Sprague Dawley rats in the context of complex former investigations on brain, liver, and blood. Adipocyte area values were determined, as well as triglycerides, non-esterified fatty acids (NEFAs), glucose, glycogen, lactate, malondialdehyde equivalents, ferric iron and protein levels of Perilipin-A, hormone-sensitive-lipase (HSL), hepcidin, glucose transporter-4 (Glut-4) and insulin receptor-ß (IR-ß). We found increased adipocyte mass in males, with slightly higher adipocyte area values in both males and females under clozapine treatment. Triglycerides, NEFAs, glucose and oxidative stress in the medicated groups were unchanged or slightly decreased. In contrast to controls and haloperidol-medicated rats, perirenal adipocyte mass and serum leptin levels were not correlated under clozapine. Protein expressions of perilipin-A, Glut-4 and HSL were decreased under clozapine treatment. IR-ß expression changed sex-specifically in the clozapine-medicated groups associated with higher hepcidin levels in the perirenal adipose tissue of clozapine-treated females. Taken together, clozapine and haloperidol had a smaller effect than expected on perirenal adipose tissue. The perirenal adipose tissue shows only weak changes in lipid and glucose metabolism. The main changes can be seen in the proteins examined, and probably in their effect on liver metabolism.


Subject(s)
Antipsychotic Agents , Clozapine , Rats , Male , Female , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/metabolism , Clozapine/pharmacology , Haloperidol/pharmacology , Hepcidins/metabolism , Rats, Sprague-Dawley , Adipocytes/metabolism , Adipose Tissue/metabolism , Liver/metabolism , Triglycerides/metabolism , Glucose/metabolism , Fatty Acids, Nonesterified/metabolism , Brain/metabolism , Perilipins/metabolism
3.
Cell Commun Signal ; 22(1): 28, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200540

ABSTRACT

BACKGROUND: Bisphenol A (BPA) levels are high in women with polycystic ovary syndrome (PCOS). The mechanism by which BPA induces abnormal glucose metabolism in PCOS patients is largely unknown. METHODS: Serum and urine samples were collected from women with and without PCOS (control) at the reproductive medicine center with informed consent. Non-PCOS patients who received in vitro fertilization were recruited for collection of ovarian follicular fluid and granular cells. Wild-type C57BL/6 and AhR -/- mice were used to verify the effects of BPA on PCOS. Real-time PCR, western blotting, and ELISA were conducted to analyze the function of BPA. Chip-qPCR verified the role of AhR in GLUT4 transcription. Flow cytometry was performed to determine glucose uptake. RESULTS: A positive correlation was observed between BPA concentration and serum BPA levels in PCOS patients. BPA aggravated the changes in PCOS with abnormal glucose metabolism, impaired fertility, and increased body fat. Mechanistically, we showed that BPA activated AhR and led to decreased glucose transport via GLUT4 downregulation in ovarian granular cells. Therefore, the use of inhibitors or knockout of AhR could effectively rescue BPA-induced metabolic disorders in PCOS mice. CONCLUSIONS: Our results revealed that BPA suppressed GLUT4 expression and induced abnormal glucose metabolism by activating AhR, causing insulin resistance, and is thus a potential contributor to the development of PCOS. Therefore, AhR could be a potential new therapeutic target for PCOS. Video Abstract.


Subject(s)
Benzhydryl Compounds , Phenols , Polycystic Ovary Syndrome , Humans , Female , Animals , Mice , Mice, Inbred C57BL , Receptors, Aryl Hydrocarbon , Glucose
4.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279251

ABSTRACT

Glucose transporter-4 (GLUT4) represents the major glucose transporter isoform responsible for glucose uptake into insulin-sensitive cells, primarily in skeletal muscle and adipose tissues. In insulin-resistant conditions, such as type 2 diabetes mellitus, GLUT4 expression and/or translocation to the cell plasma membrane is reduced, compromising cell energy metabolism. Therefore, the use of synthetic or naturally occurring molecules able to stimulate GLUT4 expression represents a good tool for alternative treatments of insulin resistance. The present study aimed to investigate the effects of essential oils (EOs) derived from Pinus spp. (P. nigra and P. radiata) and of their main terpenoid constituents (α- and ß-pinene) on the expression/translocation of GLUT4 in myoblast C2C12 murine cells. For this purpose, the chemical profiles of the EOs were first analyzed through gas chromatography-mass spectrometry (GC-MS). Cell viability was assessed by MTT assay, and GLUT4 expression/translocation was evaluated through RT-qPCR and flow cytometry analyses. The results showed that only the P. nigra essential oil (PnEO) and α-pinene can increase the transcription of the Glut4/Scl2a4 gene, resulting in a subsequent increase in the amount of GLUT4 produced and its plasma membrane localization. Moreover, the PnEO or α-pinene can induce Glut4 expression both during myogenesis and in myotubes. In summary, the PnEO and α-pinene emulate insulin's effect on the GLUT4 transporter expression and its translocation to the muscle cell surface.


Subject(s)
Bicyclic Monoterpenes , Diabetes Mellitus, Type 2 , Oils, Volatile , Mice , Animals , Insulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Insulin, Regular, Human/pharmacology , Glucose/metabolism
5.
Zhongguo Zhen Jiu ; 43(12): 1425-1430, 2023 Dec 12.
Article in English, Chinese | MEDLINE | ID: mdl-38092542

ABSTRACT

OBJECTIVES: To observe the effects on the glucose-lipid metabolism and the expression of zinc-α2-glycoprotein (ZAG) and glucose transporter 4 (GLUT4) in the femoral quadriceps and adipose tissue after electroacupuncture (EA) at "Pishu" (BL 20), "Weiwanxiashu" (EX-B 3), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) in the rats with diabetes mellitus type 2 (T2DM), so as to explore the effect mechanism of EA in treatment of T2DM. METHODS: Twelve ZDF male rats were fed with high-sugar and high-fat fodder, Purina #5008 for 4 weeks to induce T2DM model. After successfully modeled, the rats were randomly divided into a model group and an EA group, with 6 rats in each one. Additionally, 6 ZL male rats of the same months age were collected as the blank group. The rats in the EA group were treated with EA at bilateral "Pishu" (BL 20), "Weiwanxiashu" (EX-B 3), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6), with continuous wave, 15 Hz in frequency, and 2 mA in intensity. The electric stimulation lasted 20 min each time. EA was delivered once daily, 6 times a week for 4 weeks. Separately, the levels of fasting blood glucose (FBG) was measured before modeling, before and after intervention, and the body mass of each rat was weighted before and after intervention. After intervention, the levels of the total cholesterol (TC), triacylglycerol (TG) and free fatty acid (FFA) in serum were detected using enzyme colorimetric method; and the levels of the serum insulin (INS) and ZAG were detected by ELISA. Besides, the insulin sensitivity index (HOMA-ISI) was calculated. With Western blot technique adopted, the protein expressions of ZAG and GLUT4 in the femoral quadriceps and adipose tissue were determined. RESULTS: After intervention, compared with the blank group, the levels of FBG and body mass, and the levels of serum TC, TG, FFA and INS increased (P<0.01), while HOMA-ISI decreased (P<0.01); the level of ZAG in the serum and the protein expressions of ZAG and GLUT4 in the femoral quadriceps and adipose tissue dropped (P<0.01) in the model group. In the EA group, compared with the model group, the levels of FBG and body mass, and the levels of serum TC, TG, FFA and INS were reduced (P<0.01), and HOMA-ISI increased (P<0.01); the level of ZAG in the serum and the protein expressions of ZAG and GLUT4 in the femoral quadriceps and adipose tissue increased (P<0.01, P<0.05). CONCLUSIONS: Electroacupuncture can effectively regulate glucose-lipid metabolism, improve insulin resistance and sensitivity in the rats with T2DM, which is associated with the modulation of ZAG and GLUT4 expression in the skeletal muscle and adipose tissue.


Subject(s)
Diabetes Mellitus, Type 2 , Electroacupuncture , Rats , Male , Animals , Glucose/metabolism , Rats, Sprague-Dawley , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/therapy , Lipid Metabolism , Triglycerides , Adipose Tissue/metabolism , Acupuncture Points
6.
Turk J Biol ; 47(2): 141-157, 2023.
Article in English | MEDLINE | ID: mdl-37529167

ABSTRACT

Since obesity causes at least 2.8 million death each year and is a major risk factor for many diseases, it is critical to evaluate alternative treatment approaches. In this context, studies on the research of natural product-based therapeutics in the fight against obesity are increasing. In this study, it was aimed to evaluate the antiadipogenic and antiobesogenic efficacy of pterostilbene a natural phenolic compound in 3T3-L1 cells. The mature 3T3-L1 adipocytes were exposed to pterostilbene at different concentrations and half-maximum inhibitory concentrations (IC50) were determined by MTT assay. Oil-Red-O staining was applied to determine lipid accumulation. Phase contrast microscopy, Giemsa, F-actin and DAPI staining were applied to examine the efficacy of pterostilbene on the morphology of 3T3-L1 adipocyte cells. Moreover, expressions of adinopectin and glucose transporter-4 (Glut-4) in relation to insulin resistance were evaluated using immunofluorescent staining and qRT-PCR. Pterostilbene caused no significant cytotoxicity towards preadipocytes at concentrations ≤7.5 -M and the percentage of viable cells remained above about 86% for 24 h, 48 h and 72 h (p > 0.05). Therefore, pterostilbene treatment at 5 and 7.5 -M was used in the subsequent experiments as safe dosages. In addition, it was observed that pterostilbene treatment reduced lipid accumulation in adipocyte differentiation. Adipocytes treated with a dose of 7.5 -M for 14 days showed less intense lipid deposition and a more spindle-like morphology compared to the adipocytes treated with a dose of 5 -M. Especially on the 14th day, actin filaments were filamentous in adipocytes treated with pterostilbene 7.5 -M compared to the adipocytes treated with a dose of 5 -M; the filaments were similarly oriented as in preadipocytes, and chromatin condensation was observed to be quite high. Our data suggests that the pterostilbene supplementation may help weight control and the antiadipogenic and that antiobesogenic activity is mediated in part by reduction of lipid accumulation and induction of Glut-4 and Adiponectin levels.

7.
JACC Basic Transl Sci ; 8(6): 638-655, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37426525

ABSTRACT

Whereas adrenergic stimulation promotes cardiac function that demands more fuel and energy, how this receptor controls cardiac glucose metabolism is not defined. This study shows that the cardiac ß2 adrenoreceptor (ß2AR) is required to increase glucose transporter 4 (GLUT4)-mediated glucose uptake in myocytes and glucose oxidation in working hearts via activating the cardiac ß2AR and promotes the G inhibitory-phosphoinositide 3-kinase-protein kinase B cascade to increase phosphorylation of TBC1D4 (aka AS160), a Rab guanosine triphosphatase-activating protein, which is a key enzyme to mobilize GLUT4. Furthermore, deleting G-protein receptor kinase phosphorylation sites of ß2AR blocked adrenergic stimulation of GLUT4-mediated glucose uptake in myocytes and hearts. This study defines a molecular pathway that controls cardiac GLUT4-mediated glucose uptake and metabolism under adrenergic stimulation.

9.
Nutrition ; 114: 112113, 2023 10.
Article in English | MEDLINE | ID: mdl-37441826

ABSTRACT

OBJECTIVES: This study was performed to assess the effects of long-term intake of a very high carbohydrate (VHCHO) diet (76% of total energy from carbohydrate [CHO]) on whole-body glucose tolerance and hepatic insulin resistance. METHODS AND MATERIALS: Male Sprague Dawley rats were fed either a control high-CHO diet (59% total energy from CHO; n = 8) or a VHCHO diet (76% total energy from CHO; n = 8) for 17 wk. At 4, 8, 12, and 16 wk of the dietary intervention, oral glucose tolerance test and homeostasis model assessment of insulin resistance (HOMA-IR) measurements were taken to assess whole-body glucose tolerance and hepatic insulin resistance, respectively. The triacylglycerol concentration in the liver was measured at the end of the 17-wk intervention period. RESULTS: The VHCHO diet group showed significantly higher muscle glucose transporter 4 content and a smaller area under the curve for plasma glucose, but not insulin, in the oral glucose tolerance test compared with the control group. On the other hand, the VHCHO diet group had a significantly higher hepatic triacylglycerol concentration and HOMA-IR measurement compared with the control group. The hepatic triacylglycerol concentration was significantly and positively correlated with HOMA-IR. CONCLUSIONS: The results of the present study suggest that long-term intake of a VHCHO diet exerts differential effects on whole-body glucose tolerance and hepatic insulin resistance.


Subject(s)
Insulin Resistance , Rats , Male , Animals , Rats, Sprague-Dawley , Liver , Triglycerides , Dietary Carbohydrates/pharmacology , Glucose/pharmacology , Blood Glucose
10.
Cancer Lett ; 563: 216179, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37061122

ABSTRACT

The glucose transporter family (GLUT) consists of fourteen members. It is responsible for glucose homeostasis and glucose transport from the extracellular space to the cell cytoplasm to further cascade catalysis. GLUT proteins are encoded by the solute carrier family 2 (SLC2) genes and are members of the major facilitator superfamily of membrane transporters. Moreover, different GLUTs also have their transporter kinetics and distribution, so each GLUT member has its uniqueness and importance to play essential roles in human physiology. Evidence from many studies in the field of diabetes showed that GLUT4 travels between the plasma membrane and intracellular vesicles (GLUT4-storage vesicles, GSVs) and that the PI3K/Akt pathway regulates this activity in an insulin-dependent manner or by the AMPK pathway in response to muscle contraction. Moreover, some published results also pointed out that GLUT4 mediates insulin-dependent glucose uptake. Thus, dysfunction of GLUT4 can induce insulin resistance, metabolic reprogramming in diverse chronic diseases, inflammation, and cancer. In addition to the relationship between GLUT4 and insulin response, recent studies also referred to the potential upstream transcription factors that can bind to the promoter region of GLUT4 to regulating downstream signals. Combined all of the evidence, we conclude that GLUT4 has shown valuable unknown functions and is of clinical significance in cancers, which deserves our in-depth discussion and design compounds by structure basis to achieve therapeutic effects. Thus, we intend to write up a most updated review manuscript to include the most recent and critical research findings elucidating how and why GLUT4 plays an essential role in carcinogenesis, which may have broad interests and impacts on this field.


Subject(s)
Insulin , Neoplasms , Humans , Cell Membrane/metabolism , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Glycolysis , Insulin/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Transport
11.
J Biol Chem ; 299(4): 103074, 2023 04.
Article in English | MEDLINE | ID: mdl-36858200

ABSTRACT

Heparin can block pathological responses associated with diabetic nephropathy in animal models and human patients. Our previous studies showed that the interaction of heparin on the surface of rat mesangial cells (RMCs) entering G1 of cell division in hyperglycemic glucose: 1) blocked glucose uptake by glucose transporter 4; 2) inhibited cytosolic uridine diphosphate-glucose elevation that would occur within 6 h from G0/G1; and 3) prevented subsequent activation of hyaluronan synthesis in intracellular compartments and subsequent inflammatory responses. However, specific proteins that interact with heparin are unresolved. Here, we showed by live cell imaging that fluorescent heparin was rapidly internalized into the cytoplasm and then into the endoplasmic reticulum, Golgi, and nuclei compartments. Biotinylated-heparin was applied onto the surface of growth arrested G0/G1 RMCs in order to extract heparin-binding protein(s). SDS-PAGE gels showed two bands at ∼70 kDa in the extract that were absent when unlabeled heparin was used to compete. Trypsin digests of the bands were analyzed by MS and identified as calreticulin and prelamin A/C. Immunostaining with their antibodies identified the presence of calreticulin on the G0/G1 RMC cell surface. Previous studies have shown that calreticulin can be on the cell surface and can interact with the LDL receptor-related protein, which has been implicated in glucose transport by interaction with glucose transporter 4. Thus, cell surface calreticulin can act as a heparin receptor through a mechanism involving LRP1, which prevents the intracellular responses in high glucose and reprograms the cells to synthesize an extracellular hyaluronan matrix after division.


Subject(s)
Calreticulin , Cell Division , G1 Phase , Glucose , Heparin , Hyperglycemia , Mesangial Cells , Resting Phase, Cell Cycle , Animals , Humans , Rats , Calreticulin/metabolism , Cells, Cultured , Glomerular Mesangium/metabolism , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Heparin/pharmacology , Heparin/metabolism , Hyaluronic Acid/metabolism , Mesangial Cells/cytology , Mesangial Cells/metabolism , Hyperglycemia/metabolism
12.
J Tradit Complement Med ; 13(1): 11-19, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36685073

ABSTRACT

Common treatments for the management of diabetes have limitations due to side effects, hence the need for continuous research to discover new remedies with better therapeutic efficacy. Previously, we have reported that the combination treatment of gallic acid (20 mg/kg) and andrographolide (10 mg/kg) for 15 days demonstrated synergistic hypoglycemic activity in the streptozotocin (STZ)-induced insulin-deficient diabetes rat model. Here, we attempt to further elucidate the effect of this combination therapy at the biochemical, histological and molecular levels. Our biochemical analyses showed that the combination treatment significantly increased the serum insulin level and decreased the total cholesterol and triglyceride level of the diabetic animals. Histological examinations of H&E stained pancreas, liver, kidney and adipose tissues of combination-treated diabetic animals showed restoration to the normalcy of the tissues. Besides, the combination treatment significantly enhanced the level of glucose transporter-4 (GLUT4) protein expression in the skeletal muscle of treated diabetic animals compared to single compound treated and untreated diabetic animals. The molecular docking analysis on the interaction of gallic acid and/or andrographolide with the adiponectin receptor 1 (AdipoR1), a key component in the regulation of pancreatic insulin secretion, revealed a greater binding affinity of AdipoR1 to both compounds compared to individual compounds. Taken together, these findings suggest the combination of gallic acid and andrographolide as a potent therapy for the management of diabetes mellitus.

13.
Phytother Res ; 37(2): 611-626, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36325883

ABSTRACT

We have previously reported that Gypenoside LXXV (GP-75), a novel natural PPARγ agonist isolated from Gynostemma pentaphyllum, ameliorated cognitive deficits in db/db mice. In this study, we further investigated the beneficial effects on cognitive impairment in APP/PS1 mice and a mouse model of diabetic AD (APP/PS1xdb/db mice). Interestingly, intragastric administration of GP-75 (40 mg/kg/day) for 3 months significantly attenuated cognitive deficits in APP/PS1 and APP/PS1xdb/db mice. GP-75 treatment markedly reduced the levels of glucose, HbA1c and insulin in serum and improved glucose tolerance and insulin sensitivity in APP/PS1xdb/db mice. Notably, GP-75 treatment decreased the ß-amyloid (Aß) burden, as measured by 11 C-PIB PET imaging. Importantly, GP-75 treatment increased brain glucose uptake as measured by 18 F-FDG PET imaging. Moreover, GP-75 treatment upregulated PPARγ and increased phosphorylation of Akt (Ser473) and GLUT4 expression levels but decreased phosphorylation of IRS-1 (Ser616) in the hippocampi of both APP/PS1 and APP/PS1xdb/db mice. Furthermore, GP-75-induced increases in GLUT4 membrane translocation in primary hippocampal neurons from APP/PS1xdb/db mice was abolished by cotreatment with the selective PPARγ antagonist GW9662 or the PI3K inhibitor LY294002. In summary, GP-75 ameliorated cognitive deficits in APP/PS1 and APP/PS1xdb/db mice by enhancing glucose uptake via activation of the PPARγ/Akt/GLUT4 signaling pathways.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Diabetes Mellitus , Mice , Animals , Alzheimer Disease/metabolism , PPAR gamma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Cognitive Dysfunction/drug therapy , Brain , Glucose/metabolism , Cognition , Amyloid beta-Protein Precursor/metabolism
14.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38275993

ABSTRACT

Berberine (BBR) is an isoquinoline alkaloid that can be extracted from herbs such as Coptis, Phellodendron, and Berberis. BBR has been widely used as a folk medicine to treat various disorders. It is a multi-target drug with multiple mechanisms. Studies have shown that it has antioxidant and anti-inflammatory properties and can also adjust intestinal microbial flora. This review focused on the promising antidiabetic effects of BBR in several cellular, animal, and clinical studies. Based on previous research, BBR significantly reduced levels of fasting blood glucose, hemoglobin A1C, inflammatory cytokines, and oxidative stress markers. Furthermore, BBR stimulated insulin secretion and improved insulin resistance through different pathways, including up-regulation of protein expression of proliferator-activated receptor (PPAR)-γ, glucose transporter (GLUT) 4, PI3K/AKT, and AMP-activated protein kinase (AMPK) activation. Interestingly, it was demonstrated that BBR has protective effects against diabetes complications, such as diabetic-induced hepatic damage, cardiovascular disorders, nephropathy, and neuropathy. Furthermore, multiple clinical trial studies have emphasized the ameliorative effects of BBR in type 2 diabetic patients.

15.
Chinese Acupuncture & Moxibustion ; (12): 1425-1430, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-1007504

ABSTRACT

OBJECTIVES@#To observe the effects on the glucose-lipid metabolism and the expression of zinc-α2-glycoprotein (ZAG) and glucose transporter 4 (GLUT4) in the femoral quadriceps and adipose tissue after electroacupuncture (EA) at "Pishu" (BL 20), "Weiwanxiashu" (EX-B 3), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) in the rats with diabetes mellitus type 2 (T2DM), so as to explore the effect mechanism of EA in treatment of T2DM.@*METHODS@#Twelve ZDF male rats were fed with high-sugar and high-fat fodder, Purina #5008 for 4 weeks to induce T2DM model. After successfully modeled, the rats were randomly divided into a model group and an EA group, with 6 rats in each one. Additionally, 6 ZL male rats of the same months age were collected as the blank group. The rats in the EA group were treated with EA at bilateral "Pishu" (BL 20), "Weiwanxiashu" (EX-B 3), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6), with continuous wave, 15 Hz in frequency, and 2 mA in intensity. The electric stimulation lasted 20 min each time. EA was delivered once daily, 6 times a week for 4 weeks. Separately, the levels of fasting blood glucose (FBG) was measured before modeling, before and after intervention, and the body mass of each rat was weighted before and after intervention. After intervention, the levels of the total cholesterol (TC), triacylglycerol (TG) and free fatty acid (FFA) in serum were detected using enzyme colorimetric method; and the levels of the serum insulin (INS) and ZAG were detected by ELISA. Besides, the insulin sensitivity index (HOMA-ISI) was calculated. With Western blot technique adopted, the protein expressions of ZAG and GLUT4 in the femoral quadriceps and adipose tissue were determined.@*RESULTS@#After intervention, compared with the blank group, the levels of FBG and body mass, and the levels of serum TC, TG, FFA and INS increased (P<0.01), while HOMA-ISI decreased (P<0.01); the level of ZAG in the serum and the protein expressions of ZAG and GLUT4 in the femoral quadriceps and adipose tissue dropped (P<0.01) in the model group. In the EA group, compared with the model group, the levels of FBG and body mass, and the levels of serum TC, TG, FFA and INS were reduced (P<0.01), and HOMA-ISI increased (P<0.01); the level of ZAG in the serum and the protein expressions of ZAG and GLUT4 in the femoral quadriceps and adipose tissue increased (P<0.01, P<0.05).@*CONCLUSIONS@#Electroacupuncture can effectively regulate glucose-lipid metabolism, improve insulin resistance and sensitivity in the rats with T2DM, which is associated with the modulation of ZAG and GLUT4 expression in the skeletal muscle and adipose tissue.


Subject(s)
Rats , Male , Animals , Glucose/metabolism , Electroacupuncture , Rats, Sprague-Dawley , Diabetes Mellitus, Type 2/therapy , Lipid Metabolism , Triglycerides , Adipose Tissue/metabolism , Acupuncture Points
16.
J Diabetes Complications ; 36(12): 108340, 2022 12.
Article in English | MEDLINE | ID: mdl-36345109

ABSTRACT

Diabetes mellitus is the leading disorder and affects more than millions of people worldwide. Nowadays, the usage of herbal drugs is said to control adiposity and hyperglycemia. The current research investigated the anti-adiposity and antidiabetic activity of S. saman leaf extract and bioactive compounds. Therefore, the results lower the sugar absorption into the blood and reveal the extract's antidiabetic properties. STZ-induced diabetic rats, Samanea saman methanolic extract show improvement in the parameters like fasting blood glucose levels, body weight, other biochemical parameters supported by the histopathological analysis, and an increase in serum levels in the experimental groups. The antioxidant plays a vital role by increasing SOD and catalase activity levels and decreasing lipid peroxidation levels. The methanolic extract protects the tissue from oxidation stress, which is responsible for the glycemic properties. According to the findings, diabetic-treated rats had overnight blood glucose levels lower and near standard biochemical markers. Histopathology of the liver, pancreas, kidneys, and adipose tissues supported the pharmacological observations. Further, we screened and documented S. saman extract used for in vitro and in vivo methods. In terms of effectiveness, the crude extracts exhibit 0.8-fold GLUT4 down-regulation. Consequently, this result contributes to clinical trials and develops antidiabetic therapy as a substitute for synthetic pharmaceuticals.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Animals , Rats , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Blood Glucose/analysis , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Glucose Transport Proteins, Facilitative/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Liver/metabolism , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Streptozocin , Glucose Transporter Type 4
17.
Antioxidants (Basel) ; 11(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36290804

ABSTRACT

In the management of type 2 diabetes, oral antidiabetic drugs have several side effects, which in turn have led the pharmaceutical industry to search for good therapeutic, non-toxic and reliable drugs. Carica papaya (C. papaya) is one of several plants in nature that have been found to possess anti-diabetic properties. Despite studies being focused on the antidiabetic activity of C. papaya, the molecular mechanism against high fat diet induced insulin resistance is yet to be identified. The role of C. papaya was evaluated on insulin signaling molecules, such as the insulin receptor (IR) and glucose transporter-4 (GLUT4) in high fat, diet-streptozotocin induced type 2 diabetic rats, and analyzed the bioactive compounds of C. papaya against IR and GLUT4 via molecular docking and dynamics. The ethanolic extract of C. papaya leaves (600 mg/kg of body weight) was given daily to male wistar rats for 45 days and we observed the various biochemical parameters, gene expression analysis and histopathology of skeletal muscle. Molecular docking and dynamics were undertaken to understand the bioactive compounds with the greatest hit rate. C. papaya treatment was able to control blood glucose levels, the lipid profile and serum insulin, but it facilitated tissue antioxidant enzymes and IR and GLUT4 levels. The in-silico study showed that kaempferol, quercitin and transferulic acid were the top three ligands with the greatest hit rate against the protein targets. Our preliminary findings, for the first time, showed that C. papaya reinstates the glycemic effect in the diabetic skeletal muscle by accelerating the expression of IR and GLUT4.

18.
Front Endocrinol (Lausanne) ; 13: 986616, 2022.
Article in English | MEDLINE | ID: mdl-36093068

ABSTRACT

Background: Type 2 diabetes (T2D) is characterized by a decreased insulin sensitivity. Magnesium (Mg2+) deficiency is common in people with T2D. However, the molecular consequences of low Mg2+ levels on insulin sensitivity and glucose handling have not been determined in adipocytes. The aim of this study is to determine the role of Mg2+ in the insulin-dependent glucose uptake. Methods: First, the association of low plasma Mg2+ with markers of insulin resistance was assessed in a cohort of 395 people with T2D. Secondly, the molecular role of Mg2+ in insulin-dependent glucose uptake was studied by incubating 3T3-L1 adipocytes with 0 or 1 mmol/L Mg2+ for 24 hours followed by insulin stimulation. Radioactive-glucose labelling, enzymatic assays, immunocytochemistry and live microscopy imaging were used to analyze the insulin receptor phosphoinositide 3-kinases/Akt pathway. Energy metabolism was assessed by the Seahorse Extracellular Flux Analyzer. Results: In people with T2D, plasma Mg2+ concentration was inversely associated with markers of insulin resistance; i.e., the lower Mg2+, the more insulin resistant. In Mg2+-deficient adipocytes, insulin-dependent glucose uptake was decreased by approximately 50% compared to control Mg2+condition. Insulin receptor phosphorylation Tyr1150/1151 and PIP3 mass were not decreased in Mg2+-deficient adipocytes. Live imaging microscopy of adipocytes transduced with an Akt sensor (FoxO1-Clover) demonstrated that FoxO1 translocation from the nucleus to the cytosol was reduced, indicting less Akt activation in Mg2+-deficient adipocytes. Immunocytochemistry using a Lectin membrane marker and at the membrane located Myc epitope-tagged glucose transporter 4 (GLUT4) demonstrated that GLUT4 translocation was diminished in insulin-stimulated Mg2+-deficient adipocytes compared to control conditions. Energy metabolism in Mg2+ deficient adipocytes was characterized by decreased glycolysis, upon insulin stimulation. Conclusions: Mg2+ increases insulin-dependent glucose uptake in adipocytes and suggests that Mg2+ deficiency may contribute to insulin resistance in people with T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Adipocytes/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Humans , Insulin/metabolism , Insulin/pharmacology , Magnesium , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Insulin/metabolism
19.
Front Endocrinol (Lausanne) ; 13: 915509, 2022.
Article in English | MEDLINE | ID: mdl-35774142

ABSTRACT

Insulin-stimulated glucose uptake in skeletal muscle is of fundamental importance to prevent postprandial hyperglycemia, and long-term deficits in insulin-stimulated glucose uptake underlie insulin resistance and type 2 diabetes. Skeletal muscle is responsible for ~80% of the peripheral glucose uptake from circulation via the insulin-responsive glucose transporter GLUT4. GLUT4 is mainly sequestered in intracellular GLUT4 storage vesicles in the basal state. In response to insulin, the GLUT4 storage vesicles rapidly translocate to the plasma membrane, where they undergo vesicle docking, priming, and fusion via the high-affinity interactions among the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) exocytosis proteins and their regulators. Numerous studies have elucidated that GLUT4 translocation is defective in insulin resistance and type 2 diabetes. Emerging evidence also links defects in several SNAREs and SNARE regulatory proteins to insulin resistance and type 2 diabetes in rodents and humans. Therefore, we highlight the latest research on the role of SNAREs and their regulatory proteins in insulin-stimulated GLUT4 translocation in skeletal muscle. Subsequently, we discuss the novel emerging role of SNARE proteins as interaction partners in pathways not typically thought to involve SNAREs and how these atypical functions reveal novel therapeutic targets for combating peripheral insulin resistance and diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Diabetes Mellitus, Type 2/metabolism , Exocytosis , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Humans , Insulin/metabolism , Monosaccharide Transport Proteins/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , SNARE Proteins/metabolism
20.
J Tradit Complement Med ; 12(2): 195-205, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35528476

ABSTRACT

Chronic insulin resistance suppresses muscle and liver response to insulin, which is partially due to impaired vesicle trafficking. We report here that a formula consisting of resveratrol, ferulic acid and epigallocatechin-3-O-gallate is more effective in ameliorating muscle and hepatic insulin resistance than the anti-diabetic drugs, metformin and AICAR. The formula enhanced glucose transporter-4 (GLUT4) translocation to the plasma membrane in the insulin-resistant muscle cells by regulating both insulin-independent (calcium and AMPK) and insulin-dependent (PI3K) signaling molecules. Particularly, it regulated the subcellular location of GLUT4 through endosomes to increase glucose uptake under insulin-resistant condition. Meanwhile, this phytochemicals combination increased glycogen synthesis and decreased glucose production in the insulin-resistant liver cells. On the other hand, this formula also showed anti-diabetic potential by the reduction of lipid content in the myotubes, hepatocytes, and adipocytes. This study demonstrated that the three phenolic compounds in the formula could work in distinct mechanisms and enhance both insulin-dependent and independent vesicles trafficking and glucose transport mechanisms to improve carbohydrate and lipid metabolism.

SELECTION OF CITATIONS
SEARCH DETAIL
...