Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.425
Filter
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1079-1087, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977337

ABSTRACT

OBJECTIVE: To investigate the protective effect of exogenous leptin against focal cerebral ischemia-reperfusion (I/R) injury in mice and explore the underlying mechanism. METHODS: A total of 100 C57BL/6 mice were randomly divided into 5 groups, including a sham-operated group, cerebral I/R model group, and 3 leptin treatment groups with intraperitoneal injections of 0.5, 1.0 or 2.0 leptin immediately after occlusion of the internal carotid artery. At 24 h after reperfusion, neurological function scores of the mice were assessed, and TTC staining was used to determine the area of cerebral infarction. The pathological changes in the cortical brain tissue of the mice were observed using HE staining, and degenerative damage of the cortical neurons were assessed with Fluoro-Jade C staining. The expression of glial fibrillary acidic protein in cortical brain tissues was detected using immunohistochemistry and Western blotting. In another 45 C57BL/6 mice with sham operation, I/R modeling, or leptin (1 mg/kg) treatment, glutamic acid in the cortical brain tissue was detected using glutamate assay, and cortical glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) protein expressions were detected using immunohistochemistry. RESULTS: Compared with the I/R model mice, the leptin-treated mice had significantly lower neurological deficit scores, smaller cerebral infarct area, milder pathologies in the cortical brain tissue, and lessened cortical neuronal damage with normal morphology and less excessive proliferation of the astrocytes. Leptin treatment significantly up-regulated the expressions of GLT-1 and GLAST and lowered the content of glutamic acid in the brain tissue of the I/R mice. CONCLUSION: Exogenous leptin has obvious neuroprotective effect against cerebral I/R injury in mice, mediated probably by controlling excessive astrocyte proliferation and up-regulating cortical GLT-1 and GLAST expressions to reduce glutamate-mediated excitotoxic injury of the astrocytes.


Subject(s)
Astrocytes , Brain Ischemia , Excitatory Amino Acid Transporter 1 , Excitatory Amino Acid Transporter 2 , Glutamic Acid , Leptin , Mice, Inbred C57BL , Reperfusion Injury , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Leptin/metabolism , Mice , Reperfusion Injury/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Glutamic Acid/metabolism , Brain Ischemia/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Glial Fibrillary Acidic Protein/metabolism , Up-Regulation , Male , Disease Models, Animal , Neuroprotective Agents/pharmacology , Neurons/metabolism
2.
J Magn Reson Imaging ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970314

ABSTRACT

BACKGROUND: Abnormal levels of glutamate constitute a key pathophysiologic mechanism in epilepsy. The use of glutamate chemical exchange saturation transfer (GluCEST) imaging to measure glutamate levels in pediatric epilepsy is rarely reported in research. PURPOSE: To investigate hippocampal glutamate level variations in pediatric epilepsy and the correlation between glutamate and hippocampal subregional volumes. STUDY TYPE: Cross-sectional, prospective. SUBJECTS: A total of 38 school-aged pediatric epilepsy patients with structurally normal MRI as determined by at least two independent radiologists (60% males; 8.7 ± 2.5 years; including 20 cases of focal pediatric epilepsy [FE] and 18 cases of generalized pediatric epilepsy [GE]) and 17 healthy controls (HC) (41% males; 9.0 ± 2.5 years). FIELD STRENGTH/SEQUENCE: 3.0 T; 3D magnetization prepared rapid gradient echo (MPRAGE) and 2D turbo spin echo GluCEST sequences. ASSESSMENT: The relative concentration of glutamate was calculated through pixel-wise magnetization transfer ratio asymmetry (MTRasym) analysis of the GluCEST data. Hippocampal subfield volumes were computed from MPRAGE data using FreeSurfer. STATISTICAL TESTS: This study used t tests, one-way analysis of variance, Kruskal-Wallis tests, and Pearson correlation analysis. P < 0.05 was considered statistically significant. RESULTS: The MTRasym values of both the left and right hippocampi were significantly elevated in GE (left: 2.51 ± 0.23 [GE] vs. 2.31 ± 0.12 [HCs], right: 2.50 ± 0.22 [GE] vs. 2.27 ± 0.22 [HCs]). The MTRasym values of the ipsilateral hippocampus were significantly elevated in FE (2.49 ± 0.28 [ipsilateral] vs. 2.29 ± 0.16 [HCs]). The MTRasym values of the ipsilateral hippocampus were significantly increased compared to the contralateral hippocampus in FE (2.49 ± 0.28 [ipsilateral] vs. 2.35 ± 0.34 [contralateral]). No significant differences in hippocampal volume were found between different groups (left hippocampus, P = 0.87; right hippocampus, P = 0.87). DATA CONCLUSION: GluCEST imaging have potential for the noninvasive measurement of glutamate levels in the brains of children with epilepsy. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

3.
J Control Release ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971427

ABSTRACT

Targeted radionuclide therapy (TRT) is an effective treatment for tumors. Self-condensation strategies can enhance the retention of radionuclides in tumors and enhance the anti-tumor effect. Considering legumain is overexpressed in several types of human cancers, we have reported a 131I-labeled radiopharmaceutical ([131I]MAAN) based on the self-condensation reaction between 2-cyanobenzothiazole (CBT) and cysteine (Cys) for treatment of legumain-overexpressed tumors in vivo. However, liver enrichment limits its application. In this study, a new radiopharmaceutical [131I]IM(HE)3AAN was synthesized by introducing a hydrophilic peptide sequence His-Glu-His-Glu-His-Glu ((HE)3) into [131I]MAAN to optimize the pharmacokinetics. Upon activation by legumain under a reducing environment, hydrophilic [131I]IM(HE)3AAN could react with its precursor to form heterologous dimer ([131I]H-Dimer) that is highly hydrophobic. Cerenkov imaging reveals that [131I]IM(HE)3AAN displayed superior tumor selectivity and longer tumor retention time as compared with [131I]MAAN, with a significant reduction in liver uptake. After an 18-day treatment with [131I]IM(HE)3AAN, the tumor proliferation was obviously inhibited, while no obvious injury was observed in the normal organs during treatment. These findings suggest [131I]IM(HE)3AAN emerges as a promising candidate for treatment of legumain-overexpressed tumors.

4.
Bioessays ; : e2400063, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975656

ABSTRACT

A host of metabolic enzymes reversibly self-assemble to form membrane-less, intracellular filaments under normal physiological conditions and in response to stress. Often, these enzymes reside at metabolic control points, suggesting that filament formation affords an additional regulatory mechanism. Examples include cytidine-5'-triphosphate (CTP) synthase (CTPS), which catalyzes the rate-limiting step for the de novo biosynthesis of CTP; inosine-5'-monophosphate dehydrogenase (IMPDH), which controls biosynthetic access to guanosine-5'-triphosphate (GTP); and ∆1-pyrroline-5-carboxylate (P5C) synthase (P5CS) that catalyzes the formation of P5C, which links the Krebs cycle, urea cycle, and proline metabolism. Intriguingly, CTPS can exist in co-assemblies with IMPDH or P5CS. Since GTP is an allosteric activator of CTPS, the association of CTPS and IMPDH filaments accords with the need to coordinate pyrimidine and purine biosynthesis. Herein, a hypothesis is presented furnishing a biochemical connection underlying co-assembly of CTPS and P5CS filaments - potent inhibition of CTPS by glutamate γ-semialdehyde, the open-chain form of P5C.

5.
Arch Med Res ; 55(6): 103039, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981341

ABSTRACT

Aging is characterized by the decline in many of the individual's capabilities. It has been recognized that the brain undergoes structural and functional changes during aging that are occasionally associated with the development of neurodegenerative diseases. In this sense, altered glutamatergic neurotransmission, which involves the release, binding, reuptake, and degradation of glutamate (Glu) in the brain, has been widely studied in physiological and pathophysiological aging. In particular, changes in glutamatergic neurotransmission are exacerbated during neurodegenerative diseases and are associated with cognitive impairment, characterized by difficulties in memory, learning, concentration, and decision-making. Thus, in the present manuscript, we aim to highlight the relevance of glutamatergic neurotransmission during cognitive impairment to develop novel strategies to prevent, ameliorate, or delay cognitive decline. To achieve this goal, we provide a comprehensive review of the changes reported in glutamatergic neurotransmission components, such as Glu transporters and receptors during physiological aging and in the most studied neurodegenerative diseases. Finally, we describe the current therapeutic strategies developed to target glutamatergic neurotransmission.

6.
Neurosci Biobehav Rev ; : 105796, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38981574

ABSTRACT

Electroconvulsive shocks (ECS) and ketamine are antidepressant treatments with a relatively fast onset of therapeutic effects compared to conventional medication and psychotherapy. While the exact neurobiological mechanisms underlying the antidepressant response of ECS and ketamine are unknown, both interventions are associated with neuroplasticity. Restoration of neuroplasticity may be a shared mechanism underlying the antidepressant efficacy of these interventions. In this systematic review, literature of animal models of depression is summarized to examine the possible role of neuroplasticity in ECS and ketamine on a molecular, neuronal, synaptic and functional level, and specifically to what extent these mechanisms are shared between both interventions. The results highlight that hippocampal neurogenesis and brain-derived neurotrophic factor (BDNF) levels are consistently increased after ECS and ketamine. Moreover, both interventions positively affect glutamatergic neurotransmission, astrocyte and neuronal morphology, synaptic density, vasculature and functional plasticity. However, a small number of studies investigated these processes after ECS. Understanding the shared fundamental mechanisms of fast-acting antidepressants can contribute to the development of novel therapeutic approaches for patients with severe depression.

7.
Sci Rep ; 14(1): 15239, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956130

ABSTRACT

Dysbindin-1, a protein encoded by the schizophrenia susceptibility gene DTNBP1, is reduced in the hippocampus of schizophrenia patients. It is expressed in various cellular populations of the brain and implicated in dopaminergic and glutamatergic transmission. To investigate the impact of reduced dysbindin-1 in excitatory cells on hippocampal-associated behaviors and synaptic transmission, we developed a conditional knockout mouse model with deletion of dysbindin-1 gene in CaMKIIα expressing cells. We found that dysbindin-1 reduction in CaMKII expressing cells resulted in impaired spatial and social memories, and attenuation of the effects of glutamate N-methyl-d-asparate receptor (NMDAR) antagonist MK801 on locomotor activity and prepulse inhibition of startle (PPI). Dysbindin-1 deficiency in CaMKII expressing cells also resulted in reduced protein levels of NMDAR subunit GluN1 and GluN2B. These changes were associated with increased expression of immature dendritic spines in basiliar dendrites and abnormalities in excitatory synaptic transmission in the ventral hippocampus. These results highlight the functional relevance of dysbindin-1 in excitatory cells and its implication in schizophrenia-related pathologies.


Subject(s)
Dysbindin , Hippocampus , Mice, Knockout , Neurons , Receptors, N-Methyl-D-Aspartate , Synaptic Transmission , Animals , Dysbindin/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Hippocampus/metabolism , Mice , Neurons/metabolism , Schizophrenia/metabolism , Schizophrenia/pathology , Schizophrenia/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Male , Dizocilpine Maleate/pharmacology , Behavior, Animal , Dendritic Spines/metabolism , Nerve Tissue Proteins
8.
Schizophr Bull ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988003

ABSTRACT

BACKGROUND AND HYPOTHESIS: Zinc finger protein 804A (ZNF804A) was the first genome-wide associated susceptibility gene for schizophrenia (SCZ) and played an essential role in the pathophysiology of SCZ by influencing neurodevelopment regulation, neurite outgrowth, synaptic plasticity, and RNA translational control; however, the exact molecular mechanism remains unclear. STUDY DESIGN: A nervous-system-specific Zfp804a (ZNF804A murine gene) conditional knockout (cKO) mouse model was generated using clustered regularly interspaced short palindromic repeat/Cas9 technology and the Cre/loxP method. RESULTS: Multiple and complex SCZ-like behaviors, such as anxiety, depression, and impaired cognition, were observed in Zfp804a cKO mice. Molecular biological methods and targeted metabolomics assay validated that Zfp804a cKO mice displayed altered SATB2 (a cortical superficial neuron marker) expression in the cortex; aberrant NeuN, cleaved caspase 3, and DLG4 (markers of mature neurons, apoptosis, and postsynapse, respectively) expressions in the hippocampus and a loss of glutamate (Glu)/γ-aminobutyric acid (GABA) homeostasis with abnormal GAD67 (Gad1) expression in the hippocampus. Clozapine partly ameliorated some SCZ-like behaviors, reversed the disequilibrium of the Glu/GABA ratio, and recovered the expression of GAD67 in cKO mice. CONCLUSIONS: Zfp804a cKO mice reproducing SCZ-like pathological and behavioral phenotypes were successfully developed. A novel mechanism was determined in which Zfp804a caused Glu/GABA imbalance and reduced GAD67 expression, which was partly recovered by clozapine treatment. These findings underscore the role of altered gene expression in understanding the pathogenesis of SCZ and provide a reliable SCZ model for future therapeutic interventions and biomarker discovery.

9.
Neuroscience ; 552: 76-88, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909673

ABSTRACT

Mesenchymal stromal cells (MSCs) hold therapeutic potential for neurological disorders, but their impact on neuronal activity remains unclear. We investigated the effects of SB623 cells (Notch-1 intracellular domain-transfected MSCs) and parental MSCs on human induced pluripotent stem cell (iPSC)-derived neurons using multi-electrode arrays. SB623 cells significantly increased neuronal activity and oscillation in a dose-dependent manner, surpassing astrocytes in promoting network bursts. Strikingly, glutamatergic neurons showed a rapid increase in activity and bursts compared to GABAergic neurons, suggesting glutamate release from SB623 cells. We confirmed this by finding high glutamate levels in SB623 cell conditioned medium, which were reduced by glutaminase inhibition. Glutamate release was further implicated by the reduced excitability in co-cultures with astrocytes, known glutamate scavengers. Our findings reveal a novel mechanism for MSCs: promoting neuronal activity and network formation through tonic glutamate release, with potential implications for MSC-based therapies.

10.
Neuroscience ; 552: 89-99, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909675

ABSTRACT

Chronic ethanol consumption increased extracellular glutamate concentrations in several reward brain regions. Glutamate homeostasis is regulated in majority by astrocytic glutamate transporter 1 (GLT-1) as well as the interactive role of cystine/glutamate antiporter (xCT). In this study, we aimed to determine the attenuating effects of a novel beta-lactam MC-100093, lacking the antibacterial properties, on ethanol consumption and GLT-1 and xCT expression in the subregions of nucleus accumbens (NAc core and NAc shell) and medial prefrontal cortex (Infralimbic, mPFC-IL and Prelimbic, mPFC-PL) in male and female alcohol-preferring (P) rats. Female and male rats were exposed to free access to ethanol (15% v/v) and (30% v/v) and water for five weeks, and on Week 6, rats were administered 100 mg/kg (i.p) of MC-100093 or saline for five days. MC-100093 reduced ethanol consumption in both male and female P rats from Day 1-5. Additionally, MC-100093 upregulated GLT-1 and xCT expression in the mPFC and NAc subregions as compared to ethanol-saline groups in female and male rats. Chronic ethanol intake reduced GLT-1 and xCT expression in the IL and PL in female and male rats, except there was no reduction in GLT-1 expression in the mPFC-PL in female rats. Although, MC-100093 upregulated GLT-1 and xCT expression in the subregions of NAc, we did not observe any reduction in GLT-1 and xCT expression with chronic ethanol intake in female rats. These findings strongly suggest that MC-100093 treatment effectively reduced ethanol intake and upregulated GLT-1 and xCT expression in the mPFC and NAc subregions in male and female P rats.

11.
Neuroscience ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936459

ABSTRACT

Identified 40 years ago, the metabotropic glutamate (mGlu) receptors play key roles in modulating many synapses in the brain, and are still considered as important drug targets to treat various brain diseases. Eight genes encoding mGlu subunits have been identified. They code for complex receptors composed of a large extracellular domain where glutamate binds, connected to a G protein activating membrane domain. They are covalently linked dimers, a quaternary structure needed for their activation by glutamate. For many years they have only been considered as homodimers, then limiting the number of mGlu receptors to 8 subtypes composed of twice the same subunit. Twelve years ago, mGlu subunits were shown to also form heterodimers with specific subunits combinations, increasing the family up to 19 different potential dimeric receptors. Since then, a number of studies brought evidence for the existence of such heterodimers in the brain, through various approaches. Structural and molecular dynamic studies helped understand their peculiar activation process. The present review summarizes the approaches used to study their activation process and their pharmacological properties and to demonstrate their existence in vivo. We will highlight how the existence of mGlu heterodimers revolutionizes the mGlu receptor field, opening new possibilities for therapeutic intervention for brain diseases. As illustrated by the number of possible mGlu heterodimers, this study will highlight the need for further research to fully understand their role in physiological and pathological conditions, and to develop more specific therapeutic tools.

12.
Biol Psychiatry ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944141

ABSTRACT

Most mental disorders involve dysfunction of the dorsolateral prefrontal cortex (dlPFC), a recently evolved brain region that subserves working memory, abstraction and the thoughtful regulation of attention, action and emotion. For example, schizophrenia, depression, long-COVID and Alzheimer's disease are all associated with dlPFC dysfunction, with neuropathology often focused in layer III. The dlPFC has extensive top-down projections: e.g. to the posterior association cortices to regulate attention, and the subgenual cingulate cortex via the rostral and medial PFC to regulate emotional responses. However, the dlPFC is particularly dependent on arousal state, and is very vulnerable to stress and inflammation, which are etiological and/or exacerbating factors in most mental disorders. The cellular mechanisms by which stress and inflammation impact the dlPFC are a topic of current research, and are summarized in this review. For example, the layer III dlPFC circuits generating working memory-related neuronal firing have unusual neurotransmission, depending on NMDAR and nicotinic-α7R actions that are blocked under inflammatory conditions by kynurenic acid. These circuits also have unusual neuromodulation, with the molecular machinery to magnify calcium signaling in spines needed to support persistent firing, which must be tightly regulated to prevent toxic calcium actions. Stress rapidly weakens layer III connectivity by driving feedforward calcium-cAMP opening of potassium channels on spines. This is regulated by postsynaptic noradrenergic α2A-AR and mGluR3 signaling, but dysregulated by inflammation and/or chronic stress exposure, contributing to spine loss. Treatments that strengthen dlPFC, via pharmacological (the α2A-AR agonist, guanfacine) or rTMS manipulation, provide a rational basis for therapy.

13.
Animals (Basel) ; 14(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38929333

ABSTRACT

In most current farm operations, lactating sows need to overcome reproductive and environmental stresses that have resulted in poor sow production performance and piglet growth. Therefore, this study aimed to investigate the effects of in-feed supplementation of monosodium glutamate (MSG) in sows during late gestation lactation in regard to litter performance. The study subjects were 12 multi-parity sows (Landrace × Large White), farrowing sows with an average parity of four (three with three parities, seven with four parities, and two with five parities). They were randomly divided into the following two diet groups: the basal diet as a control (CON) group based on corn and soybean meal; and the basal diet + 2% MSG group. The experimental time ranged from 109 days before delivery to 21 days after delivery. There were six sows in each group, and each sow served as the experimental unit. There were no significant differences (p > 0.05) in body weight (BW), back fat (BF) thickness and estrus interval between sows supplemented with 2% MSG in their diets before and after farrowing and during weaning (p > 0.05). However, MSG-treated sows tended to increase BW loss at farrowing more than the CON group (p = 0.093) but lost less weight during lactation than the CON group (p = 0.019). There were no significant differences in the body condition scores (BCSs) and BF loss of the two groups of sows before and after farrowing and at weaning (p > 0.05). There was no significant difference in the weight of newborn piglets between the two groups of sows (p > 0.05). The weaning weight (p = 0.020) and average daily gain (ADG) (p = 0.045) of suckling piglets were higher in the MSG treated group compared to the CON group. The daily milk production of sows in the MSG treatment group was higher compared to the CON group (p = 0.045). The protein concentration of milk at week 3 (p = 0.060) and fat concentration of milk at week 5 (p = 0.095) of the MSG-supplemented sows tended to increase more than the CON group. In summary, the dietary inclusion of MSG supplementation had a beneficial effect on the late gestating sows and their piglet's growth and milk production. Our research has shown that the addition of 2% MSG in late gestation and lactation diet would be beneficial for both sow and piglet production.

14.
Animals (Basel) ; 14(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38929408

ABSTRACT

Although both L-glutamate (Glu) and L-glutamine (Gln) have long been considered nutritionally nonessential in ruminants, these two amino acids have enormous nutritional and physiological importance. Results of recent studies revealed that extracellular Gln is extensively degraded by ruminal microbes, but extracellular Glu undergoes little catabolism by these cells due to the near absence of its uptake. Ruminal bacteria hydrolyze Gln to Glu plus ammonia and, intracellularly, use both amino acids for protein synthesis. Microbial proteins and dietary Glu enter the small intestine in ruminants. Both Glu and Gln are the major metabolic fuels and building blocks of proteins, as well as substrates for the syntheses of glutathione and amino acids (alanine, ornithine, citrulline, arginine, proline, and aspartate) in the intestinal mucosa. In addition, Gln and aspartate are essential for purine and pyrimidine syntheses, whereas arginine and proline are necessary for the production of nitric oxide (a major vasodilator) and collagen (the most abundant protein in the body), respectively. Under normal feeding conditions, all diet- and rumen-derived Glu and Gln are extensively utilized by the small intestine and do not enter the portal circulation. Thus, de novo synthesis (e.g., from branched-chain amino acids and α-ketoglutarate) plays a crucial role in the homeostasis of Glu and Gln in the whole body but may be insufficient for maximal growth performance, production (e.g., lactation and pregnancy), and optimal health (particularly intestinal health) in ruminants. This applies to all types of feeding systems used around the world (e.g., rearing on a milk replacer before weaning, pasture-based production, and total mixed rations). Dietary supplementation with the appropriate doses of Glu or Gln [e.g., 0.5 or 1 g/kg body weight (BW)/day, respectively] can safely improve the digestive, endocrine, and reproduction functions of ruminants to enhance their productivity. Both Glu and Gln are truly functional amino acids in the nutrition of ruminants and hold great promise for improving their health and productivity.

15.
Microorganisms ; 12(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38930422

ABSTRACT

Natural astaxanthin is in high demand due to its multiple health benefits. The microalga Haematococcus lacustris has been used for the commercial production of astaxanthin. In this study, we investigated the effects of six different media with and without a nitrogen source and supplementation with nine organic compounds on the growth and astaxanthin accumulation of H. lacustris. The highest astaxanthin contents were observed in cultures of H. lacustris in Jaworski's medium (JM), with a level of 9.099 mg/L in JM with a nitrogen source supplemented with leucine (0.65 g/L) and of 20.484 mg/L in JM without a nitrogen source supplemented with sodium glutamate (0.325 g/L). Six of the nine organic compounds examined (leucine, lysine, alanine, sodium glutamate, glutamine, and cellulose) enhanced the production of astaxanthin in H. lacustris, while malic acid, benzoic acid, and maltose showed no beneficial effects.

16.
PeerJ ; 12: e17590, 2024.
Article in English | MEDLINE | ID: mdl-38938604

ABSTRACT

Background: Glutamine synthetase (GS), glutamate synthase (GOGAT), and nitrate reductase (NR) are key enzymes involved in nitrogen assimilation and metabolism in plants. However, the systematic analysis of these gene families lacked reports in soybean (Glycine max (L.) Merr.), one of the most important crops worldwide. Methods: In this study, we performed genome-wide identification and characterization of GS, GOGAT, and NR genes in soybean under abiotic and nitrogen stress conditions. Results: We identified a total of 10 GS genes, six GOGAT genes, and four NR genes in the soybean genome. Phylogenetic analysis revealed the presence of multiple isoforms for each gene family, indicating their functional diversification. The distribution of these genes on soybean chromosomes was uneven, with segmental duplication events contributing to their expansion. Within the nitrogen assimilation genes (NAGs) group, there was uniformity in the exon-intron structure and the presence of conserved motifs in NAGs. Furthermore, analysis of cis-elements in NAG promoters indicated complex regulation of their expression. RT-qPCR analysis of seven soybean NAGs under various abiotic stresses, including nitrogen deficiency, drought-nitrogen, and salinity, revealed distinct regulatory patterns. Most NAGs exhibited up-regulation under nitrogen stress, while diverse expression patterns were observed under salt and drought-nitrogen stress, indicating their crucial role in nitrogen assimilation and abiotic stress tolerance. These findings offer valuable insights into the genomic organization and expression profiles of GS, GOGAT, and NR genes in soybean under nitrogen and abiotic stress conditions. The results have potential applications in the development of stress-resistant soybean varieties through genetic engineering and breeding.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Nitrogen , Phylogeny , Glycine max/genetics , Glycine max/metabolism , Nitrogen/metabolism , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Stress, Physiological/genetics , Glutamate Synthase/genetics , Glutamate Synthase/metabolism , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Genome, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Chromosomes, Plant/genetics , Droughts
17.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915512

ABSTRACT

Dysbiosis of the microbiome correlates with many neurological disorders, yet very little is known about the chemistry that controls the production of neuromodulatory molecules by gut microbes. Here, we found that an enzyme glutamate decarboxylase (BfGAD) of a gut microbe Bacteroides fragilis forms multiple neuromodulatory molecules such as γ-aminobutyric acid (GABA), hypotaurine, taurine, homotaurine, and ß-alanine. We evolved BfGAD and doubled its taurine productivity. Additionally, we increased its specificity towards the substrate L-glutamate. Here, we provide a chemical strategy via which the BfGAD activity could be fine-tuned. In future, this strategy could be used to modulate the production of neuromodulatory molecules by gut microbes.

18.
J Affect Disord ; 361: 415-424, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876317

ABSTRACT

BACKGROUND: Elucidating biological mechanisms contributing to bipolar disorder (BD) is key to improved diagnosis and treatment development. With converging evidence implicating the metabotropic glutamate receptor 5 (mGlu5) in the pathology of BD, here, we therefore test the hypothesis that recently identified deficits in mGlu5 are associated with functional brain differences during emotion processing in BD. METHODS: Positron emission tomography (PET) with [18F]FPEB was used to measure mGlu5 receptor availability and functional imaging (fMRI) was performed while participants completed an emotion processing task. Data were analyzed from 62 individuals (33 ± 12 years, 45 % female) who completed both PET and fMRI, including individuals with BD (n = 18), major depressive disorder (MDD: n = 20), and psychiatrically healthy comparisons (HC: n = 25). RESULTS: Consistent with some prior reports, the BD group displayed greater activation during fear processing relative to MDD and HC, notably in right lateralized frontal and parietal brain regions. In BD, (but not MDD or HC) lower prefrontal mGlu5 availability was associated with greater activation in bilateral pre/postcentral gyri and cuneus during fear processing. Furthermore, greater prefrontal mGlu5-related brain activity in BD was associated with difficulties in psychomotor function (r≥0.904, p≤0.005) and attention (r≥0.809, p≤0.028). LIMITATIONS: The modest sample size is the primary limitation. CONCLUSIONS: Deficits in prefrontal mGlu5 in BD were linked to increased cortical activation during fear processing, which in turn was associated with impulsivity and attentional difficulties. These data further implicate an mGlu5-related mechanism unique to BD. More generally these data suggest integrating PET and fMRI can provide novel mechanistic insights.

19.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891774

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder. While there are five FDA-approved drugs for treating this disease, each has only modest benefits. To design new and more effective therapies for ALS, particularly for sporadic ALS of unknown and diverse etiologies, we must identify key, convergent mechanisms of disease pathogenesis. This review focuses on the origin and effects of glutamate-mediated excitotoxicity in ALS (the cortical hyperexcitability hypothesis), in which increased glutamatergic signaling causes motor neurons to become hyperexcitable and eventually die. We characterize both primary and secondary contributions to excitotoxicity, referring to processes taking place at the synapse and within the cell, respectively. 'Primary pathways' include upregulation of calcium-permeable AMPA receptors, dysfunction of the EAAT2 astrocytic glutamate transporter, increased release of glutamate from the presynaptic terminal, and reduced inhibition by cortical interneurons-all of which have been observed in ALS patients and model systems. 'Secondary pathways' include changes to mitochondrial morphology and function, increased production of reactive oxygen species, and endoplasmic reticulum (ER) stress. By identifying key targets in the excitotoxicity cascade, we emphasize the importance of this pathway in the pathogenesis of ALS and suggest that intervening in this pathway could be effective for developing therapies for this disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Glutamic Acid , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Humans , Glutamic Acid/metabolism , Animals , Motor Neurons/metabolism , Motor Neurons/pathology , Aging/metabolism , Receptors, AMPA/metabolism , Endoplasmic Reticulum Stress , Mitochondria/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Astrocytes/metabolism , Reactive Oxygen Species/metabolism
20.
Fish Shellfish Immunol ; 151: 109709, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901684

ABSTRACT

Metabotropic glutamate receptors (mGluRs) play a pivotal role in the neuroendocrine-immune regulation. In this study, eight mGluRs were identified in the Pacific Oyster Crassostrea gigas, which were classified into three subfamilies based on genetic similarity. All CgmGluRs harbor variable numbers of PBP1 domains at the N-terminus. The sequence and structural features of CgmGluRs are highly similar to mGluRs in other species. A uniformly upregulated expression of CgmGluRs was observed during D-shaped larval stage compared to early D-shaped larval stage. The transcripts of CgmGluRs were detectable in various tissues of oyster. Different CgmGluR exhibited diverse expression patterns response against different PAMP stimulations, among which CgmGluR5 was significantly downregulated under these stimulations, reflecting its sensitivity and broad-spectrum responsiveness to microbes. Following LPS stimulation, the mRNA expression of CgmGluR5 and CgCALM1 in haemocytes was suppressed within 6 h and returned to normal levels by 12 h. Inhibition of CgmGluR5 activity resulted in a significant reduction in CgCALM1 expression after 12 h. Further KEGG enrichment analysis suggested that CgmGluR5 might modulate calcium ion homeostasis and metabolic pathways by regulating CgCALM1. This research delivers the systematic analysis of mGluR in the Pacific Oyster, offering insights into evolutionary characteristics and immunoregulatory function of mGluR in mollusks.

SELECTION OF CITATIONS
SEARCH DETAIL
...