ABSTRACT
The prebiotic capacity of Pectin Oligosaccharides (POS) is influenced by structural factors such as molecular size, composition, and degree of esterification, which affect their interaction with the gut microbiota. While existing literature has predominantly examined POS derived from apple and citrus pectins, the extrapolation of these findings to other pectin sources remains complex due to variations in their composition. This study focused on obtaining POS with prebiotic potential from pisco grape pomace through controlled enzymatic hydrolysis, resulting in three molecular size fractions: <3 kDa, 3-10 kDa, and > 10 kDa. The POS fractions were analyzed using FTIR, HPSEC, HPLC, and MALDI-TOF-MS techniques to characterize their physical-chemical properties. Each fraction presented distinct compositions, with the <3 kDa fraction showing a higher concentration of galacturonic acid and glucose, while the >10 kDa fraction was also composed of rhamnose and arabinose. Notably, the <3 kDa fraction supported greater biomass growth of the probiotic strain Lactobacillus casei ATCC 393 compared to the other fractions. In contrast, the non-probiotic strain Escherichia coli ATCC 25922 achieved the lowest biomass with this fraction. Consequently, the <3 kDa POS fraction exhibited the highest prebiotic index. This fraction, composed of oligomers from the rhamnogalacturonan region and arabino-oligosaccharides with a degree of polymerization between two and five, highlights its potential for further research and applications. Therefore, investigating other sources and optimizing extraction conditions could lead to developing novel prebiotic formulations that supply specific probiotic strains for a symbiotic product.
ABSTRACT
BACKGROUND: The beneficial properties of wine by-products include actions that help prevent and treat cardiovascular conditions such as hypertension, primarily due to their antioxidant effects. Novel pharmacotherapies are being developed to treat arterial hypertension, including investigations into natural products exhibiting biological activity, necessitating rigorous evaluation of their efficacy and safety. This study aimed to identify and quantify phenolic compounds in Syrah (Vitis vinifera) grapes grown in the Brazilian Cerrado and their presence in winemaking by-products. It also examined the effects of grape pomace on blood pressure. METHODS: Fresh grapes, pomace, and lees, were subjected to spectrophotometric determination of total phenolic compounds, followed by identification and quantification using HPLC-DAD-ESI-MSn. Normotensive male rats (Wistar) and spontaneously hypertensive rats (SHR) received grape pomace-enriched (150 or 300 mg/kg/day, 14 days) or standard chow. Indirect arterial pressure was assessed, while vascular reactivity was evaluated in mesenteric resistance arteries. RESULTS: Pomace samples exhibited higher total phenolic compound concentrations than grapes or lees. Seven derivatives of hydroxycinnamic acids and twenty-one flavonols were identified. Quercetin-3-glucoside and ethyl caffeate were the most abundant phenolic compounds. Grape pomace-enriched chow demonstrated a dose-dependent hypotensive effect in rats. CONCLUSION: the abundance of flavonols and hydroxycinnamic acids, combined with their hypotensive effects, underscores the therapeutic potential of fine wine-making by-products produced in the Brazilian Cerrado.
Subject(s)
Antihypertensive Agents , Blood Pressure , Hypertension , Phenols , Rats, Inbred SHR , Rats, Wistar , Vitis , Wine , Animals , Vitis/chemistry , Male , Phenols/analysis , Phenols/pharmacology , Blood Pressure/drug effects , Hypertension/drug therapy , Rats , Wine/analysis , Antihypertensive Agents/pharmacology , Antioxidants/pharmacology , Antioxidants/analysis , Plant Extracts/pharmacology , Fruit/chemistry , BrazilABSTRACT
Grape pomace is the main solid residue of wine industry, containing high amounts of phenolic compounds. Considering its high potential, an extraction procedure was optimized for maximal recovery of anthocyanins from grape pomace (Vitis vinifera L.) using citric acid as a generally recognized as safe (GRAS) acidulant in water. Volume of solvent (3.2-36.8 mL), time (14.4-165.6 min) and pH of solvent (1.12-4.48) were the studied variables. Furthermore, the best condition to obtain extract rich in anthocyanins was submitted to the gravitational block freeze concentration process. The performance of the process was evaluated and cryoconcentrated and ice fractions were analyzed for physicochemical properties, bioactive compounds content, and antioxidant activity. Interaction, linear, and quadratic effects for volume and pH of solvent were significant by analysis of variance (ANOVA). The experimental design allowed the prediction for maximal recovery of anthocyanins (10 mL of solvent at pH 1.8). The bioactive composition of the optimized grape pomace extract was influenced by the cryoconcentration process. After three cycles using gravitational block freeze concentration, the total phenolics and monomeric anthocyanins were approximately 4 and 5 times higher than the initial condition of the extract, respectively. Consequently, an increase in antioxidant activity was observed. The increase in the concentration of bioactive compounds reached a process efficiency of 93% (stage 1) for phenolic compounds and 91% (stage 2) for anthocyanins. Therefore, the final water-based optimized method is safe and has a low cost and the concentrated extract certainly showed higher concentrations of total phenolics and anthocyanins, compared to the initial extract. The proposed clean extraction method and cryoconcentration technique can be considered important strategies for recovering and valuing grape pomace components, improving the approach to the circular economy concept in the wine industry.
Subject(s)
Vitis , Wine , Anthocyanins/analysis , Wine/analysis , Antioxidants/analysis , Vitis/chemistry , Phenols/analysis , Plant Extracts/chemistry , Solvents/analysis , Water/analysisABSTRACT
Grape pomace, the main by-product of wine process, shows high potential for the development of functional foods, being a natural source of bioactive compounds and dietary fiber. Thus, the present study proposes the development of five potential functional biscuits. The five formulations were achieved by varying the Tannat grape pomace powder (TGP, 10-20% w/w total wet dough) and sweetener sucralose (2-4% w/w total wet dough) content through a factorial design with central points. TGP microbiological and pesticides analysis were performed as a food safety requirement. Identification of bioactive compounds by HPLC-DAD-MS, in vitro bioactivity (total phenol content, antioxidant by ABTS and ORAC-FL, antidiabetic and antiobesity by inhibition of α-glucosidase and pancreatic lipase, respectively) and sensory properties of the biscuits were evaluated. TGP microbiological and pesticides showed values within food safety criteria. Sensory profiles of TGP biscuits were obtained, showing biscuits with 20% TGP good sensory quality (7.3, scale 1-9) in a cluster of 37 out of 101 consumers. TGP addition in biscuits had a significant (p < 0.05) effect on total phenolic content (0.893-1.858 mg GAE/g biscuit) and bioactive properties when compared to controls: 11.467-50.491 and 4.342-50.912 µmol TE/g biscuit for ABTS and ORAC-FL, respectively; inhibition of α-glucosidase and pancreatic lipase, IC50 35.572-64.268 and 7.197-47.135 mg/mL, respectively. HPLC-DAD-MS results showed all the identified phenolic compounds in 20/4% biscuit (TGP/sucralose%) were degraded during baking. Malvidin-3-O-(6'-p-coumaroyl) glucoside, (+)-catechin, malvidin-3-O-glucoside, and (-)-epicatechin were the main phenolic compounds (in descendent order of content) found. The bioactive properties could be attributed to the remaining phenolic compounds in the biscuits. In conclusion, TGP biscuits seemed to be a promising functional food with potential for ameliorating oxidative stress, glucose and fatty acids levels with good sensory quality.
ABSTRACT
Vineyard-derived pomace is a byproduct of the wine industry that can have a negative impact on the environment if it is only disposed of or used as a fertilizer. Owing to its polyphenol content, grape pomace is an alternative to biocontrol undesirable microorganisms. In the present study, we characterized the phenolic composition of red and white grape pomace from Valles Calchaquíes, Argentina, and explored its activity against Leishmania (Leishmania) amazonensis, an etiological agent of American tegumentary leishmaniasis, a neglected endemic disease in northern Argentina. Red and white pomace extracts similarly reduced Leishmania viability after a 48-h treatment, with the fractions containing a higher proportion of phenolic compounds being more active. Both extracts stimulated ATPase activity on the parasite plasma membranes, with white grape pomace having a stronger effect than red grape pomace. In addition, the extracts displayed fairly good anticholinesterase activity, which may have contributed to their anti-Leishmania activity. These results reinforce the potential applicability of grape pomace as an antimicrobial agent for the development of biopesticides.
Subject(s)
Leishmania , Leishmaniasis, Cutaneous , Humans , Argentina , Farms , Phenols , Plant ExtractsABSTRACT
Deep eutectic solvents (DES) are emerging as potent polyphenol extractors under normal atmospheric conditions. Yet, their effectiveness in hot pressurized liquid extraction (HPLE) must be studied more. We explored the ability of various water/DES and water/hydrogen bond donors (HBDs) mixtures in both atmospheric solid liquid extraction (ASLE) and HPLE (50%, 90 °C) for isolating specific polyphenol families from Carménère grape pomace. We assessed extraction yields based on total polyphenols, antioxidant capacity, and recovery of targeted polyphenols. The HBDs ethylene glycol and glycerol outperformed DES in atmospheric and pressurized extractions. Ethylene glycol exhibited a higher affinity for phenolic acids and flavonols, while flavanols preferred glycerol. Quantum chemical computations indicated that a high-water content in DES mixtures led to the formation of new hydrogen bonds, thereby reducing polyphenol-solvent interactions. HPLE was found to be superior to ASLE across all tested solvents. The elevated pressure in HPLE has caused significant improvement in the recovery of flavanols (17-89%), phenolic acids (17-1000%), and flavonols (81-258%). Scanning electron microscopy analysis of post-extraction residues suggested that high pressures collapse the plant matrix, thus easing polyphenol release.
ABSTRACT
The effect of individual and combined supplementation of FA and GPM on physiological variables, productive performance, and carcass characteristics of finishing pigs under heat stress conditions were investigated. Forty Yorkshire × Duroc pigs (80.23 kg) were individually housed and randomly distributed into 4 groups under a 2 × 2 factorial arrangement (n = 10): Control (basal diet, BD); FA, BD + 25 mg FA; GPM, BD with 2.5% GPM; and MIX, BD with 25 mg FA and 2.5% GPM. Additives were supplemented for 31 days. The inclusion of FA or GPM did not modify rectal temperature and respiratory rate. There was an effect of the interaction on FI, which increased when only GPM was supplemented, with respect to Control and MIX (p < 0.05). Average daily gain (ADG) and feed conversion (FC) were not affected by treatments (p > 0.05). The inclusion of FA improved hot and cold carcass weight, while the addition of GPM decreased the marbling (p < 0.05) and tended to increase loin area (p < 0.10). GPM increased liver weight (p < 0.05). The addition of GPM and FA can improve some carcass characteristics under heat stress conditions. It is necessary to continue investigating different levels of inclusion of GPM and FA in finishing pigs' diets.
ABSTRACT
Grape pomaces have a wide and diverse antioxidant phenolics composition. Six Uruguayan red grape pomaces were evaluated in their phenolics composition, antioxidant capacity, and anti-inflammatory properties. Not only radical scavenging methods as DPPH· and ABTS·+ were employed but also ORAC and FRAP analyses were applied to assess the antioxidant potency of the extracts. The antioxidant reactivity of all extracts against hydroxyl radicals was assessed with ESR. The phenol profile of the most bioactive extract was analyzed by HPLC-MS, and a set of 57 structures were determined. To investigate the potential anti-inflammatory activity of the extracts, Nuclear Factor kappa-B (NF-κB) modulation was evaluated in the human colon cancer reporter cell line (HT-29-NF-κB-hrGFP). Our results suggest that Tannat grapes pomaces have higher phenolic content and antioxidant capacity compared to Cabernet Franc. These extracts inhibited TNF-alpha mediated NF-κB activation and IL-8 production when added to reporter cells. A molecular docking study was carried out to rationalize the experimental results allowing us to propose the proactive interaction between the NF-κB, the grape extracts phenols, and their putative anti-inflammatory bioactivity. The present findings show that red grape pomace constitutes a sustainable source of phenolic compounds, which may be valuable for pharmaceutical, cosmetic, and food industry applications.
Subject(s)
Vitis , Humans , Vitis/chemistry , Antioxidants/chemistry , NF-kappa B , Molecular Docking Simulation , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phenols/chemistry , Anti-Inflammatory Agents/pharmacologyABSTRACT
Grape pomace is a commonly discarded by-product characterized by high extractable (EPP) and non-extractable (NEPP) polyphenol contents which exhibits anti-obesogenic effects. However, the relevance of each fraction needs to be elucidated. In this work, we examined the effects of three pomaces with different concentrations of EPPs and NEPPs on metabolic alterations associated with obesity. The NEPP:EPP ratio of the grape pomaces was 1.48 for Malbec, 1.10 for Garnacha, and 5.76 for Syrah grape varieties. Rats fed a high-fat high-fructose diet supplemented with Malbec grape pomace (HFFD + MAL) Syrah grape pomace (HFFD + SYR) or Garnacha grape pomace (HFFD + GAR) showed significantly less weight gain: 20%, 15%, and 12% less, respectively, compared to HFFD controls. The adiposity index was also significantly decreased by 20% in the HFFD + MAL and HFFD + SYR groups, and by 13% in the HFFD + GAR group. Serum triglycerides were significantly decreased by 46% in the HFFD + MAL group and by 31% in the HFFD + GAR group, compared to the HFFD group, but not in the HFFD + SYR group. All pomace supplementations regulated postprandial glucose in an oral glucose tolerance test. Therefore, grape pomaces containing both EPPs and NEPPs exert beneficial effects on body weight and glucose homeostasis, while EPPs seem to control triglyceride levels more effectively.
ABSTRACT
Agro-industrial by-products are a sustainable source of natural additives that can replace the synthetic ones in the food industry. Grape pomace is an abundant by-product that contains about 70% of the grape's polyphenols. Polyphenols are natural antioxidants with multiple health-promoting properties. They are secondary plant metabolites with a wide range of solubilities. Here, a novel extraction process of these compounds was developed using enzymes that specifically liberates target polyphenols in the appropriate hydroalcoholic mixture. Tannase, cellulase, and pectinase retained 22, 60, and 52% of their activity, respectively, in ethanol 30% v/v. Therefore, extractions were tested in ethanol concentrations between 0 and 30% v/v. Some of these enzymes presented synergistic effects in the extraction of specific polyphenols. Maximum yield of gallic acid was obtained using tannase and pectinase enzymes in ethanol 10% v/v (49.56 ± 0.01 mg L-1 h-1); in the case of p-coumaric acid, by cellulase and pectinase treatment in ethanol 30% v/v (7.72 ± 0.26 mg L-1 h-1), and in the case of trans-resveratrol, by pectinase treatment in ethanol 30% v/v (0.98 ± 0.04 mg L-1 h-1). Also, the effect of enzymes and solvent polarity was analysed for the extraction of malvidin-3-O-glucoside, syringic acid, and quercetin. Previous studies were mainly focused on the maximization of total polyphenols extraction yields, being the polyphenolic profile the consequence but not the driving force of the optimization. In the present study, the basis of a platform for a precise extraction of the desire polyphenols is provided. KEY POINTS: ⢠Enzymes can be used up to ethanol 30% v/v. ⢠The specific enzymes' action determines the polyphenolic profile of the extracts. ⢠The yields obtained of target polyphenols are competitive.
Subject(s)
Cellulases , Polyphenols , Polygalacturonase , Solvents , Ethanol , Plant Extracts , AntioxidantsABSTRACT
Grape pomace (GP) is a source of polyphenols which may be present as free structures or associated with dietary fiber. Instant controlled pressure drop (DIC) is a technology which can modify the association of polyphenols with food matrixes, but how these modifications affect the health benefits associated with GP remains to be elucidated. In this study, in rats fed a high-fat-fructose diet (HFF), we evaluated the in vivo cardiometabolic effects of the modification of polyphenols in GP caused by DIC at 0.2 MPa for 60 s (DIC1) and 0.4 MPa for 120 s (DIC2). These treatments increased anthocyanin and total flavonoid contents, respectively, while all the supplementations caused significant improvements in insulin resistance and plasma triacylglycerols. Thus, the bioactive compounds present in GP (including a major fraction of non-extractable proanthocyanidins) caused these modifications independently of the specific polyphenol profiles which may have resulted from these DIC treatments. Additionally, only intact GP led to an increase in HDL cholesterol, while only DIC2-treated GP improved hepatic steatosis. In conclusion, GP always improves insulin sensitivity in this animal model of obesity, while the different compositions of GP modified by DIC may be associated with other cardiometabolic parameters.
ABSTRACT
Grape pomace (GP) is a by-product resulting from the winemaking process and its potential use as a source of bioactive compounds is well known. The GP bioactive compounds can be retained in the well-known polyvinylpolypyrrolidone (PVPP), industrially used in the clarification and stabilization of wine and other drinks. Thus, the polyphenolic compounds (PC) from the Chilean Carménère, Cabernet Sauvignon, and Merlot GP were extracted, and their compositions and antioxidant capacities (ORAC-FL) were determined. In addition, the retention capacity of the PC on PVPP (PC-PVPP) was evaluated. The bioactivities of GP extracts and PC-PVPP were estimated by the agar plate inhibition assay against pathogenic microorganisms. Results showed a high amount of TPC and antioxidant capacity in the three ethanolic GPs extracts. Anthocyanins, flavan-3-ol, and flavonols were the most abundant compounds in the GP extract, with retentions between 70 and 99% on PVPP. The GP extracts showed inhibition activity against B. cereus and P. syringae pv. actinidiae but the GP-PVPP had no antimicrobial activity. The high affinity of the identified PCs from GPs on PVPP polymer could allow the design of new processes and by-products for the food or cosmeceutical industry, promoting a circular economy by reducing and reusing wastes (GPs and PVPP) and organic solvents.
ABSTRACT
Grape pomace is a source of anthocyanins, which can prevent cardiovascular diseases due to their antioxidant properties. Anthocyanin activity is associated with the ability to regulate oxidative stress through the transcription factor Nrf2. Thus, the present study aimed to evaluate if the anthocyanins found in Pinot noir pomace extract can affect the target genes related to the Nrf2 signalling pathway in endothelial cells. Our results highlight that the predominant anthocyanin in the Pinot noir pomace extract was malvidin-3-glucoside (3.7 ± 2.7 Eq. Malv-3-glu/kg). Molecular docking indicated that cyanidin-3-glucoside (-6.9 kcal/mol), malvidin-3-glucoside (-6.6 kcal/mol) and peonidin-3-glucoside (-6.6 kcal/mol) showed the highest affinities for the binding sites of the BTB domains in Keap1, suggesting that these components may modify the interaction of this protein with Nrf2. In addition, when HUVEC cells were exposed to different concentrations of Pinot noir pomace extract (100 µg/mL, 200 µg/mL, and 400 µg/mL), no changes in Nrf2 gene expression were observed. However, the gene expression of HO-1 and NQO1, which are in the signalling pathway of this transcription factor, increased according the concentrations of the extract (p = 0.0004 and p = 0.0084, respectively). In summary, our results show that anthocyanins play a very important role in Nrf2 activation and release, while at the same time not promoting its transcription. These preliminary results strongly suggest that the Pinot noir pomace extract can serve as a potent bioactive component source that protects cells against oxidative stress.
ABSTRACT
A real industrial effluent from the pre-treatment and painting processes was polished through adsorption using alternative biochar derived from grape pomace wastes. The biochar was produced in a pilot-scale plant from composted grape pomace. Biochar showed an equilibrium between acidic and basic groups on the surface. The presence of irregular cavities in the structure and mesopores was confirmed by analyzing N2 physisorption and SEM. Concerning the effluent, Ni and Zn were the main problematic elements. The adsorption isotherms and kinetics of Ni and Zn from the effluent using the biochar could be represented by the Henry, pseudo-first-order, and pseudo-second-order models, respectively. Adsorption equilibrium was reached within 60 min for Ni and Zn present in the real effluent. Besides, the adsorption process was endothermic, favorable, and spontaneous. These results demonstrate that Zn and Ni metals were successfully removed from the industrial effluent, presenting final concentration values within the limit of legislation for effluent disposal in agricultural soil.
Subject(s)
Vitis , Water Pollutants, Chemical , Adsorption , Charcoal/chemistry , Hydrogen-Ion Concentration , Kinetics , Metals , Soil , Water Pollutants, Chemical/chemistryABSTRACT
Instant controlled pressure drop (DIC) is a technology able to modify the polyphenol profile in vegetal materials. However, information about how polyphenols are transformed, particularly regarding non-extractable polyphenol (NEPP), as well as the association with the initial content of polyphenols of the material is scarce. Thus, this work aimed to evaluate the DIC effect, modifying the pressure (0.2 and 0.4 MPa), the number of cycles (2 and 4), and grape pomace material (Malbec, Merlot, and Syrah) on extractable polyphenol (EPP) and NEPP contents. The EPP content increased during DIC application, an effect associated with the pressure, cycles, and initial polyphenol content. While for extractable and non-extractable proanthocyanidin contents, the main factors explaining the DIC effect are the pressure and number of cycles. Therefore, changes in polyphenols from grape pomace by DIC treatment are dependent upon experimental conditions, but the origin of the grape pomace also influences the extraction of EPP.
Subject(s)
Vitis , Antioxidants , Fruit , Phenols , Plant Extracts , PolyphenolsABSTRACT
Instant controlled pressure drop (DIC) has been used as a pre-treatment to increase extractable polyphenols (EPP), mainly attributed to matrix structure expansion. This work aimed to evaluate the effect of DIC on non-extractable polyphenols (NEPP), EPP, and dietary fiber on grape pomace. At 0.2 MPa-60 s was observe an increase of total EPP and total anthocyanins. Despite the increment of EPP, was observe the lowest anthocyanins and non-extractable proanthocyanidins content at 0.4 MPa-120 s. This increase was due to a partial transformation of anthocyanins into phenolic acids and the depolymerization of proanthocyanidins. Also was observe partial solubilization of insoluble dietary fiber. Morphologically, the size of the pores generated by DIC was more significant at higher pressures. Thus, DIC modified the morphology and profile of the polyphenols of grape pomace, producing phenolic compounds of simpler structure and improving their antioxidant capacities.
Subject(s)
Dietary Fiber/analysis , Polyphenols/analysis , Vitis/chemistry , Anthocyanins/analysis , Antioxidants/chemistry , Fruit/chemistry , Phenols/analysis , Plant Extracts/chemistry , Proanthocyanidins/analysisABSTRACT
Several studies have related moderate consumption of red wine with prevention of cardiovascular diseases (CVD). According to epidemiological studies, those regions with high consumption of red wine and a Mediterranean diet show a low prevalence of CVD. Such an effect has been attributed to phenolic compounds present in red wines. On the other hand, by-products obtained during winemaking are also a significant source of phenolic compounds but have been otherwise overlooked. The cardioprotective effect of red wine and its byproducts is related to their ability to prevent platelet aggregation, modify the lipid profile, and promote vasorelaxation. Phenolic content and profile seem to play an important role in these beneficial effects. Inhibition of platelet aggregation is dose-dependent and more efficient against ADP. The antioxidant capacity of phenolic compounds from red wine and its by-products, is involved in preventing the generation of ROS and the modification of the lipid profile, to prevent LDL oxidation. Phenolic compounds can also, modulate the activity of specific enzymes to promote NO production and vasorelaxation. Specific phenolic compounds like resveratrol are related to promote NO, and quercetin to inhibit platelet aggregation. Nevertheless, concentration that causes those effects is far from that in red wines. Synergic and additive effects of a mix of phenolic compounds could explain the cardioprotective effects of red wine and its byproducts.
Subject(s)
Vitis , Wine , Antioxidants , Phenols/analysis , Resveratrol , Wine/analysisABSTRACT
BACKGROUND: Grape (Vitis vinifera L.) is consumed by old-world populations in its natural form and is used to produce wine or juice. Currently, China is the largest grape producer in the world. The red grapes stand out because of their phytochemical composition, more specifically their high resveratrol levels. Resveratrol is a compound that has a number of different beneficial effects on health and is mainly used in the food and cosmetic industries. Grape peel is a waste product and new strategies based on nanotechnology can minimize its environmental impact and add value to this residue. OBJECTIVES: The first objective of this study was to evaluate the technological potential of utilizing grape peel by researching and analyzing information extracted from patent documents filed worldwide in order to identify the main countries that hold the research technology, the main depositors and inventors, and the main areas of application. The second aim was to research and investigate grape peel products that have been created using nanotechnology. METHODS: An analysis of all patented documents related to grape peel processes, products, or different industrial applications that may use nanotechnology was carried out. This was achieved by undertaking a Derwent Innovation Index (DII) database search. RESULTS: A total of 752 patent documents were identified in the surveyed area. These were assessed for depositor country of origin, type of depositor, inventors, the evolution of deposits over time, and areas of application. Only 6% of the total represented products and processes in the nanotechnology area. There was a growth in the number of patent filings from 2015, which showed that the researched area is a current and developing technology with new application possibilities. The main depositing countries were China, the United States, and Japan, which dominate the researched technology. The identified documents discussed using the grape peel to develop new food, medical and dental products. CONCLUSION: Over the last few years, different approaches have been suggested for the production of nanoproducts based on grape peel. The results from this study showed that although incipient, nanotechnology is a promising area of research that can be explored by universities and companies because the products could have significant positive characteristics and, even though they are made out of a byproduct, have great application potential.
ABSTRACT
The aim of the present study was to evaluate the ingestive behavior of sheep receiving alternative food with grape pomace to replace roughage, as well as its impacts on the rumen environment. It was observed that BU had higher TOC, TRAM and pH of the ruminal liquid, while there was less TRU (P < 0,05). As for the other parameters, no significant differences were found. In this study, just as the feeding time was not influenced due to the similarity of the concentrate: roughage ratio in the diet, the protozoan count did not change. This finding reinforces the possibility of using grape marc as a tool for formulating feed, reducing the risk of ruminal disturbances. It was observed that the group control had lower TRAM, indicating that the diet of this group promoted greater microbial activity and, consequently, greater digestibility, corroborating the already observed TOC. This result was the opposite of what was expected, since the grape pomace has probiotic properties, precisely because the fruits have more fungi and bacteria in their microbiota. This also confirms that the co-products of vitiviniculture can act as promoters of the intestinal health of ruminants, justifying further studies in order to improve this use. Therefore, the use of wine by-products is an alternative to reduce production costs, as its use in diets for confined sheep can improve the performance of the animals, increasing the total feed consumption and improving microbial activity.(AU)
O objetivo do presente estudo foi avaliar o comportamento ingestivo de ovinos recebendo ração alternativa com bagaço de uva em substituição ao volumoso, bem como seus impactos no ambiente ruminal. Observou-se que a BU apresentou maiores COT, TRAM e pH do líquido ruminal, enquanto houve menor TRU (P <0,05). Quanto aos demais parâmetros, não foram encontradas diferenças significativas. Neste estudo, assim como o tempo de alimentação não foi influenciado pela similaridade da relação concentrado: volumoso na dieta, a contagem de protozoários não se alterou. Esse achado reforça a possibilidade do uso do bagaço de uva como ferramenta na formulação de rações, reduzindo o risco de distúrbios ruminais. Observou-se que o grupo controle apresentou menor TRAM, indicando que a dieta desse grupo promoveu maior atividade microbiana e, consequentemente, maior digestibilidade, corroborando o COT já observado. Esse resultado foi o oposto do esperado, já que o bagaço de uva tem propriedades probióticas, justamente porque os frutos possuem mais fungos e bactérias em sua microbiota. Isso também confirma que os coprodutos da vitivinicultura podem atuar como promotores da saúde intestinal de ruminantes, justificando novos estudos no sentido de aprimorar esse uso. Portanto, a utilização de subprodutos do vinho é uma alternativa para reduzir os custos de produção, pois seu uso em dietas para ovinos confinados pode melhorar o desempenho dos animais, aumentando o consumo total de ração e melhorando a atividade microbiana.(AU)
Subject(s)
Animals , Sheep , Controlled Confinement , Animal Feed/analysis , Rumination, Digestive , Probiotics , Sustainable Development Indicators , Wine/analysisABSTRACT
ABSTRACT The aim of the present study was to evaluate the ingestive behavior of sheep receiving alternative food with grape pomace to replace roughage, as well as its impacts on the rumen environment. It was observed that BU had higher TOC, TRAM and pH of the ruminal liquid, while there was less TRU (P 0,05). As for the other parameters, no significant differences were found. In this study, just as the feeding time was not influenced due to the similarity of the concentrate: roughage ratio in the diet, the protozoan count did not change. This finding reinforces the possibility of using grape marc as a tool for formulating feed, reducing the risk of ruminal disturbances. It was observed that the group control had lower TRAM, indicating that the diet of this group promoted greater microbial activity and, consequently, greater digestibility, corroborating the already observed TOC. This result was the opposite of what was expected, since the grape pomace has probiotic properties, precisely because the fruits have more fungi and bacteria in their microbiota. This also confirms that the co-products of vitiviniculture can act as promoters of the intestinal health of ruminants, justifying further studies in order to improve this use. Therefore, the use of wine by-products is an alternative to reduce production costs, as its use in diets for confined sheep can improve the performance of the animals, increasing the total feed consumption and improving microbial activity.
RESUMO O objetivo do presente estudo foi avaliar o comportamento ingestivo de ovinos recebendo ração alternativa com bagaço de uva em substituição ao volumoso, bem como seus impactos no ambiente ruminal. Observou-se que a BU apresentou maiores COT, TRAM e pH do líquido ruminal, enquanto houve menor TRU (P 0,05). Quanto aos demais parâmetros, não foram encontradas diferenças significativas. Neste estudo, assim como o tempo de alimentação não foi influenciado pela similaridade da relação concentrado: volumoso na dieta, a contagem de protozoários não se alterou. Esse achado reforça a possibilidade do uso do bagaço de uva como ferramenta na formulação de rações, reduzindo o risco de distúrbios ruminais. Observou-se que o grupo controle apresentou menor TRAM, indicando que a dieta desse grupo promoveu maior atividade microbiana e, consequentemente, maior digestibilidade, corroborando o COT já observado. Esse resultado foi o oposto do esperado, já que o bagaço de uva tem propriedades probióticas, justamente porque os frutos possuem mais fungos e bactérias em sua microbiota. Isso também confirma que os coprodutos da vitivinicultura podem atuar como promotores da saúde intestinal de ruminantes, justificando novos estudos no sentido de aprimorar esse uso. Portanto, a utilização de subprodutos do vinho é uma alternativa para reduzir os custos de produção, pois seu uso em dietas para ovinos confinados pode melhorar o desempenho dos animais, aumentando o consumo total de ração e melhorando a atividade microbiana.