Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 946
Filter
1.
Luminescence ; 39(9): e4895, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39239921

ABSTRACT

Easy, economical, and swift detecting tools are very demanded for assaying various chemical species. The introduction of label-free paper-based read-out devices has significantly reached the demand of analytical science for target analytes assays. Herein, a facile, and disposable inexpensive paper-based sensing tool was fabricated for sensing As3+ ion using graphene quantum dots (GQDs) as a fluorescent reader. The CA-GQDs were synthesized using citric acid (CA) as a precursor via the pyrolysis method, further physisorbed on the cellulose substrate for sensing of As3+ via aggregation-based fluorescence "turn-off" mechanism. The linear range for quantitating As3+ ion is in the range of 0.05-50 µM with a detection limit of 10 nM. The practical application of the CA-GQDs-based analytical platform was verified by assaying As3+ ion in water samples. The CA-GQDs-embedded paper strip can be easily extended for assaying of As3+ ion, which meets the demand for monitoring of As3+ ion in real samples.


Subject(s)
Cellulose , Graphite , Paper , Quantum Dots , Graphite/chemistry , Quantum Dots/chemistry , Cellulose/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Spectrometry, Fluorescence , Ions/analysis , Ions/chemistry , Limit of Detection , Fluorescence
2.
Int J Radiat Biol ; : 1-8, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325664

ABSTRACT

PURPOSE: Cancer diagnosis involves a multi-step process. Accurate identification of the tumor, staging and development of cancer cells is crucial for selecting optimal treatments to minimize disease recurrence. Quantum dots (QDs) represent an exciting class of fluorescent nanoprobes in molecular detection and targeted tumor imaging. MATERIALS AND METHODS: In this study, graphene quantum dots (GQDs) were synthesized by pyrolysis of citric acid (CA) as a carbon precursor under high temperatures. The morphology of the obtained GQDs was first characterized using physical (TEM and DLS) and spectroscopic (fluorescence, FTIR and UV-Vis) methods. In the following,99mTc-labeled GQDs were prepared in the presence of SnCl2.2H2O as a reducing agent between 95 and 100 °C. The biodistribution and tumor targeting efficiency of radiolabeled GQDs as a novel agent for C6 glioma tumor scintigraphy in an animal model were evaluated. Furthermore, organ uptake, human serum albumin binding and tumor accumulation were measured. RESULTS: The TEM image of the prepared GQDs showed a relatively uniform size distribution in the range of diameter 6-9 nm and spherical shape. Radiolabeled GQDs showed a radiochemical yield of >97% (n = 3). Through incubation in human serum, almost 15% of 99mTc-labeled GQDs degraded after 6 h. The amount of uptake in xenograft models of glioma C6 rats was 1.10 ± 0.36% of injection dose per gram after 1 h. The kidneys, intestinal and glioma tumor sites were observed via scintigraphy imaging. CONCLUSION: Our data suggest that 99mTc-labeled GQDs, as a new radiotracer, efficiently accumulate in the tumor site and could be included as a radiotracer for detecting glioma tumors.

3.
Polymers (Basel) ; 16(17)2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39274172

ABSTRACT

In this paper, we developed a paper-based fluorescent sensor using functional composite materials composed of graphene quantum dots (GQDs) coated with molecularly imprinted polymers (MIPs) for the selective detection of tetracycline (TC) in water. GQDs, as eco-friendly fluorophores, were chemically grafted onto the surface of paper fibers. MIPs, serving as the recognition element, were then wrapped around the GQDs via precipitation polymerization using 3-aminopropyltriethoxysilane (APTES) as the functional monomer. Optimal parameters such as quantum dot concentration, grafting time, and elution time were examined to assess the sensor's detection performance. The results revealed that the sensor exhibited a linear response to TC concentrations in the range of 1 to 40 µmol/L, with a limit of detection (LOD) of 0.87 µmol/L. When applied to spiked detection in actual water samples, recoveries ranged from 103.3% to 109.4%. Overall, this paper-based fluorescent sensor (MIPs@GQDs@PAD) shows great potential for portable, multi-channel, and rapid detection of TC in water samples in the future.

4.
ACS Appl Mater Interfaces ; 16(40): 54377-54388, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39316462

ABSTRACT

The rapid and sensitive detection of amino acids is important not only for fundamental studies but also for the establishment of a healthy society. However, conventional detection methods have been hampered by the difficulties of low sensitivity, long sampling and detection times, and expensive operation and instruments. Here, we report the plasma engineering of bioresource-derived graphene quantum dots (GQDs) as surface-enhanced Raman scattering (SERS)-active materials for the rapid and sensitive detection of amino acids. Surface-functionalized GQDs with tuned structures and band gaps were synthesized from earth-abundant bioresources by using reactive microplasmas under ambient conditions. Detailed microscopy and spectroscopy studies indicate that the SERS properties of the synthesized GQDs can be tuned by controlling the band gaps of synthesized GQDs. The plasma-synthesized metal-free GQDs with surface functionalities showed improved SERS properties for rapid amino acid detection with low detection limits of 10-5 M for tyrosine and phenylalanine. Theoretical calculations suggest that charge transfer between GQDs and amino acids can enhance the SERS response of the GQDs. Our work provides insights into the controlled engineering of SERS-active nanographene-based materials using the plasma-enhanced method.


Subject(s)
Amino Acids , Graphite , Quantum Dots , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Graphite/chemistry , Amino Acids/chemistry , Amino Acids/analysis , Quantum Dots/chemistry , Limit of Detection
5.
Heliyon ; 10(18): e37914, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39323834

ABSTRACT

In this work, an innovative ratiometric sensing platform was developed for the determination of methotrexate (MTX), an antifolate drug, a chemotherapy agent, and an immune system suppressant based on blue emission graphene quantum dots/Rhodamine B doped gold nanostars (B-GQDs/Au NSt-RB). The developed sensor was a dual-emission fluorescent probe with two major emission peaks at 440 nm (B-GQDs) and 580 nm (Au NSt-RB) by exciting at 330 nm. Based on the inhibiting effect of MTX on the system's fluorescence density, the stable ratiometric fluorescent probe was used for the rapid determination of MTX in aquatic solutions and spiked human serum samples. The results indicated good linear correlations over the logarithmic concentration range of 0.3 nM-50.0 µM. In addition, B-GQDs/Au NSt-RB can further realize highly sensitive detection of MTX with a low LOD value of 2.28 × 10-10 M. The RSD% values obtained for the intra-day and inter-day precision were 0.63-3.86 %. With recoveries of 98.2-100.1 % and 98.7-100.5 %, respectively. The short-term temperature and freeze-thaw tests confirmed the higher stability of the developed sensor. In addition, the calculated recoveries for MTX recognition in real samples were in the range of 98-102 %. These findings suggested the excellent potential of the ratiometric fluorescence B-GQDs/Au NSt-RB sensor for detecting MTX in real plasma samples.

6.
Sci Rep ; 14(1): 21994, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313549

ABSTRACT

Atrazine is a widely used toxic herbicide that poses a threat to both the environment and human health. This study investigates the removal of Atrazine from water through armchair-hexagonal hexagonal graphene quantum dots (AHEX) simulations. The investigations are performed using density functional theory at the exchange-correlation hybrid functional B3LYP/3-21G level of theory. The activity of pristine AHEX, with a total dipole moment of 0.0 (debye), is enhanced by doping with boron (B), nitrogen (N), and sulfur atoms (S), resulting in increased total dipole moments of 8.99, 5.29, and 4.14 Debye respectively. This enhancement occurs without any structural deformation due to the doping process. Our results show significant adsorption capacity of the doped nanographene for Atrazine, evidenced by the high adsorption energies of 0.52 eV for boron, 0.62 eV for nitrogen, and 2.97 eV for sulfur. Charge distribution on the atrazine complexes further confirms effective interaction, with values of 0.03, - 0.018, and 0.032 (e). UV-vis spectroscopy reveals that the prominent absorption peaks of boron and nitrogen-doped samples, initially at ~ 658.8 and 431 nm, undergo a redshift to ~ 676 and 444.3 nm after adsorption, respectively. This redshift aligns with the dominant excitation moving to lower energies following adsorption. Conversely, the sulfurated nanographene shows a blue shift from 980.66 to 485.41 nm. These findings highlight the potential of doped nanographene as an effective treatment for atrazine-contaminated water.

7.
Talanta ; 281: 126817, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39245006

ABSTRACT

Inspired by the iron porphyrin structure of natural horseradish peroxidase (HRP), an efficient carbon-based nanozyme was fabricated using nitrogen-doped graphene quantum dots (NGQDs) and iron ion (Fe3+) nanocomposite, enabling selective distinguishment of hydroquinone (HQ) from its isomers. NGQDs with good dispersibility and uniform size were synthesized via a one-step hydrothermal process. NGQDs lacked peroxidase-like activity but the formed nanocomposite (Fe3+-NGQDs) upon Fe3+ addition possessed high peroxidase-like activity. Fe3+-NGQDs nanocomposite exhibited shuttle-shaped structure (∼30 nm), the lattice structure of NGQDs and electron transfer between Fe3+ and NGQDs. The Fe3+-NGQDs nanocomposite can catalyze the production of superoxide radicals (•O2-) from H2O2. The Michaelis constant (Km) of Fe3+-NGQDs (0.115 mM) was lower than that of natural HRP (0.434 mM) with 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate and the maximum initial reaction rate (Vmax, 16.47 × 10-8 M/s) was nearly 4 times higher than that of HRP using H2O2 substrate. HQ, unlike its isomers catechol (CC) and resorcinol (RE), could consume •O2- generated from the decomposition of H2O2 catalyzed by Fe3+-NGQDs nanocomposite, reducing the oxidation of TMB. This principle enabled selective colorimetric determination of HQ ranged from 1 µM to 70 µM and a limit of detection (LOD) of 0.2 µM. Successful determination of HQ in pond water was also realized.

8.
Heliyon ; 10(16): e35760, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39220916

ABSTRACT

Graphene quantum dots (GQDs) are an evolving class of carbon-based nanomaterial, seizing tremendous attention owing to their intense optical property, engineered shapes and structures, and good photostability. Being a zero-dimensional form of carbon structure, GQDs have superior photoluminescent behavior, tunable emission and absorption, excellent biocompatibility, low cytotoxicity, hydrophilic nature, modifying surface states. Their water dispersibility and functionalized surface structure, involving heteroatoms and various functional groups onto the surface of GQDs, make them particularly suitable for biological applications. Based on their absolute luminescence properties, GQDs emit blue, green, yellow, and red light under ultraviolet irradiation. Amongst the three colors, red luminescence can achieve deeper penetration of light into tissues, good cellular distribution, bio-sensing property, cell imaging, drug delivery, and serves as a better candidate for photodynamic therapy. The overall objective of this review is to provide a comprehensive overview of the synthesis methods for red fluorescence graphene quantum dots (RF-GQDs), critical comparative analyses of spectral techniques used for their characterization, the tunable photoluminescence mechanisms underpinning red emission, and the significance of chemically functionalizing GQDs' surface edges in achieving red fluorescence are discussed in depth. This review also discusses the effective biological applications and critical challenges associated with RF-GQDs are examined, providing insights into their future potential in clinical and industrial applications.

9.
Nano Lett ; 24(37): 11722-11729, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39248378

ABSTRACT

Graphene quantum dots (GQDs) commonly suffer from the fluorescence problem of aggregation-caused quenching under high-concentration loading or in the solid state, which seriously hinders the application. Here we report a type of GQDs with red aggregation-induced enhanced emission (AIEE). It is confirmed that the aggregation state of the AIEE GQDs is a J-aggregate. The GQDs/poly(methyl methacrylate) film presented a photoluminescence quantum yield as high as 60.81%, and the record-high performance of luminescent solar concentrators (LSCs) was achieved. The power conversion efficiency (ηPCE) is up to 8.35% and the external optical efficiency (ηext) is ∼8.99% for the GQD-based LSCs (45 mW/cm2). Even under one sun illumination (100 mW/cm2), the corresponding ηPCE and ηext values are 3.12% and 4.52%, respectively. The internal photon efficiency (ηint) of an LSC device is about 5.02%. The synthesis of AIEE GQDs bridges the research gap in the emission mechanism of AIEE in GQDs.

10.
Bioelectrochemistry ; 160: 108795, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39146929

ABSTRACT

E6 and E7 oncogenes are pivotal in the carcinogenic transformation in HPV infections and efficient diagnostic methods can ensure the detection and differentiation of HPV genotype. This study describes the development and validation of an electrochemical, label-free genosensor coupled with a microfluidic system for detecting the E6 and E7 oncogenes in cervical scraping samples. The nanostructuring employed was based on a cysteine and graphene quantum dots layer that provides functional groups, surface area, and interesting electrochemical properties. Biorecognition tests with cervical scraping samples showed differentiation in the voltammetric response. Low-risk HPV exhibited a lower biorecognition response, reflected in ΔI% values of 82.33 % ± 0.29 for HPV06 and 80.65 % ± 0.68 for HPV11 at a dilution of 1:100. Meanwhile, high-risk, HPV16 and HPV18, demonstrated ΔI% values of 96.65 % ± 1.27 and 93 % ± 0.026, respectively, at the same dilution. Therefore, the biorecognition intensity followed the order: HPV16 >HPV18 >HPV06 >HPV11. The limit of detection and the limit of quantification of E6E7 microfluidic LOC-Genosensor was 26 fM, and 79.6 fM. Consequently, the E6E7 biosensor is a valuable alternative for clinical HPV diagnosis, capable of detecting the potential for oncogenic progression even in the early stages of infection.


Subject(s)
Biosensing Techniques , Oncogene Proteins, Viral , Biosensing Techniques/methods , Humans , Oncogene Proteins, Viral/genetics , Female , Limit of Detection , Papillomavirus E7 Proteins/genetics , Cervix Uteri/virology , Graphite/chemistry , Papillomavirus Infections/diagnosis , Papillomavirus Infections/virology , Electrochemical Techniques/methods , Repressor Proteins/genetics , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/instrumentation , Quantum Dots/chemistry , Lab-On-A-Chip Devices , Papillomaviridae/genetics , Papillomaviridae/isolation & purification
11.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125603

ABSTRACT

Graphene Quantum Dots (GQDs) have shown the potential for antimicrobial photodynamic treatment, due to their particular physicochemical properties. Here, we investigated the activity of three differently functionalized GQDs-Blue Luminescent GQDs (L-GQDs), Aminated GQDs (NH2-GQDs), and Carboxylated GQDs (COOH-GQDs)-against E. coli. GQDs were administrated to bacterial suspensions that were treated with blue light. Antibacterial activity was evaluated by measuring colony forming units (CFUs) and metabolic activities, as well as reactive oxygen species stimulation (ROS). GQD cytotoxicity was then assessed on human colorectal adenocarcinoma cells (Caco-2), before setting in an in vitro infection model. Each GQD exhibits antibacterial activity inducing ROS and impairing bacterial metabolism without significantly affecting cell morphology. GQD activity was dependent on time of exposure to blue light. Finally, GQDs were able to reduce E. coli burden in infected Caco-2 cells, acting not only in the extracellular milieu but perturbating the eukaryotic cell membrane, enhancing antibiotic internalization. Our findings demonstrate that GQDs combined with blue light stimulation, due to photodynamic properties, have a promising antibacterial activity against E. coli. Nevertheless, we explored their action mechanism and toxicity on epithelial cells, fixing and standardizing these infection models.


Subject(s)
Anti-Bacterial Agents , Blue Light , Escherichia coli , Graphite , Quantum Dots , Reactive Oxygen Species , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Caco-2 Cells , Escherichia coli/drug effects , Graphite/chemistry , Graphite/pharmacology , Photochemotherapy/methods , Quantum Dots/chemistry , Reactive Oxygen Species/metabolism
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124887, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39096676

ABSTRACT

Herein, we report a single step synthesis of highly fluorescent Graphene Quantum Dots (GQDs) using tryptophan and glycerol as precursors via pyrolysis. The morphological and functional characterization of the prepared GQDs was performed using PXRD, FTIR, TEM, XPS and zeta potential measurements. The prepared GQDs found their practical application in ultrasensitive detection of an emerging potential cancer biomarker, H2O2, by exploiting the fluorescence quenching behaviour of H2O2. To evaluate the detection sensitivity, a series of various concentrations of H2O2 was spiked to biomatrices like, serum and MCF-7 (human breast cancer cell line) cell lysate medium. A remarkably low limit of detection (LOD) was found in serum medium (139.5 pM) which further improved in MCF-7 cell lysate medium (LOD 61.43 pM). Moreover, the sensing capacity of the GQDs was further validated in presence of various physiological variables such as glucose, cholesterol, insulin and nitrite. Sensing assay was also carried out in HaCaT (human keratinocyte cell line) cell lysate medium to compare the performance of our prepared sensor but the non-linearity of the F0/F versus H2O2 concentration plot pointed towards the conduciveness of the MCF-7 cell lysate medium for sensitive detection of H2O2.The mechanism behind the sensing was also explored using spectroscopic methods.


Subject(s)
Graphite , Hydrogen Peroxide , Limit of Detection , Quantum Dots , Spectrometry, Fluorescence , Tryptophan , Graphite/chemistry , Quantum Dots/chemistry , Humans , Hydrogen Peroxide/analysis , Hydrogen Peroxide/chemistry , Tryptophan/analysis , Tryptophan/chemistry , MCF-7 Cells , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry
13.
Environ Sci Technol ; 58(33): 14629-14640, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39102579

ABSTRACT

Graphene quantum dots (GQDs) are used in diverse fields from chemistry-related materials to biomedicines, thus causing their substantial release into the environment. Appropriate visual function is crucial for facilitating the decision-making process within the nervous system. Given the direct interaction of eyes with the environment and even nanoparticles, herein, GQDs, sulfonic acid-doped GQDs (S-GQDs), and amino-functionalized GQDs (A-GQDs) were employed to understand the potential optic neurotoxicity disruption mechanism by GQDs. The negatively charged GQDs and S-GQDs disturbed the response to light stimulation and impaired the structure of the retinal nuclear layer of zebrafish larvae, causing vision disorder and retinal degeneration. Albeit with sublethal concentrations, a considerably reduced expression of the retinal vascular sprouting factor sirt1 through increased DNA methylation damaged the blood-retina barrier. Importantly, the regulatory effect on vision function was influenced by negatively charged GQDs and S-GQDs but not positively charged A-GQDs. Moreover, cluster analysis and computational simulation studies indicated that binding affinities between GQDs and the DNMT1-ligand binding might be the dominant determinant of the vision function response. The previously unknown pathway of blood-retinal barrier interference offers opportunities to investigate the biological consequences of GQD-based nanomaterials, guiding innovation in the industry toward environmental sustainability.


Subject(s)
DNA Methylation , Graphite , Quantum Dots , Quantum Dots/chemistry , Quantum Dots/toxicity , Graphite/chemistry , Animals , Retinal Degeneration , Blood-Retinal Barrier/metabolism , Zebrafish
14.
2d Mater ; 11(2)2024 Apr.
Article in English | MEDLINE | ID: mdl-39149578

ABSTRACT

Due to high tissue penetration depth and low autofluorescence backgrounds, near-infrared (NIR) fluorescence imaging has recently become an advantageous diagnostic technique used in a variety of fields. However, most of the NIR fluorophores do not have therapeutic delivery capabilities, exhibit low photostabilities, and raise toxicity concerns. To address these issues, we developed and tested five types of biocompatible graphene quantum dots (GQDs) exhibiting spectrally-separated fluorescence in the NIR range of 928-1053 nm with NIR excitation. Their optical properties in the NIR are attributed to either rare-earth metal dopants (Ho-NGQDs, Yb-NGQDs, Nd-NGQDs) or defect-states (nitrogen doped GQDS (NGQDs), reduced graphene oxides) as verified by Hartree-Fock calculations. Moderate up to 1.34% quantum yields of these GQDs are well-compensated by their remarkable >4 h photostability. At the biocompatible concentrations of up to 0.5-2 mg ml-1 GQDs successfully internalize into HEK-293 cells and enable in vitro imaging in the visible and NIR. Tested all together in HEK-293 cells five GQD types enable simultaneous multiplex imaging in the NIR-I and NIR-II shown for the first time in this work for GQD platforms. Substantial photostability, spectrally-separated NIR emission, and high biocompatibility of five GQD types developed here suggest their promising potential in multianalyte testing and multiwavelength bioimaging of combination therapies.

15.
Adv Pharm Bull ; 14(2): 266-277, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39206392

ABSTRACT

Many people lose their lives to cancer each year. The prevalence of illnesses, metabolic disorders, high-risk infections, and other conditions has been greatly slowed down by expanding scientific research. Chemotherapy and radiation are still the initial lines of treatment for cancer patients, along with surgical removal of tumors. Modifications have been made in chemotherapy since medicines frequently have substantial systemic toxicity and poor pharmacokinetics and still do not reach the tumor site at effective concentrations. Chemotherapy may now be administered more safely and effectively thanks to nanotechnology. Nanotechnology-based graphene quantum dots (GQDs) are very applicable in breast cancer detection, as a drug delivery system, and in the treatment of breast cancer because of their physical and chemical properties, lower toxicity, small size, fluorescence, and effective drug delivery. This paper analyzes the GQDs as cutting-edge platforms for biotechnology and nanomedicine also its application in drug delivery in cancer. It shows that GQDs can be effectively conjugated with hyaluronic acid (HA) to achieve efficient and target-specific delivery.

16.
ACS Appl Mater Interfaces ; 16(29): 37530-37544, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38989714

ABSTRACT

Contrary to the initial belief that myofibroblasts are terminally differentiated cells, myofibroblasts have now been widely recognized as an activation state that is reversible. Therefore, strategies targeting myofibroblast to be a quiescent state may be an effective way for antihypertrophic scar therapy. Graphene quantum dots (GQDs), a novel zero-dimensional and carbon-based nanomaterial, have recently garnered significant interest in nanobiomedicine, owing to their excellent biocompatibility, tunable photoluminescence, and superior physiological stability. Although multiple nanoparticles have been used to alleviate hypertrophic scars, a GQD-based therapy has not been reported. Our in vivo studies showed that GQDs exhibited significant antiscar efficacy, with scar appearance improvement, collagen reduction and rearrangement, and inhibition of myofibroblast overproliferation. Further in vitro experiments revealed that GQDs inhibited α-SMA expression, collagen synthesis, and cell proliferation and migration, inducing myofibroblasts to become quiescent fibroblasts. Mechanistic studies have demonstrated that the effect of GQDs on myofibroblast proliferation blocked cell cycle progression by disrupting the cyclin-CDK-E2F axis. This study suggests that GQDs, which promote myofibroblast-to-fibroblast transition, could be a novel antiscar nanomedicine for the treatment of hypertrophic scars and other types of pathological fibrosis.


Subject(s)
Cell Proliferation , Cicatrix, Hypertrophic , Graphite , Myofibroblasts , Quantum Dots , Quantum Dots/chemistry , Myofibroblasts/drug effects , Myofibroblasts/pathology , Myofibroblasts/metabolism , Graphite/chemistry , Graphite/pharmacology , Cicatrix, Hypertrophic/drug therapy , Cicatrix, Hypertrophic/pathology , Cell Proliferation/drug effects , Animals , Humans , Mice , Collagen/chemistry , Cell Movement/drug effects
17.
J Fluoresc ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995477

ABSTRACT

This research explores the fluorescence properties and photostability of boron nitrogen co-doped graphene quantum dots (BN-GQDs), evaluating their effectiveness as sensors for rutin (RU). BN-GQDs are biocompatible and exhibit notable absorbance and fluorescence characteristics, making them suitable for sensing applications. The study utilized various analytical techniques to investigate the chemical composition, structure, morphology, optical attributes, elemental composition, and particle size of BN-GQDs. Techniques included X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The average particle size of the BN-GQDs was determined to be approximately 3.5 ± 0.3 nm. A clear correlation between the emission intensity ratio and RU concentration was identified across the range of 0.42 to 4.1 µM, featuring an impressively low detection limit (LOD) of 1.23 nM. The application of BN-GQDs as fluorescent probes has facilitated the development of a highly sensitive and selective RU detection method based on Förster resonance energy transfer (FRET) principles. This technique leverages emission at 465 nm. Density Functional Theory (DFT) analyses confirm that FRET is the primary mechanism behind fluorescence quenching, as indicated by the energy levels of the lowest unoccupied molecular orbitals (LUMOs) of BN-GQDs and RU. The method's effectiveness has been validated by measuring RU concentrations in human serum samples, showing a recovery range between 97.8% and 103.31%. Additionally, a smartphone-based detection method utilizing BN-GQDs has been successfully implemented, achieving a detection limit (LOD) of 49 nM.

18.
Br J Pharmacol ; 181(21): 4214-4228, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38965763

ABSTRACT

BACKGROUND AND PURPOSE: Metal-based therapeutic agents are limited by the required concentration of metal-based agents. Hereby, we determined if combination with 17ß-oestradiol (E2) could reduce such levels and the therapy still be effective in type 2 diabetes mellitus (T2DM). EXPERIMENTAL APPROACH: The metal-based agent (vanadyl acetylacetonate [VAC])- 17ß-oestradiol (E2) combination is administered using the membrane-permeable graphene quantum dots (GQD), the vehicle, to form the active GQD-E2-VAC complexes, which was characterized by fluorescence spectra, infrared spectra and X-ray photoelectron spectroscopy. In db/db type 2 diabetic mice, the anti-diabetic effects of GQD-E2-VAC complexes were evaluated using blood glucose levels, oral glucose tolerance test (OGTT), serum insulin levels, homeostasis model assessment (homeostasis model assessment of insulin resistance [HOMA-IR] and homeostasis model assessment of ß-cell function [HOMA-ß]), histochemical assays and western blot. KEY RESULTS: In diabetic mice, GQD-E2-VAC complex had comprehensive anti-diabetic effects, including control of hyperglycaemia, improved insulin sensitivity, correction of hyperinsulinaemia and prevention of ß-cell loss. Co-regulation of thioredoxin interacting protein (TXNIP) activation by the combination of metal complex and 17ß-oestradiol contributed to the enhanced anti-diabetic effects. Furthermore, a potent mitochondrial protective antioxidant, coniferaldehyde, significantly potentiates the protective effects of GQD-E2-VAC complexes. CONCLUSION AND IMPLICATIONS: A metal complex-E2 combinatorial approach achieved simultaneously the protection of ß cells and insulin enhancement at an unprecedented low dose, similar to the daily intake of dietary metals in vitamin supplements. This study demonstrates the positive effects of combination and multi-modal therapies towards type 2 diabetes treatment.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Estradiol , Hypoglycemic Agents , Animals , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Mice , Male , Estradiol/administration & dosage , Estradiol/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Quantum Dots/chemistry , Drug Therapy, Combination , Mice, Inbred C57BL , Graphite/chemistry , Graphite/administration & dosage , Graphite/toxicity , Vanadium Compounds/administration & dosage , Vanadium Compounds/chemistry , Vanadium Compounds/pharmacology , Vanadium Compounds/toxicity , Blood Glucose/drug effects , Blood Glucose/metabolism , Pentanones/administration & dosage , Pentanones/chemistry , Pentanones/pharmacology , Pentanones/toxicity , Insulin
19.
ACS Appl Bio Mater ; 7(8): 5597-5608, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39032174

ABSTRACT

Excessive reactive oxygen species (ROS) in cellular environments leads to oxidative stress, which underlies numerous diseases, including inflammatory diseases, neurodegenerative diseases, cardiovascular diseases, and cancer. Oxidative stress can be particularly damaging to biological membranes such as those found in mitochondria, which are abundant with polyunsaturated fatty acids (PUFAs). Oxidation of these biological membranes results in concomitant disruption of membrane structure and function, which ultimately leads to cellular dysfunction. Graphene quantum dots (GQDs) have garnered significant interest as a therapeutic agent for numerous diseases that are linked to oxidative stress. Specifically, GQDs have demonstrated an ability to protect mitochondrial structure and function under oxidative stress conditions. However, the fundamental mechanisms by which GQDs interact with membranes in oxidative environments are poorly understood. Here, we used C11-BODIPY, a fluorescent lipid oxidation probe, to develop quantitative fluorescence assays that determine both the extent and rate of oxidation that occurs to PUFAs in biological membranes. Based on kinetics principles, we have developed a generalizable model that can be used to assess the potency of antioxidants that scavenge ROS in the presence of biological membranes. By augmenting our fluorescence assays with 1H NMR spectroscopy, the results demonstrate that GQDs scavenge nascent hydroxyl and peroxyl ROS that interact with membranes and that GQDs are potent inhibitors of ROS-induced lipid oxidation in PUFA-containing biological membranes. The antioxidant potency of GQDs is comparable to or even greater than established antioxidant molecules, such as ascorbic acid and Trolox. This work provides mechanistic insights into the mitoprotective properties of GQDs under oxidative stress conditions, as well as a quantitative framework for assessing antioxidant interactions in biological membrane systems.


Subject(s)
Graphite , Lipid Peroxidation , Quantum Dots , Quantum Dots/chemistry , Graphite/chemistry , Graphite/pharmacology , Lipid Peroxidation/drug effects , Cell Membrane/metabolism , Cell Membrane/drug effects , Reactive Oxygen Species/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Materials Testing , Boron Compounds/chemistry , Boron Compounds/pharmacology , Oxidative Stress/drug effects , Particle Size , Humans , Fluorescent Dyes/chemistry , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/pharmacology , Fatty Acids, Unsaturated/metabolism , Molecular Structure
20.
Sci Rep ; 14(1): 13255, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858420

ABSTRACT

Graphene Quantum Dots (GQDs) are crucial in biomedicine for sensitive biosensing and high-resolution bioimaging and in photonics for their nonlinear optical properties. Integrating GQDs with photonic structures enhances optical properties by optimizing light-matter interactions and enabling precise control over their emission wavelengths. In this work, we explore a facile synthesis method for GQDs by pulsed laser irradiation in chlorobenzene and highlight the transformative potential of Tamm Plasmon Cavity (TPC) structures for tuning and amplifying the photoluminescence and nonlinear optical properties of GQDs. The characterization of GQDs revealed their exceptional properties, including efficient optical limiting and stable photoluminescence. The study demonstrated that the TPC structure significantly amplifies nonlinear optical effects due to the high light-matter interaction, indicating the potential for advanced optical systems, including optical limiters and nonlinear optical devices. Furthermore, introducing GQDs into the TPC structure leads to a significant enhancement and tuning of fluorescence emission. The Purcell effect, in combination with the confined electromagnetic fields within the TPC, increases the spontaneous emission rate of GQDs and subsequently enhances the fluorescence intensity. This enhanced and tunable fluorescence has exciting implications for high-sensitivity applications such as biosensing and single-molecule detection.

SELECTION OF CITATIONS
SEARCH DETAIL