Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Foods ; 13(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39123615

ABSTRACT

Avocado oil is rich in nutrients beneficial to human health, such as monounsaturated fatty acids, phenolic compounds, tocopherol, and carotenoids, with numerous possibilities for application in industry. This review explores, through a comparative approach, the effectiveness of the supercritical oil extraction process as an alternative to the conventional cold-pressing method, evaluating the differences in the extraction process steps through the effect of temperature and operating pressure on bioactive quality and oil yield. The results reveal that supercritical avocado oil has a yield like that of mechanical cold pressing and superior functional and bioactive quality, especially in relation to α-tocopherol and carotenoids. For better use and efficiency of the supercritical technology, the maturation stage, moisture content, fruit variety, and collection period stand out as essential factors to be observed during pre-treatment, as they directly impact oil yield and nutrient concentration. In addition, the use of supercritical technology enables the full use of the fruit, significantly reducing waste, and adds value to the agro-industrial residues of the process. It produces an edible oil free of impurities, microorganisms, and organic solvents. It is a green, environmentally friendly technology with long-term environmental and economic advantages and an interesting alternative in the avocado market.

2.
Foodborne Pathog Dis ; 21(3): 168-173, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38090762

ABSTRACT

Ultraviolet-C light-emitting diode (UVC-LED) and ultrasound (US) are two nonthermal technologies with the potential to destroy pathogens. However, little is known about their effectiveness in strains with a history of heat resistance. Thus, this study aimed to evaluate the phenotype and genotype of heat-resistant extraintestinal pathogenic Escherichia coli (ExPEC) with heat resistance genes after the application of US, UVC-LED, and UVC-LED+US. For this, two central composite rotatable designs were used to optimize the UVC-LED and US conditions in four ExPEC isolated from beef. From the genome of these isolates obtained in a previous study, possible genes for UVC resistance were analyzed. Results showed that US was ineffective in reducing >0.30 log colony-forming unit/mL, and that when used after UVC-LED, it showed a nonsynergic or antagonistic effect. Also, UVC-LED had the greatest effect at the maximum dose (4950 mJ/cm2 from 1.65 mW/cm2 for 50 min). However, the strains showed some recovery after that, which could be implicated in the expression of genes included in SOS system genes, some others present in the transmissible Locus of Stress Tolerance (trxBC and degP), and others (terC). Thus, ExPEC can overcome the conditions used in this study for US, UVC-LED, and UVC-LED+US, probably due to the history of resistance to other cellular damage. The result of this study will contribute to future studies that aim to find better treatment conditions for each food product.


Subject(s)
Escherichia coli Infections , Extraintestinal Pathogenic Escherichia coli , Animals , Cattle , Extraintestinal Pathogenic Escherichia coli/genetics , Hot Temperature , Genotype , Phenotype
3.
Metabolites ; 13(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37367849

ABSTRACT

Pereskia aculeata Miller, is an unconventional food plant native to South America. This study aimed to investigate the influence of different ultrasonic extraction times (10, 20, 30, and 40 min) on the phytochemical profile, antioxidant and antibacterial activities of ethanolic extracts obtained from lyophilized Pereskia aculeate Miller (ora-pro-nobis) leaves, an under-researched plant. Morphological structure and chemical group evaluations were also conducted for the lyophilized P. aculeate leaves. The different extraction times resulted in distinct phenolic content and Antioxidant Activity (ATT) values. Different extraction time conditions resulted in phenolic compound contents ranging from 2.07 to 2.60 mg EAG.g-1 of extract and different ATT values. The ATT evaluated by DPPH was significantly higher (from 61.20 to 70.20 µM of TE.g-1 of extract) in extraction times of 30 and 40 min, respectively. For ABTS, it varied between 6.38 and 10.24 µM of TE.g-1 of extract and 24.34 and 32.12 µM ferrous sulp.g-1 of extract. All of the obtained extracts inhibited the growth of Staphylococcus aureus, particularly the treatment employing 20 min of extraction at the highest dilution (1.56 mg.mL-1). Although liquid chromatography analyses showed that chlorogenic acid was the primary compound detected for all extracts, Paper Spray Mass Spectrometry (PS-MS) suggested the extracts contained 53 substances, such as organic, fatty, and phenolic acids, sugars, flavonoids, terpenes, phytosterols, and other components. The PS-MS proved to be a valuable technique to obtain the P. aculeate leaves extract chemical profile. It was observed that the freeze-drying process enhanced the conservation of morphological structures of P. aculeate leaves, as evidenced by scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) identified carboxyl functional groups and proteins between the 1000 and 1500 cm-1 bands in the P. aculeate leaves, thus favoring water interaction and contributing to gel formation. To the best of our knowledge, this is the first study to evaluate different times (10, 20, 30 and 40 min) for ultrasound extraction of P. aculeate leaves. The polyphenols improved extraction, and high antioxidant activity demonstrates the potential for applying P. aculeate leaves and their extract as functional ingredients or additives in the food and pharmaceutical industries.

4.
Compr Rev Food Sci Food Saf ; 22(3): 2161-2196, 2023 05.
Article in English | MEDLINE | ID: mdl-36995170

ABSTRACT

Oilseeds are sources of not only major compounds such as oil and meal but also of bioactive compounds. Their conventional extraction is related to long extraction time, large non-renewable solvent consumption, high temperature, and therefore, high energy consumption. Ultrasound-assisted extraction (UAE) has emerged as a new and green technology, which can accelerate and/or improve the extraction process of these compounds. Moreover, the possibility of using renewable solvents in the UAE enhances its application and allows obtaining both extracted and remaining products more compatible with current human consumption requirements. This article examines the mechanisms, concepts, and factors that impact oilseeds' UAE with an emphasis on the extraction yield and quality of oil, meal, and bioactive compounds. Furthermore, the effects of combining UAE with other technologies are addressed. Gaps detected in the analyzed literature about oilseed treatment and quality and properties of products, in addition to perspectives about their uses as food ingredients, are also included. Moreover, it highlights the need for increasing research on process scalability, on environmental and economic impacts of the whole process, and on the phenomenological description about the effect of process variables on extraction performances, which will be a key tool for process design, optimization, and control. Understanding ultrasound processing techniques for the extraction of different compounds from oilseeds will serve as useful information for fats and oils and meal scientists in academia and industry to explore the possibility of employing this sustainable approach during the extraction treatment of various crops.


Subject(s)
Food Ingredients , Humans , Solvents , Plant Oils , Crops, Agricultural
5.
Biotechnol Rep (Amst) ; 37: e00787, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36818378

ABSTRACT

Selenium nanoparticles (SeNPs) have antimicrobial and antifungal activity. SeNPs using Se resistant bacteria is a low cost and eco-friendly technology. Fungal contamination of wood during drying is one of the main causes of economic losses in the wood industry. The bacterium Delftia sp. 5 resistance to Se and its ability to produce SeNPs able to inhibit the growth of the wood brown-rotting fungus Oligoporus pelliculosus was analyzed. The strain showed an optimal SeNPs production when selenite concentration was 160 mg L -1. The SeNPs were spherical with an average size 192.33 ± 8.6 nm and a zeta potential of -41.4 ± 1.3 nm. The SeNPs produced by Delftia sp. 5 (33.6 ± 0.1 mg L -1 Se) inhibited the growth of O. pelliculosus in agar plates and in Nothofagus pumilio (Lenga) wood samples. Delftia sp. 5 SeNPs could be used for embedding lenga wood prior to drying for preventing the growth of the deteriorating fungi O. pelliculosus.

6.
Environ Technol ; 44(8): 1083-1098, 2023 Mar.
Article in English | MEDLINE | ID: mdl-34704544

ABSTRACT

Staphylococcus aureus is often associated worldwide with foodborne illnesses, and the elimination of biofilms formed by this bacterium from industrial surfaces is very challenging. To date, there have been few attempts to investigate plant oils obtained by recent green technologies, applied against biofilms on usual surfaces of the food industry and bacteria isolated from such environment. Therefore, this study evaluated the activity of Moringa oleifera seed oil (MOSO), extracted with pressurized n-propane, against standard and environmental S. aureus biofilms. Additionally, a genotypic and phenotypic study of the environmental S. aureus was proposed. It was found that this bacterium was a MSSA (methicillin-sensitive S. aureus), a carrier of icaA and icaD genes that has strong adhesion (OD550=1.86 ± 0.19) during biofilm formation. The use of pressurized n-propane as a solvent was efficient in obtaining MOSO, achieving a yield of 60.9%. Gas chromatography analyses revealed the presence of a rich source of fatty acids in MOSO, mainly oleic acid (62.47%), behenic acid (10.5%) and palmitic acid (7.32%). On polystyrene surface, MOSO at 0.5% and 1% showed inhibitory and bactericidal activity, respectively, against S. aureus biofilms. MOSO at 1% allowed a maximum reduction of 2.38 log UFC/cm² of S. aureus biofilms formed on PVC (polyvinyl chloride) surface. Scanning electron microscopy showed disturbances on the surface of S. aureus after exposure to MOSO. These unprecedented findings suggest that MOSO extracted with pressurized n-propane is potentially capable of inhibiting biofilms of different S. aureus strains, thus, contributing to microbiological safety during food processing.


Subject(s)
Moringa oleifera , Staphylococcus aureus , Propane/pharmacology , Biofilms , Plant Oils/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
7.
Crit Rev Food Sci Nutr ; 63(32): 11275-11289, 2023.
Article in English | MEDLINE | ID: mdl-35758250

ABSTRACT

Food processing industries have led to several environmental impacts due to their high water and energy consumption, as well as soil and water bodies' contamination through improper waste disposal. Membrane Separation Processes (MSP) emerge as an important alternative to enable the adoption of sustainable processes by food industries, since satisfying the requests of innovative processes and equipment design, such as smaller, cleaner, more energy-efficient processes (mild conditions) without the usage of chemical agents. Membrane-based processes fulfill these requirements, and their potential has been broadly recognized in the last few years. This review provides a comprehensive and up-to-date overview of the application of MSP in sustainable processes in the different segments of the food industry over the last 10 years. Waste and wastewater treatment, recovery of valuable compounds and water for reuse, and alternatives to high energy consumption processes were identified as sustainable processes in this context. One trend found is the potential for adding value to production chains by obtaining valuable compounds that have not been explored yet. As a perspective for future research, this review showed that it is advisable to implement MSP in different industrial environments in order to make current processes environmentally sustainable and less polluting.


Subject(s)
Food Handling , Food Industry , Water
8.
Polymers (Basel) ; 14(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36080528

ABSTRACT

Silver nanoparticles were successfully synthesized using Thuja orientalis aqueous extract and AgNO3 as a precursor. UV-Vis showed a distinct absorption peak at 424 nm attributed to silver nanoparticles due to their surface plasmon resonance. Atomic absorption analysis reflected an increase in the concentration of nanoparticles in relation to the progress of the synthesis, obtaining a peak concentration value of 15.7 mg/L at 50 min. The FTIR spectra revealed the characteristic functional groups of phytomolecules involved in the silver-ion binding process, such as R-O-H (3335 cm-1) O=C-OH (2314 cm-1) and C-C=C (1450 cm-1). At 50 min, zeta potential showed the stability of the nanoparticles with the value of -21.73 mV. TEM micrographs revealed the formation of spherical nanoparticles with an average size of about 85.77 nm. Furthermore, films incorporated with nanoparticles exhibited a Tg from 66.42 °C to 73.71 °C and Tm at 103.31 °C. Films from the G22 formulation presented excellent antibacterial properties inhibiting the growth of Staphylococcus aureus. Thuja orientalis aqueous extract could be a low-cost, eco-friendly, and efficient reducing and capping agent for the synthesis of nanometric-sized Ag particles. Gelatin films with nanoparticles are expected to have high potential as an active food packaging system.

9.
Environ Res ; 215(Pt 1): 114259, 2022 12.
Article in English | MEDLINE | ID: mdl-36100098

ABSTRACT

The accumulation of cadmium (Cd) in grains and edible parts of crops poses a risk to human health. Because rice is the staple food of more than half of the world population, reducing Cd uptake by rice is critical for food safety. HydroPotash (HYP), an innovative potassium fertilizer produced with a hydrothermal process, has the characteristics of immobilizing heavy metals and potential use for remediating Cd-contaminated soils. The objective of this study was to evaluate the HYP as a soil amendment to immobilize Cd in acidic soils and to reduce the accumulation of Cd in rice tissues. The experiment was performed in a greenhouse with a Cecil sandy loam soil (pH 5.3 and spiked with 3 mg Cd kg-1) under either flooding conditions (water level at 4 cm above the soil surface) or at field capacity. Two hydrothermal materials (HYP-1 and HYP-2) were compared with K-feldspar + Ca(OH)2 (the raw material used for producing HYP), Ca(OH)2, zeolite, and a control (without amendment). After 30 days of soil incubation, HydroPotashs, the raw material, and Ca(OH)2 increased both soil solution pH and electrical conductivity. These materials also decreased soluble Cd concentration (up to 99.7%) compared with the control (p < 0.05). After 145 days, regardless of the materials applied, plant growth was favored (up to 35.8%) under the flooded regime. HydroPotash-1 was more effective for increasing dry biomass compared with other amendments under both water regimes. HydroPotashs reduced extractable Cd in soil, Cd content in plant biomass at tillering and maturing stage, and were efficient in minimizing Cd accumulation in rice grains.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Zeolites , Aluminum Silicates , Cadmium/analysis , Fertilizers , Humans , Oryza/chemistry , Potassium/pharmacology , Potassium Compounds , Soil/chemistry , Soil Pollutants/analysis , Water , Zeolites/pharmacology
10.
Antioxidants (Basel) ; 11(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35883895

ABSTRACT

The extraction of lycopene was carried out with three types of vegetable oils (grape, extra virgin olive, and peanut) by means of two methods: agitation and high-intensity ultrasound with a frequency of 20 kHz at an amplitude of 80% with periods of 40 s of sonication for 20 min at a temperature of 40 °C. The antioxidant determination by inhibition of ABTS and DPPH radicals showed no significant differences (p > 0.05) for inhibition of the ABTS radical in native oils and oils with lycopene. However, the radical DPPH showed that the native oils presented significant differences (p ≤ 0.05) compared to the samples with lycopene. FTIR spectra revealed the characteristic functional groups of lycopene exhibiting two characteristic peaks at 2923 cm−1 and 2957 cm−1. The DSC thermograms showed that the higher the degree of oil unsaturation, the lower the melting temperatures. Olive oil was the least unsaturated with the highest amount of oleic fatty acid. Grapeseed oil reported the lowest melting temperature at around −24.64 °C. Extra virgin olive oil showed the lightest values (L* = 41.08 ± 0.45) of brightness, and the peanut oil with lycopene was the darkest (L* = 16.72 ± 0.05). The extraction of lycopene from organic wastes treated with agitation and ultrasound was satisfactory reducing the use of conventional solvents. However, extraction with olive oil under agitation showed the best results.

11.
Biology (Basel) ; 10(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34943177

ABSTRACT

In this study, we evaluated the effects of ultrasound-assisted extraction (UAE) under different time-temperature conditions on the content of bioactive compounds, antioxidant and antimicrobial activities of Syrah grape skin residue. The application of UAE showed a positive effect on the extraction of total flavonoids, and a negative effect on total polyphenols. The temperature of 40 °C and 60 °C without the UAE caused an increase of 260% and 287% of the total polyphenols, respectively. Nineteen individually bioactive compounds were quantified. The anthocyanin concentration (malvidin-3,5-di-O-glucoside 118.8-324.5 mg/100 g) showed high variation, to a lesser extent for phenolic acids, flavonoids, flavonols, procyanidins and stilbenes due to the UAE process. The Syrah grape skin residue has a high concentration of total phenolic compounds of 196-733.7 mg·GAE/100 g and a total flavonoid content of 9.8-40.0 mg·QE/100 g. The results of free radical scavenging activity (16.0-48.7 mg/100 mL, as EC50) and its inhibition of microbial growth (0.16 mg/mL, as EC50 for S. aureus, and 0.04 mg/mL, as EC50 for E. coli) by grape skin extract (UAE 40:20) indicate high antioxidant and antibacterial activity. It was concluded that the use of ultrasound needs further analysis for its application in this context, as it has shown deleterious effects on some compounds of interest. Syrah grape skin residue has potential as a source of bioactive antioxidants, antimicrobial activity and for use as a functional food ingredient.

12.
Recent Pat Biotechnol ; 15(3): 227-331, 2021.
Article in English | MEDLINE | ID: mdl-34465281

ABSTRACT

BACKGROUND: Aedes aegypti mosquitoes transmit dengue, zika, and chikungunya viruses, neglected diseases that are considered global health challenges. Due to the lack of antiviral drugs and vaccines for these illnesses, vector control with chemical insecticides is the principal strategy for preventing their spread. However, vector populations are becoming increasingly resistant to insecticides, and the development of other control measures is, therefore, imperative. METHODS: A new insect trap (IT) was used to control Aedes aegypti. A specific light-emitting diode (LED) served as the attractant based on specific wavelength ranges (450-495, 500-550 and 570-600 nm). The IT utilized insect-attracting and killing mechanisms that included a black capture box, a suction-producing mechanism, an electric shock device and a nylon cloth device that held surviving mosquitoes, which died due to starvation. Capture assays of twenty non-feeding females inside a cage were performed in triplicate using different LED intensities. A commercial trap (ultraviolet lamp attractant and suction system) was used as a positive control. RESULTS: Capture assays of A. aegypti with different intensities and LED combinations showed that the tricolored trap captured 100% of the females, followed by the Green LED 8 set, which captured 91%; in comparison, commercial traps captured approximately 25% of the insects. Although there were no significant differences between the experimental groups, the tricolored trap probably will capture more mosquito females considering the vision variation in individual females. CONCLUSION: We herein present a green technology-based IT that is effective, safe and successful for reducing mosquito populations, thereby preventing mosquito-borne disease spread.


Subject(s)
Aedes , Zika Virus Infection , Zika Virus , Animals , Color , Female , Mosquito Control , Mosquito Vectors , Patents as Topic
13.
Food Chem ; 362: 130159, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34167065

ABSTRACT

The sequential fractionation by supercritical-CO2 (SC-CO2) was applied to obtain fractions enriched in bioactive compounds of pomegranate peel, and we investigated if pomegranate peel extract and fractions would be effective to inhibit lipid and protein oxidation, and discolouration of bluefish patties stored at 4 °C for 9 days, after UV-C irradiation. The non-fractionated SC-CO2 extract from pomegranate peel was rich in phenolic compounds, mainly ellagitannins, besides, it possessed lipophilic compounds such as tocopherols and ß-carotene. These compounds were successfully separated by the fractionation protocols, in a lipid fraction concentrated in lipophilic compounds, and one or two fractions enriched with phenolic compounds, especially ellagitannins. The lipid fraction and the high phenolics fraction from pomegranate peel were then as effective as the synthetic antioxidant BHT in avoiding bluefish patties oxidation during refrigerated storage. Our data indicates that pomegranate peel fractions could be used to replace a synthetic antioxidant in fish meat.


Subject(s)
Antioxidants/chemistry , Chemical Fractionation/methods , Fish Products , Perciformes , Pomegranate/chemistry , Animals , Antioxidants/analysis , Carbon Dioxide/chemistry , Color , Fish Proteins, Dietary/chemistry , Food Preservation/methods , Fruit/chemistry , Hydrolyzable Tannins/analysis , Lipids/chemistry , Oxidation-Reduction , Phenols/analysis , Plant Extracts/chemistry , Tocopherols/analysis , Ultraviolet Rays
14.
Plant Foods Hum Nutr ; 76(1): 1-11, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33638764

ABSTRACT

Vegetable-based proteins may be extracted from different sources using different extraction methods, among them, ultrasound-assisted extraction stands out. This review presents the current knowledge on ultrasound-assisted extraction (UAE) and the functional properties of extracted vegetable proteins. Ultrasound generates cavitation in a liquid medium, defined as gas and vapor microbubbles collapse under pressure changes large enough to separate them in the medium. Cavitation facilitates the solvent and solid interaction, increasing yield and reducing extraction periods and temperature used. Moreover, ultrasound treatment changed extracted protein properties such as solubility, hydrophobicity, emulsifying and foam, water and oil absorption capacity, viscosity, and gelatinization. Ultrasound-assisted extraction is a promising technique for the food technology sector, presenting low environmental impact, lower energy and solvent consumption, and it is in accordance with green chemistry technology and sustainable concepts.


Subject(s)
Chemical Fractionation , Plant Proteins, Dietary , Solvents , Technology , Vegetables
15.
Food Microbiol ; 91: 103513, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32539960

ABSTRACT

This work aimed to estimate the inactivation kinetic parameters of four potential beer spoilage bacteria (Lactobacillus brevis DSM 6235, Lactobacillus casei ATCC 334, Pediococcus damnosus DSM 20289 and Pediococcus damnosus ATCC 29358) inoculated in brewing yeast submitted to acid washing with purposes of yeast recycle. The experiments were conducted at 4 °C in solutions with pH 1.5, pH 2, and pH 3 adjusted employing 85% phosphoric acid. The acid washing treatment of brewing yeasts in the most common pH used (pH 2.0) demanded almost 50 min for the first decimal reduction (δ) of L. brevis DSM 6235. Sensible strains to acid washing such as P. damnosus DSM 20289 demanded almost 70 min for 4 log reductions to be achieved. On the other hand, pH reduction of the acid washing from 2.0 to 1.5 allowed 4 log reduction of L. brevis DSM 6235) to be obtained in less than 50 min, without ruining brewer's yeast viability. Acid washing in pH 1.5 is a viable method for the inactivation of bacterial contaminants of brewing yeasts. Recycling of brewing yeasts through this approach may contribute to a more sustainable and environmental-friendly industry.


Subject(s)
Beer/microbiology , Lactobacillaceae/drug effects , Phosphoric Acids/pharmacology , Yeasts/growth & development , Bioreactors/microbiology , Fermentation , Food Contamination/prevention & control , Food Microbiology , Hydrogen-Ion Concentration , Kinetics , Lactobacillaceae/classification , Lactobacillaceae/growth & development , Lactobacillaceae/metabolism , Yeasts/metabolism
16.
Polymers (Basel) ; 11(4)2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31013748

ABSTRACT

Forestry industries in Chile are facing an important challenge-diversifying their products using green technologies. In this study, the potential use of Ionic Liquids (ILs) to dissolve and hydrolyze eucalyptus wood (mix of Eucalyptus nitens and Eucalyptus globulus) kraft pulp was studied. The Bleached Hardwood Kraft Pulp (BHKP) from a Chilean pulp mill was used together with five different ILs: 1-butyl-3-methylimidazolium chloride [bmim][Cl], 1-butyl-3-methylimidazolium acetate [bmim][Ac], 1-butyl-3-methylimidazolium hydrogen sulfate [bmim][HSO4], 1-ethyl-3-methylimidazolium chloride [emim][Cl], 1-ethyl-3-methylimidazolium acetate [emim][Ac]. Experimentally, one vacuum reactor was designed to study the dissolution/hydrolysis process for each ILs; particularly, the cellulose dissolution process using [bmim][Cl] was studied proposing one molecular dynamic model. Experimental characterization using Atomic Force Microscopy, conductometric titration, among other techniques suggest that all ILs are capable of cellulose dissolution at different levels; in some cases, the dissolution evolved to partial hydrolysis appearing cellulose nanocrystals (CNC) in the form of spherical aggregates with a diameter of 40-120 nm. Molecular dynamics simulations showed that the [bmim][Cl] anions tend to interact actively with cellulose sites and water molecules in the dissolution process. The results showed the potential of some ILs to dissolve/hydrolyze the cellulose from Chilean Eucalyptus, maintaining reactive forms.

17.
Materials (Basel) ; 12(7)2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30970591

ABSTRACT

This work reports the production and characterization of biodegradable and eco-friendly films based on cashew gum polysaccharide (CGP) and polyvinyl alcohol (PVA), using the statistical design strategy. Results show that CGP/PVA films are pH stimuli-responsive, allowing their use in a magnitude of biotechnological applications. The morphological and dimensional characterization evidences a positive influence of polymers in the dimensional properties. In addition, the microstructural analysis shows that films have different morphologies depending on the content of polymers and oxidant agent. On the other hand, the thickness and light transmission values are positively influenced by CGP and PVA and negatively influenced by NaIO4. Results from mechanical properties show that the traction force is positively influenced by NaIO4, while the elongation is only affected by the PVA concentration. In summary, considering the morphological, optical and mechanical properties of the CGP/PVA films it is possible to suggest their utilization in different fields as promising packaging materials or matrices for immobilization and/or encapsulation of biomolecules.

18.
Curr Protein Pept Sci ; 20(4): 334-355, 2019.
Article in English | MEDLINE | ID: mdl-30255754

ABSTRACT

Since the beginning of written history, diverse texts have reported the use of enzymatic preparations in food processing and have described the medicinal properties of crude and fractionated venoms to treat various diseases and injuries. With the biochemical characterization of enzymes from distinct sources and bioactive polypeptides from animal venoms, the last sixty years have testified the advent of industrial enzymology and protein therapeutics, which are currently applicable in a wide variety of industrial processes, household products, and pharmaceuticals. Bioprospecting of novel biocatalysts and bioactive peptides is propelled by their unsurpassed properties that are applicable for current and future green industrial processes, biotechnology, and biomedicine. The demand for both novel enzymes with desired characteristics and novel peptides that lead to drug development, has experienced a steady increase in response to the expanding global market for industrial enzymes and peptidebased drugs. Moreover, although largely unexplored, oceans and marine realms, with their unique ecosystems inhabited by a large variety of species, including a considerable number of venomous animals, are recognized as untapped reservoirs of molecules and macromolecules (enzymes and bioactive venom-derived peptides) that can potentially be converted into highly valuable biopharmaceutical products. In this review, we have focused on enzymes and animal venom (poly)peptides that are presently in biotechnological use, and considering the state of prospection of marine resources, on the discovery of useful industrial biocatalysts and drug leads with novel structures exhibiting selectivity and improved performance.


Subject(s)
Aquatic Organisms/chemistry , Aquatic Organisms/enzymology , Biological Products , Enzymes/chemistry , Peptides/chemistry , Animals , Biological Products/chemistry , Biotechnology , Drug Industry , Food Industry
19.
J Environ Manage ; 232: 796-802, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30529867

ABSTRACT

In this study, the supercritical CO2-based extraction approach was used from the green technologies to extract Oregano oil (Origanum vulgare L.). A Taguchi experimental design was applied to evaluate the effect of pressure, temperature and ethanol as co-solvent. High yield of oregano oil (13.40%) was obtained at 40 °C, 100 bar and 8 g min-1 of co-solvent flow. Fatty acids profile include α-linolenic, palmitic, oleic and linoleic that contribute to 70.9-76.8% of total fatty acids. Volatile compounds including carvacrol (29.99%), heneicosane (8.21%), nonacosane (11.78%), docosane (7.18%), borneol (4.35%) and thymol (4.51%) were the main compounds identified. Antimicrobial activity assays showed that extracts obtained at 40 °C were highly efficient against S. aureus, E. coli, and C. albicans. Highest antioxidant activities on DPPH and FRAP assays were reached under 8 g min-1 of co-solvent flow (6.08 and 6.89 µmol TE g-1 extract, respectively). On the other hand, antioxidant activity (35.76 µmol TE g-1) on ABTS assay was improved at 40 °C, 100 bar, and 4 g min-1 of co-solvent flow.


Subject(s)
Origanum , Antioxidants , Carbon Dioxide , Escherichia coli , Plant Extracts , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL