Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Angew Chem Int Ed Engl ; : e202409047, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940693

ABSTRACT

We report the design of a single RNA sequence capable of adopting one of two ribozyme folds and catalyzing the cleavage and/or ligation of the respective substrates. The RNA is able to change its conformation in response to its environment, hence it is called chameleon ribozyme (CHR). Efficient RNA cleavage of two different substrates as well as RNA ligation by CHR is demonstrated in separate experiments and in a one pot reaction. Our study shows that sequence variants of the hairpin ribozyme intersect with the hammerhead ribozyme and that rather short RNA molecules can have comprehensive conformational flexibility, which is an important feature for the emergence of new functional folds in early evolution.

2.
Mob DNA ; 15(1): 12, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863000

ABSTRACT

Eukaryotic retroelements are generally divided into two classes: long terminal repeat (LTR) retrotransposons and non-LTR retrotransposons. A third class of eukaryotic retroelement, the Penelope-like elements (PLEs), has been well-characterized bioinformatically, but relatively little is known about the transposition mechanism of these elements. PLEs share some features with the R2 retrotransposon from Bombyx mori, which uses a target-primed reverse transcription (TPRT) mechanism, but their distinct phylogeny suggests PLEs may utilize a novel mechanism of mobilization. Using protein purified from E. coli, we report unique in vitro properties of a PLE from the green anole (Anolis carolinensis), revealing mechanistic aspects not shared by other retrotransposons. We found that reverse transcription is initiated at two adjacent sites within the transposon RNA that is not homologous to the cleaved DNA, a feature that is reflected in the genomic "tail" signature shared between and unique to PLEs. Our results for the first active PLE in vitro provide a starting point for understanding PLE mobilization and biology.

3.
Mol Ther Nucleic Acids ; 33: 367-375, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37547296

ABSTRACT

Trans-acting hammerhead ribozyme inherits the advantages of being the smallest and best-characterized RNA-cleaving ribozyme, offering high modularity and the ability to cleave any desired sequence without the aid of any protein, as long as the target sequence contains a cleavage site. However, achieving precise control over the trans-acting hammerhead ribozyme would enable safer and more accurate regulation of gene expression. Herein, we described an intracellular selection of hammerhead aptazyme that contains a theophylline aptamer on stem II based on toxin protein IbsC. Based on the intracellular selection, we obtained three new cis-acting hammerhead aptazymes. Moreover, the corresponding trans-acting aptazymes could be efficiently induced by theophylline to knock down different targeted genes in eukaryotic cells. Notably, the best one, T195, exhibited a ligand-dependent and dose-dependent response to theophylline, and the cleavage efficiency could be enhanced by incorporating multiplex aptazymes.

4.
Life (Basel) ; 13(7)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37511928

ABSTRACT

In this study, a tobramycin concentration-dependent whole-cell micro-biosensor (tob-HHAz) was constructed by fusing a tobramycin aptamer with a hammerhead ribozyme (HHR) from Schistosoma mansoni. The biosensor was obtained by integrating all the modules into one complete RNA sequence, which was easily introduced into E. coli without suffering from harsh external environments. Three independent tobramycin-sensitive RNA structures were identified via high-throughput screening in vivo and were further verified in vitro to undergo the desired self-cleavage reaction. The computation prediction of the RNA structure was performed to help analyze the mechanisms of various conformations by performing a qualitative and rapid detection of tobramycin in practical samples; two sensors exhibited high responsiveness to spiked milk, with a detection limit of around 40 nM, which is below the EU's antibiotic maximum residual level. One of the structures provides a linear range from 30 to 650 nM with a minimum detection limit of 30 nM and showed relatively good selectivity in spiked urine. This study is the first in which in vivo screening was combined with computation analysis to optimize the pivotal structure of sensors. This strategy enables researchers to use artificial ribozyme-based biosensors not only for antibiotic detection but also as a generally applicable method for the further detection of substances in living cells.

5.
RNA ; 29(6): 764-776, 2023 06.
Article in English | MEDLINE | ID: mdl-36868786

ABSTRACT

The design of new RNA sequences that retain the function of a model RNA structure is a challenge in bioinformatics because of the structural complexity of these molecules. RNA can fold into its secondary and tertiary structures by forming stem-loops and pseudoknots. A pseudoknot is a set of base pairs between a region within a stem-loop and nucleotides outside of this stem-loop; this motif is very important for numerous functional structures. It is important for any computational design algorithm to take into account these interactions to give a reliable result for any structures that include pseudoknots. In our study, we experimentally validated synthetic ribozymes designed by Enzymer, which implements algorithms allowing for the design of pseudoknots. Enzymer is a program that uses an inverse folding approach to design pseudoknotted RNAs; we used it in this study to design two types of ribozymes. The ribozymes tested were the hammerhead and the glmS, which have a self-cleaving activity that allows them to liberate the new RNA genome copy during rolling-circle replication or to control the expression of the downstream genes, respectively. We demonstrated the efficiency of Enzymer by showing that the pseudoknotted hammerhead and glmS ribozymes sequences it designed were extensively modified compared to wild-type sequences and were still active.


Subject(s)
RNA, Catalytic , RNA, Catalytic/chemistry , RNA/genetics , RNA/chemistry , Base Pairing , Algorithms , Nucleotides , Nucleic Acid Conformation
6.
Biology (Basel) ; 12(2)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36829451

ABSTRACT

Viroids are a unique type of infectious agent, exclusively composed of a relatively small (246-430 nt), highly base-paired, circular, non-coding RNA. Despite the small size and non-coding nature, the more-than-thirty currently known viroid species infectious of higher plants are able to autonomously replicate and move systemically through the host, thereby inducing disease in some plants. After recalling viroid discovery back in the late 60s and early 70s of last century and discussing current hypotheses about their evolutionary origin, this article reviews our current knowledge about these peculiar infectious agents. We describe the highly base-paired viroid molecules that fold in rod-like or branched structures and viroid taxonomic classification in two families, Pospiviroidae and Avsunviroidae, likely gathering nuclear and chloroplastic viroids, respectively. We review current knowledge about viroid replication through RNA-to-RNA rolling-circle mechanisms in which host factors, notably RNA transporters, RNA polymerases, RNases, and RNA ligases, are involved. Systemic movement through the infected plant, plant-to-plant transmission and host range are also discussed. Finally, we focus on the mechanisms of viroid pathogenesis, in which RNA silencing has acquired remarkable importance, and also for the initiation of potential biotechnological applications of viroid molecules.

7.
Front Microbiol ; 14: 1286519, 2023.
Article in English | MEDLINE | ID: mdl-38188571

ABSTRACT

Chikungunya virus (CHIKV) is an emerging mosquito-borne pathogen of significant public health importance. There are currently no prophylactic vaccines or therapeutics available to control CHIKV. One approach to arbovirus control that has been proposed is the replacement of transmission-competent mosquitoes with those that are refractory to virus infection. Several transgene effectors are being examined as potentially useful for this population replacement approach. We previously demonstrated the successful use of hammerhead ribozymes (hRzs) as an antiviral effector transgene to control CHIKV infection of, and transmission by, Aedes mosquitoes. In this report we examine a maxizyme approach to enhance the catalytic activity and prevent virus mutants from escaping these ribozymes. We designed a maxizyme containing minimized (monomer) versions of two hRzs we previously demonstrated to be the most effective in CHIKV suppression. Three versions of CHIKV maxizyme were designed: Active (Mz), inactive (ΔMz), and a connected CHIKV maxizyme (cMz). The maxizymes with their expression units (Ae-tRNA val promoter and its termination signal) were incorporated into lentivirus vectors with selection and visualization markers. Following transformation, selection, and single-cell sorting of Vero cells, clonal cell populations were infected with CHIKV at 0.05 and 0.5 MOI, and virus suppression was assessed using TCID50-IFA, RT-qPCR, and caspase-3 assays. Five transgenic mosquito lines expressing cMz were generated and transgene insertion sites were confirmed by splinkerette PCR. Our results demonstrate that Vero cell clones expressing Mz exhibited complete inhibition of CHIKV replication compared to their respective inactive control version or the two parent hRzs. Upon oral challenge of transgenic mosquitoes with CHIKV, three out of the five lines were completely refractory to CHIKV infection, and all five lines tested negative for salivary transmission. Altogether, this study demonstrates that maxizymes can provide a higher catalytic activity and viral suppression than hRzs.

8.
Life (Basel) ; 12(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36362844

ABSTRACT

The role of minerals in the chemical evolution of RNA molecules is an important issue when considering the early stage of the Hadean Earth. In particular, the interaction between functional ribozymes and ancient minerals under simulated primitive conditions is a recent research focus. We are currently attempting to design a primitive RNA metabolic network which would function with minerals, and believe that the simulated chemical network of RNA molecules would be useful for evaluation of the chemical evolution from a simple RNA mixture to an RNA-based life-like system. First, we measured the binding interactions of oligonucleotides with four types of minerals; Aerosil silica, zirconium silicate, sepiolite, and montmorillonite. Oligonucleotides bound zirconium silicate and montmorillonite in the presence of MgCl2, and bound sepiolite both in the presence and absence of MgCl2, but they did not bind Aerosil. Based on the binding behavior, we attempted the self-cleavage reaction of the hammerhead ribozyme from an avocado viroid. This reaction was strongly inhibited by zirconium silicate, a compound regarded as mineral evidence for the existence of water. The present study suggests that the chemical evolution of functional RNA molecules requires specific conformational binding, resulting in efficient ribozyme function as well as zirconium silicate for the chemical evolution of biomolecules.

9.
Viruses ; 14(10)2022 10 15.
Article in English | MEDLINE | ID: mdl-36298820

ABSTRACT

Viroid and viroid-like satellite RNAs are infectious, circular, non-protein coding RNAs reported in plants only so far. Some viroids (family Avsunviroidae) and viroid-like satellite RNAs share self-cleaving activity mediated by hammerhead ribozymes (HHRzs) endowed in both RNA polarity strands. Using a homology-independent method based on the search for conserved structural motifs of HHRzs in reads and contigs from high-throughput sequenced RNAseq libraries, we identified a novel small (550 nt) viroid-like RNA in a library from a Citrus reticulata tree. Such a viroid-like RNA contains a HHRz in both polarity strands. Northern blot hybridization assays showed that circular forms of both polarity strands of this RNA (tentatively named citrus transiently-associated hammerhead viroid-like RNA1 (CtaHVd-LR1)) exist, supporting its replication through a symmetric pathway of the rolling circle mechanism. CtaHVd-LR1 adopts a rod-like conformation and has the typical features of quasispecies. Its HHRzs were shown to be active during transcription and in the absence of any protein. CtaHVd-LR1 was not graft-transmissible, and after its first identification, it was not found again in the original citrus source when repeatedly searched in the following years, suggesting that it was actually not directly associated with the plant. Therefore, the possibility that this novel self-cleaving viroid-like RNA is actually associated with another organism (e.g., a fungus), in turn, transiently associated with citrus plants, is proposed.


Subject(s)
Citrus , RNA, Catalytic , Viroids , Viroids/genetics , Viroids/metabolism , RNA, Catalytic/genetics , RNA/genetics , Trees , Citrus/genetics , RNA, Viral/metabolism , RNA, Satellite , Plants/genetics , Nucleic Acid Conformation
10.
Life (Basel) ; 12(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36294996

ABSTRACT

The acquisition of functions via the elongation of nucleotides is an important factor in the development of the RNA world. In our previous study, we found that the introduction of complementary seven-membered kissing loops into inactive R3C ligase ribozymes revived their ligation activity. In this study, we applied the kissing complex formation-induced rearrangement of RNAs to two nonfunctional RNAs by introducing complementary seven-membered loops into each of them. By combining these two forms of RNAs, the ligase activity (derived from the R3C ligase ribozyme) as well as cleavage activity (derived from the hammerhead ribozyme) was obtained. Thus, effective RNA evolution toward the formation of a life system may require the achievement of "multiple" functions via kissing-loop interactions, as indicated in this study. Our results point toward the versatility of kissing-loop interactions in the evolution of RNA, i.e., two small nonfunctional RNAs can gain dual functions via a kissing-loop interaction.

11.
Life (Basel) ; 12(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36013404

ABSTRACT

The RNA world hypothesis suggests that chemical networks consisting of functional RNA molecules could have constructed a primitive life-like system leading a first living system. The chemical evolution scenario of RNA molecules should be consistent with the Hadean Earth environment. We have demonstrated the importance of the environment at both high temperature and high pressure, using different types of hydrothermal flow reactor systems and high-pressure equipment. In the present study, we have attempted to develop an alternative easy-to-implement method for high-pressure measurements and demonstrate that the system is applicable as an efficient research tool for high-pressure experiments at pressures up to 30 MPa. We demonstrate the usefulness of the system by detecting the high-pressure influence for the self-cleavage of avocado hammerhead ribozyme (ASBVd(-):HHR) at 45-65 °C. A kinetic analysis of the high-pressure behavior of ASBVd(-):HHR shows that the ribozyme is active at 30 MPa and its activity is sensitive to pressures between 0.1-30 MPa. The surprising finding that such a short ribozyme is effective for self-cleavage at a high pressure suggests the importance of pressure as a factor for selection of adaptable RNA molecules towards an RNA-based life-like system in the Hadean Earth environment deep in the ocean.

12.
Mol Ther Nucleic Acids ; 29: 64-74, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35784013

ABSTRACT

The naturally occurring structure and biological functions of RNA are correlated, which includes hammerhead ribozymes. We proposed new variants of hammerhead ribozymes targeting conserved structural motifs of segment 5 of influenza A virus (IAV) (+)RNA. The variants carry structural and chemical modifications aiming to improve the RNA cleavage activity of ribozymes. We introduced an additional hairpin motif and attempted to select ribozyme-target pairs with sequence features that enable the potential formation of the trans-Hoogsteen interactions that are present in full-length, highly active hammerhead ribozymes. We placed structurally defined guanosine analogs into the ribozyme catalytic core. Herein, the significantly improved synthesis of 2'-deoxy-2'-fluoroarabinoguanosine derivatives is described. The most potent hammerhead ribozymes were applied to chimeric short hairpin RNA (shRNA)-ribozyme plasmid constructs to improve the antiviral activity of the two components. The modified hammerhead ribozymes showed moderate cleavage activity. Treatment of IAV-infected Madin-Darby canine kidney (MDCK) cells with the plasmid constructs resulted in significant inhibition of virus replication. Real-time PCR analysis revealed a significant (80%-88%) reduction in viral RNA when plasmids carriers were used. A focus formation assay (FFA) for chimeric plasmids showed inhibition of virus replication by 1.6-1.7 log10 units, whereas the use of plasmids carrying ribozymes or shRNAs alone resulted in lower inhibition.

13.
J Cell Biochem ; 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35411616

ABSTRACT

Trans-cleaving techniques have been most enthusiastically embraced in the development of therapy for genetic diseases, particularly in the correction of monogenic recessive mutations at the messenger RNA level. However, easy degradation and poor catalytic activity in vivo remain significant obstacles to trans-cleaving of the hammerhead ribozyme. Herein, we found a novel scaffold RNA that stabilizes the ribozyme structure in trans-cleaving and promotes the knockdown efficiency of the hammerhead ribozyme in specific regions of living cells. We can give the trans-cleaving hammerhead ribozyme the ability to knock down specific genes in specific cell regions by changing different scaffolds. Therefore, our study proves the potential usefulness of the RNA knockdown strategy with high-specific trans-cleaving hammerhead ribozyme as a therapeutic approach in gene therapy.

14.
Virus Evol ; 8(1): veab107, 2022.
Article in English | MEDLINE | ID: mdl-35223083

ABSTRACT

Viroids are tiny, circular, and noncoding RNAs that are able to replicate and systemically infect plants. The smallest known pathogens, viroids have been proposed to represent survivors from the RNA world that likely preceded the cellular world currently dominating life on the earth. Although the small, circular, and compact nature of viroid genomes, some of which are also endowed with catalytic activity mediated by hammerhead ribozymes, support this proposal, the lack of feasible evolutionary routes and the identification of hammerhead ribozymes in a large number of DNA genomes of organisms along the tree of life have led some to question such a proposal. Here, we reassess the origin and subsequent evolution of viroids by complementing phylogenetic reconstructions with molecular data, including the primary and higher-order structure of the genomic RNAs, their replication, and recombination mechanisms and selected biological information. Features of some viroid-like RNAs found in plants, animals, and possibly fungi are also considered. The resulting evolutionary scenario supports the emergence of protoviroids in the RNA world, mainly as replicative modules, followed by a further increase in genome complexity based on module/domain shuffling and combination and mutation. Such a modular evolutionary scenario would have facilitated the inclusion in the protoviroid genomes of complex RNA structures (or coding sequences, as in the case of hepatitis delta virus and delta-like agents), likely needed for their adaptation from the RNA world to a life based on cells, thus generating the ancestors of current infectious viroids and viroid-like RNAs. Other noninfectious viroid-like RNAs, such as retroviroid-like RNA elements and retrozymes, could also be derived from protoviroids if their reverse transcription and integration into viral or eukaryotic DNA, respectively, are considered as a possible key step in their evolution. Comparison of evidence supporting a general and modular evolutionary model for viroids and viroid-like RNAs with that favoring alternative scenarios provides reasonable reasons to keep alive the hypothesis that these small RNA pathogens may be relics of a precellular world.

15.
Methods Mol Biol ; 2316: 315-327, 2022.
Article in English | MEDLINE | ID: mdl-34845704

ABSTRACT

Similar to viruses, viroids can also be engineered and transformed into useful biotechnological tools. We describe here a viroid-based system to produce large amounts of recombinant RNA in Escherichia coli. A precursor of eggplant latent viroid (ELVd), with the RNA of interest inserted between positions U245 and U246, is co-expressed in E. coli along the chloroplastic isoform of the eggplant tRNA ligase, the enzyme that mediates the circularization of this viroid in the infected plants. In the bacterial cells, the chimeric ELVd-RNA-of-interest precursor self-cleaves through the embedded hammerhead ribozymes, and the monomer is recognized and circularized by the co-expressed tRNA ligase. The resulting circular RNA, likely bound to the tRNA ligase, accumulates to a high concentration in the bacterial cells.


Subject(s)
Solanum melongena , Viroids , Escherichia coli/genetics , Escherichia coli/metabolism , Nucleic Acid Conformation , RNA , RNA Ligase (ATP)/metabolism , RNA, Catalytic/genetics , RNA, Viral , Solanum melongena/genetics , Viroids/genetics
16.
Biotechnol J ; 17(7): e2100189, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34102014

ABSTRACT

In virus-induced gene-editing system, subgenomic promoters have been used to express guide RNAs (gRNAs). However, the transcription initiation site of the subgenomic promoters remains elusive. Here, we examined the sequence of gRNAs expressed by subgenomic promoters and found the variable length of overhangs at 5'-end of gRNAs. The overhangs at 5'-end of gRNA decrease the cleavage activity of SpCas9. To overcome this problem, we inserted hammerhead ribozyme between the subgenomic promoter and gRNA and confirmed that gRNAs with a precise 5'-end increase the editing efficacy in wild tobacco. This system will be widely used for editing target genes in plants with high efficiency.


Subject(s)
RNA, Catalytic , RNA, Guide, Kinetoplastida , CRISPR-Cas Systems , Gene Editing , Genome, Plant/genetics , Plants/genetics , RNA, Catalytic/genetics , RNA, Guide, Kinetoplastida/genetics
17.
Chembiochem ; 22(17): 2721-2728, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34240789

ABSTRACT

Catalytic turnover is important for the application of ribozymes to biotechnology. However, the turnover is often impaired because of the intrinsic high stability of base pairs with cleaved RNA products. Here, organic cations were used as additives to improve the catalytic performance of hammerhead ribozyme constructs that exhibit different kinetic behaviors. Kinetic analysis of substrate cleavage demonstrated that bulky cations, specifically tetra-substituted ammonium ions containing pentyl groups or a benzyl group, have the ability to greatly increase the turnover rate of the ribozymes. Thermal stability analysis of RNA structures revealed that the bulky cations promote the dissociation of cleaved products and refolding of incorrectly folded structures with small disruption of the catalytic structure. The use of bulky cations is a convenient method for enhancing the catalytic activity of hammerhead ribozymes, and the approach may be useful for advancing ribozyme technologies.


Subject(s)
Cations/chemistry , RNA, Catalytic/metabolism , RNA/metabolism , Base Pairing , Catalysis , Choline/chemistry , Kinetics , Nucleic Acid Conformation , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Quaternary Ammonium Compounds/chemistry , RNA/chemistry , RNA, Catalytic/chemistry , Substrate Specificity , Transition Temperature
18.
Methods Mol Biol ; 2167: 27-44, 2021.
Article in English | MEDLINE | ID: mdl-32712913

ABSTRACT

Retrozymes are a novel family of non-autonomous retrotransposable elements that contain hammerhead ribozyme motifs. These retroelements are found widespread in eukaryotic genomes, with active copies present in many species, which rely on other autonomous transposons for mobilization. Contrary to other retrotransposons, transcription of retrozymes in vivo leads to the formation and accumulation of circular RNAs, which can be readily detected by RNA blotting. In this chapter, we describe the procedures needed to carry out the cloning of genomic retrozymes, and to detect by northern blot their circular RNA retrotransposition intermediates.


Subject(s)
Blotting, Northern/methods , Cloning, Molecular/methods , RNA, Catalytic/genetics , RNA, Catalytic/isolation & purification , RNA, Circular/genetics , Retroelements/genetics , Animals , Genome , Nucleotide Motifs , Plants/enzymology , Plants/genetics , Plants/metabolism , RNA, Catalytic/metabolism , RNA, Circular/metabolism
19.
Methods Mol Biol ; 2167: 91-111, 2021.
Article in English | MEDLINE | ID: mdl-32712917

ABSTRACT

Pseudoknots are important motifs for stabilizing the structure of functional RNAs. As an example, pseudoknotted hammerhead ribozymes are highly active compared to minimal ribozymes. The design of new RNA sequences that retain the function of a model RNA structure includes taking in account pseudoknots presence in the structure, which is usually a challenge for bioinformatics tools. Our method includes using "Enzymer," a software for designing RNA sequences with desired secondary structures that may include pseudoknots. Enzymer implements an efficient stochastic search and optimization algorithm to sample RNA sequences from low ensemble defect mutational landscape of an initial design template to generate an RNA sequence that is predicted to fold into the desired target structure.


Subject(s)
Computational Biology/methods , Computer-Aided Design , Nucleic Acid Conformation , RNA, Catalytic/chemistry , RNA, Catalytic/genetics , Synthetic Biology/methods , Algorithms , Base Sequence , Electrophoresis, Agar Gel , Electrophoresis, Polyacrylamide Gel , In Vitro Techniques , Kinetics , Nucleotide Motifs/genetics , Polymerase Chain Reaction/methods , RNA/genetics , RNA Folding/genetics , RNA, Catalytic/metabolism , Software , Transcription, Genetic
20.
Nucleosides Nucleotides Nucleic Acids ; 39(1-3): 245-257, 2020.
Article in English | MEDLINE | ID: mdl-31578927

ABSTRACT

The pseudoknot-type hammerhead ribozyme (PK-HHRz) is known to be activated by a pseudoknot interaction between loops I and II. To obtain maximal activation through the pseudoknot formation, we studied the structure-activity relationship of PK-HHRz. From these studies, the structural requirements of the PK-HHRz cleavage reaction were clearly defined. In addition, we discovered a PK-HHRz with higher cleavage activity than the wild-type sequence. Although modifications generally disrupt the activity of enzymes, in this case the elongation of loop II increased the activity of PK-HHRz. These new findings will form a structural basis for designing PK-HHRz variants for gene-therapeutic/manipulating agents and biochemical/nanotechnological tools.


Subject(s)
Nucleic Acid Conformation , RNA, Catalytic/chemistry , RNA, Catalytic/metabolism , Catalysis , Molecular Structure , RNA Cleavage , RNA, Catalytic/chemical synthesis , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...