Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Anim Breed Genet ; 140(2): 216-234, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36408677

ABSTRACT

Rambouillet sheep are commonly raised in extensive grazing systems in the US, mainly for wool and meat production. Genomic evaluations in US sheep breeds, including Rambouillet, are still incipient. Therefore, we aimed to evaluate the feasibility of performing genomic prediction of breeding values for various traits in Rambouillet sheep based on single nucleotide polymorphisms (SNP) or haplotypes (fitted as pseudo-SNP) under a single-step GBLUP approach. A total of 28,834 records for birth weight (BWT), 23,306 for postweaning weight (PWT), 5,832 for yearling weight (YWT), 9,880 for yearling fibre diameter (YFD), 11,872 for yearling greasy fleece weight (YGFW), and 15,984 for number of lambs born (NLB) were used in this study. Seven hundred forty-one individuals were genotyped using a moderate (50 K; n = 677) or high (600 K; n = 64) density SNP panel, in which 32 K SNP in common between the two SNP panels (after genotypic quality control) were used for further analyses. Single-step genomic predictions using SNP (H-BLUP) or haplotypes (HAP-BLUP) from blocks with different linkage disequilibrium (LD) thresholds (0.15, 0.35, 0.50, 0.65, and 0.80) were evaluated. We also considered different blending parameters when constructing the genomic relationship matrix used to predict the genomic-enhanced estimated breeding values (GEBV), with alpha equal to 0.95 or 0.50. The GEBV were compared to the estimated breeding values (EBV) obtained from traditional pedigree-based evaluations (A-BLUP). The mean theoretical accuracy ranged from 0.499 (A-BLUP for PWT) to 0.795 (HAP-BLUP using haplotypes from blocks with LD threshold of 0.35 and alpha equal to 0.95 for YFD). The prediction accuracies ranged from 0.143 (A-BLUP for PWT) to 0.330 (A-BLUP for YGFW) while the prediction bias ranged from -0.104 (H-BLUP for PWT) to 0.087 (HAP-BLUP using haplotypes from blocks with LD threshold of 0.15 and alpha equal to 0.95 for YGFW). The GEBV dispersion ranged from 0.428 (A-BLUP for PWT) to 1.035 (A-BLUP for YGFW). Similar results were observed for H-BLUP or HAP-BLUP, independently of the LD threshold to create the haplotypes, alpha value, or trait analysed. Using genomic information (fitting individual SNP or haplotypes) provided similar or higher prediction and theoretical accuracies and reduced the dispersion of the GEBV for body weight, wool, and reproductive traits in Rambouillet sheep. However, there were no clear improvements in the prediction bias when compared to pedigree-based predictions. The next step will be to enlarge the training populations for this breed to increase the benefits of genomic predictions.


Subject(s)
Polymorphism, Single Nucleotide , Wool , Sheep/genetics , Animals , Haplotypes , Genomics/methods , Genotype , Phenotype , Sheep, Domestic/genetics , Birth Weight , North America , Models, Genetic
2.
Front Plant Sci ; 12: 742638, 2021.
Article in English | MEDLINE | ID: mdl-34956254

ABSTRACT

Genomic prediction (GP) offers great opportunities for accelerated genetic gains by optimizing the breeding pipeline. One of the key factors to be considered is how the training populations (TP) are composed in terms of genetic improvement, kinship/origin, and their impacts on GP. Hydrogen cyanide content (HCN) is a determinant trait to guide cassava's products usage and processing. This work aimed to achieve the following objectives: (i) evaluate the feasibility of using cross-country (CC) GP between germplasm's of Embrapa Mandioca e Fruticultura (Embrapa, Brazil) and The International Institute of Tropical Agriculture (IITA, Nigeria) for HCN; (ii) provide an assessment of population structure for the joint dataset; (iii) estimate the genetic parameters based on single nucleotide polymorphisms (SNPs) and a haplotype-approach. Datasets of HCN from Embrapa and IITA breeding programs were analyzed, separately and jointly, with 1,230, 590, and 1,820 clones, respectively. After quality control, ∼14K SNPs were used for GP. The genomic estimated breeding values (GEBVs) were predicted based on SNP effects from analyses with TP composed of the following: (i) Embrapa genotypic and phenotypic data, (ii) IITA genotypic and phenotypic data, and (iii) the joint datasets. Comparisons on GEBVs' estimation were made considering the hypothetical situation of not having the phenotypic characterization for a set of clones for a certain research institute/country and might need to use the markers' effects that were trained with data from other research institutes/country's germplasm to estimate their clones' GEBV. Fixation index (FST) among the genetic groups identified within the joint dataset ranged from 0.002 to 0.091. The joint dataset provided an improved accuracy (0.8-0.85) compared to the prediction accuracy of either germplasm's sources individually (0.51-0.67). CC GP proved to have potential use under the present study's scenario, the correlation between GEBVs predicted with TP from Embrapa and IITA was 0.55 for Embrapa's germplasm, whereas for IITA's it was 0.1. This seems to be among the first attempts to evaluate the CC GP in plants. As such, a lot of useful new information was provided on the subject, which can guide new research on this very important and emerging field.

SELECTION OF CITATIONS
SEARCH DETAIL