Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Stud Health Technol Inform ; 314: 155-159, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38785023

ABSTRACT

Among its main benefits, telemonitoring enables personalized management of chronic diseases by means of biomarkers extracted from signals. In these applications, a thorough quality assessment is required to ensure the reliability of the monitored parameters. Motion artifacts are a common problem in recordings with wearable devices. In this work, we propose a fully automated and personalized method to detect motion artifacts in multimodal recordings devoted to the monitoring of the Cardiac Time Intervals (CTIs). The detection of motion artifacts was carried out by using template matching with a personalized template. The method yielded a balanced accuracy of 86%. Moreover, it proved effective to decrease the variability of the estimated CTIs by at least 17%. Our preliminary results show that personalized detection of motion artifacts improves the robustness of the assessment CTIs and opens to the use in wearable systems.


Subject(s)
Artifacts , Telemedicine , Humans , Wearable Electronic Devices , Reproducibility of Results , Monitoring, Physiologic/methods , Electrocardiography , Signal Processing, Computer-Assisted
2.
Artif Intell Med ; 153: 102867, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723434

ABSTRACT

OBJECTIVE: To develop a deep learning algorithm to perform multi-class classification of normal pediatric heart sounds, innocent murmurs, and pathologic murmurs. METHODS: We prospectively enrolled children under age 18 being evaluated by the Division of Pediatric Cardiology. Parents provided consent for a deidentified recording of their child's heart sounds with a digital stethoscope. Innocent murmurs were validated by a pediatric cardiologist and pathologic murmurs were validated by echocardiogram. To augment our collection of normal heart sounds, we utilized a public database of pediatric heart sound recordings (Oliveira, 2022). We propose two novel approaches for this audio classification task. We train a vision transformer on either Markov transition field or Gramian angular field image representations of the frequency spectrum. We benchmark our results against a ResNet-50 CNN trained on spectrogram images. RESULTS: Our final dataset consisted of 366 normal heart sounds, 175 innocent murmurs, and 216 pathologic murmurs. Innocent murmurs collected include Still's murmur, venous hum, and flow murmurs. Pathologic murmurs included ventricular septal defect, tetralogy of Fallot, aortic regurgitation, aortic stenosis, pulmonary stenosis, mitral regurgitation and stenosis, and tricuspid regurgitation. We find that the Vision Transformer consistently outperforms the ResNet-50 on all three image representations, and that the Gramian angular field is the superior image representation for pediatric heart sounds. We calculated a one-vs-rest multi-class ROC curve for each of the three classes. Our best model achieves an area under the curve (AUC) value of 0.92 ± 0.05, 0.83 ± 0.04, and 0.88 ± 0.04 for identifying normal heart sounds, innocent murmurs, and pathologic murmurs, respectively. CONCLUSION: We present two novel methods for pediatric heart sound classification, which outperforms the current standard of using a convolutional neural network trained on spectrogram images. To our knowledge, we are the first to demonstrate multi-class classification of pediatric murmurs. Multiclass output affords a more explainable and interpretable model, which can facilitate further model improvement in the downstream model development cycle and enhance clinician trust and therefore adoption.


Subject(s)
Deep Learning , Heart Murmurs , Humans , Heart Murmurs/diagnosis , Heart Murmurs/physiopathology , Heart Murmurs/classification , Child , Child, Preschool , Infant , Adolescent , Prospective Studies , Heart Sounds/physiology , Female , Male , Algorithms , Diagnosis, Differential , Heart Auscultation/methods
3.
Bioengineering (Basel) ; 11(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38671788

ABSTRACT

Timely and reliable fetal monitoring is crucial to prevent adverse events during pregnancy and delivery. Fetal phonocardiography, i.e., the recording of fetal heart sounds, is emerging as a novel possibility to monitor fetal health status. Indeed, due to its passive nature and its noninvasiveness, the technique is suitable for long-term monitoring and for telemonitoring applications. Despite the high share of literature focusing on signal processing, no previous work has reviewed the technological hardware solutions devoted to the recording of fetal heart sounds. Thus, the aim of this scoping review is to collect information regarding the acquisition devices for fetal phonocardiography (FPCG), focusing on technical specifications and clinical use. Overall, PRISMA-guidelines-based analysis selected 57 studies that described 26 research prototypes and eight commercial devices for FPCG acquisition. Results of our review study reveal that no commercial devices were designed for fetal-specific purposes, that the latest advances involve the use of multiple microphones and sensors, and that no quantitative validation was usually performed. By highlighting the past and future trends and the most relevant innovations from both a technical and clinical perspective, this review will represent a useful reference for the evaluation of different acquisition devices and for the development of new FPCG-based systems for fetal monitoring.

4.
Ann Noninvasive Electrocardiol ; 29(2): e13108, 2024 03.
Article in English | MEDLINE | ID: mdl-38450594

ABSTRACT

An 81-year-old male with a history of coronary artery disease, hypertension, paroxysmal atrial fibrillation and chronic kidney disease presents with asymptomatic bradycardia. Examination was notable for an early diastolic heart sound. 12-lead electrocardiogram revealed sinus bradycardia with a markedly prolonged PR interval and second-degree atrioventricular block, type I Mobitz. We review the differential diagnosis of early diastolic heart sounds and present a case of Wenckebach associated with a variable early diastolic sound on physical exam.


Subject(s)
Atrial Fibrillation , Atrioventricular Block , Heart Sounds , Aged, 80 and over , Humans , Male , Atrial Fibrillation/diagnosis , Atrioventricular Block/diagnosis , Bradycardia , Electrocardiography , Heart Atria
5.
Sensors (Basel) ; 24(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38475062

ABSTRACT

Cardiac auscultation is an essential part of physical examination and plays a key role in the early diagnosis of many cardiovascular diseases. The analysis of phonocardiography (PCG) recordings is generally based on the recognition of the main heart sounds, i.e., S1 and S2, which is not a trivial task. This study proposes a method for an accurate recognition and localization of heart sounds in Forcecardiography (FCG) recordings. FCG is a novel technique able to measure subsonic vibrations and sounds via small force sensors placed onto a subject's thorax, allowing continuous cardio-respiratory monitoring. In this study, a template-matching technique based on normalized cross-correlation was used to automatically recognize heart sounds in FCG signals recorded from six healthy subjects at rest. Distinct templates were manually selected from each FCG recording and used to separately localize S1 and S2 sounds, as well as S1-S2 pairs. A simultaneously recorded electrocardiography (ECG) trace was used for performance evaluation. The results show that the template matching approach proved capable of separately classifying S1 and S2 sounds in more than 96% of all heartbeats. Linear regression, correlation, and Bland-Altman analyses showed that inter-beat intervals were estimated with high accuracy. Indeed, the estimation error was confined within 10 ms, with negligible impact on heart rate estimation. Heart rate variability (HRV) indices were also computed and turned out to be almost comparable with those obtained from ECG. The preliminary yet encouraging results of this study suggest that the template matching approach based on normalized cross-correlation allows very accurate heart sounds localization and inter-beat intervals estimation.


Subject(s)
Heart Sounds , Humans , Heart Sounds/physiology , Phonocardiography , Heart/physiology , Heart Auscultation , Electrocardiography , Heart Rate
6.
Animals (Basel) ; 14(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38275790

ABSTRACT

Mitral and aortic valve insufficiencies have been commonly reported in horses. The objective of this study was to establish the use of acoustic cardiography (Audicor®) in horses with aortic (AI) or mitral valve insufficiency (MI). A total of 17 healthy horses, 18 horses with AI, and 28 horses with MI were prospectively included. None of the horses was in heart failure. Echocardiography and Audicor® analyses were conducted. Electromechanical activating time (EMAT), rate-corrected EMATc, left ventricular systolic time (LVST), rate-corrected LVSTc, and intensity and persistence of the third and fourth heart sound (S3, S4) were reported by Audicor®. Graphical analysis of the three-dimensional (3D) phonocardiogram served to visually detect murmurs. Audicor® snapshot variables were compared between groups using one-way ANOVA followed by Tukey's multiple-comparisons test. The association between Audicor® snapshot variables and the corresponding echocardiographic variables was investigated by linear regression and Bland-Altman analyses. Heart murmurs were not displayed on Audicor® phonocardiograms. No significant differences were found between Audicor® variables obtained in clinically healthy horses and horses with valvular insufficiency. The Audicor® device is unable to detect heart murmurs in horses. Audicor® variables representing cardiac function are not markedly altered, and their association with corresponding echocardiographic variables is poor in horses with valvular insufficiency that are not in heart failure.

7.
Front Physiol ; 14: 1310434, 2023.
Article in English | MEDLINE | ID: mdl-38074319

ABSTRACT

Introduction: Congenital heart disease (CHD) is a cardiovascular disorder caused by structural defects in the heart. Early screening holds significant importance for the effective treatment of this condition. Heart sound analysis is commonly employed to assist in the diagnosis of CHD. However, there is currently a lack of an efficient automated model for heart sound classification, which could potentially replace the manual process of auscultation. Methods: This study introduces an innovative and efficient screening and classification model, combining a locally concatenated fusion approach with a convolutional neural network based on coordinate attention (LCACNN). In this model, Mel-frequency spectral coefficients (MFSC) and envelope features are locally fused and employed as input to the LCACNN network. This model automatically analyzes feature map energy information, eliminating the need for denoising processes. Discussion: The proposed classification model in this study demonstrates a robust capability for identifying congenital heart disease, potentially substituting manual auscultation to facilitate the detection of patients in remote areas. Results: This study introduces an innovative and efficient screening and classification model, combining a locally concatenated fusion approach with a convolutional neural network based on coordinate attention (LCACNN). In this model, Mel-frequency spectral coefficients (MFSC) and envelope features are locally fused and employed as input to the LCACNN network. This model automatically analyzes feature map energy information, eliminating the need for denoising processes. To assess the performance of the classification model, comparative ablation experiments were conducted, achieving classification accuracies of 91.78% and 94.79% on the PhysioNet and HS databases, respectively. These results significantly outperformed alternative classification models.

8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(6): 1152-1159, 2023 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-38151938

ABSTRACT

Feature extraction methods and classifier selection are two critical steps in heart sound classification. To capture the pathological features of heart sound signals, this paper introduces a feature extraction method that combines mel-frequency cepstral coefficients (MFCC) and power spectral density (PSD). Unlike conventional classifiers, the adaptive neuro-fuzzy inference system (ANFIS) was chosen as the classifier for this study. In terms of experimental design, we compared different PSDs across various time intervals and frequency ranges, selecting the characteristics with the most effective classification outcomes. We compared four statistical properties, including mean PSD, standard deviation PSD, variance PSD, and median PSD. Through experimental comparisons, we found that combining the features of median PSD and MFCC with heart sound systolic period of 100-300 Hz yielded the best results. The accuracy, precision, sensitivity, specificity, and F1 score were determined to be 96.50%, 99.27%, 93.35%, 99.60%, and 96.35%, respectively. These results demonstrate the algorithm's significant potential for aiding in the diagnosis of congenital heart disease.


Subject(s)
Heart Defects, Congenital , Heart Sounds , Humans , Neural Networks, Computer , Algorithms
9.
J Biomed Inform ; 145: 104475, 2023 09.
Article in English | MEDLINE | ID: mdl-37595770

ABSTRACT

BACKGROUND AND OBJECTIVE: Valvular heart disease (VHD) is associated with elevated mortality rates. Although transthoracic echocardiography (TTE) is the gold standard detection tool, phonocardiography (PCG) could be an alternative as it is a cost-effective and noninvasive method for cardiac auscultation. Many researchers have dedicated their efforts to improving the decision-making process and developing robust and precise approaches to assist physicians in providing reliable diagnoses of VHD. METHODS: This research proposes a novel approach for the detection of anomalous valvular heart sounds from PCG signals. The proposed approach combines orthogonal non-negative matrix factorization (ONMF) and convolutional neural network (CNN) architectures in a three-stage cascade. The aim of the proposal is to improve the learning process by identifying the optimal ONMF temporal or spectral patterns for accurate detection. In the first stage, the time-frequency representation of the input PCG signal is computed. Next, band-pass filtering is performed to locate the spectral range that is most relevant for the presence of such cardiac abnormalities. In the second stage, the temporal and spectral cardiac structures are extracted using the ONMF approach. These structures are utilized in the third stage and fed into the CNN architecture to detect abnormal heart sounds. RESULTS: Several state-of-the-art CNN architectures, such as LeNet5, AlexNet, ResNet50, VGG16 and GoogLeNet, have been evaluated to determine the effectiveness of using ONMF temporal features for VHD detection. The results reveal that the integration of ONMF temporal features with a CNN classifier significantly improve VHD detection. Specifically, the proposed approach achieves an accuracy improvement of approximately 45% when ONMF spectral features are used and 35% when time-frequency features from the short-time Fourier transform (STFT) spectrogram are used. Additionally, feeding ONMF temporal features into low-complexity CNN architectures yields competitive results comparable to those obtained with complex architectures. CONCLUSIONS: The temporal structure factorized by ONMF plays a critical role in distinguishing between normal heart sounds and abnormal heart sounds since the repeatability of normal heart cycles is disrupted by the presence of cardiac abnormalities. Consequently, the results highlight the importance of appropriate input data representation in the learning process of CNN models in the biomedical field of valvular heart sound detection.


Subject(s)
Heart Valve Diseases , Phonocardiography , Humans , Algorithms , Heart Valve Diseases/diagnostic imaging , Neural Networks, Computer , Phonocardiography/methods
10.
J Formos Med Assoc ; 122(12): 1313-1320, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37468409

ABSTRACT

BACKGROUND/PURPOSE: School-based cardiac screening is useful for identifying children and adolescents with a high risk of sudden cardiac death. However, because of challenges associated with cost, distance, and human resources, cardiac screening is not widely implemented, especially in rural areas with limited medical resources. This study aims to establish a cloud-based system suitable for mass cardiac screening of schoolchildren in rural areas with limited medical resources. METHODS: Students from three schools were included. They or their guardians completed a simple questionnaire, administered in paper or electronic form. Heart sounds were recorded using an electronic stethoscope. Twelve-lead electrocardiograms (ECGs) were recorded and digitalized. The signals were transmitted through Bluetooth to a tablet computer and then uploaded to a cloud server over Wi-Fi. Crowdsourced pediatric cardiologists reviewed those data from a web-based platform and provided remote consultation. In cases in which abnormal heart sounds or ECGs were noted, the students were referred to the hospital for further evaluation. RESULTS: A total of 1004 students were enrolled in this study. Of the 138 students referred, 62 were diagnosed as having an abnormal heart condition and most had previously been undiagnosed. The interrater agreeability was high. CONCLUSION: An innovative strategy combining a cloud-based cardiac screening system with remote consultation by crowdsourced experts was established. This system allows pediatric cardiologists to provide consultation and make reliable diagnoses. Combined with crowdsourcing, the system constitutes a viable approach for mass cardiac screening in children and adolescents living in rural areas with insufficient medical resources.


Subject(s)
Crowdsourcing , Child , Adolescent , Humans , Electrocardiography/adverse effects , Death, Sudden, Cardiac/etiology , Mass Screening , Auscultation/adverse effects
11.
J Biomed Phys Eng ; 13(3): 261-268, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37312888

ABSTRACT

Background: Phonocardiogram (PCG) signal provides valuable information for diagnosing heart diseases. However, its applications in quantitative analyses of heart function are limited because the interpretation of this signal is difficult. A key step in quantitative PCG is the identification of the first and second sounds (S1 and S2) in this signal. Objective: This study aims to develop a hardware-software system for synchronized acquisition of two signals electrocardiogram (ECG) and PCG and to segment the recorded PCG signal via the information provided in the acquired ECG signal. Material and Methods: In this analytical study, we developed a hardware-software system for real-time identification of the first and second heart sounds in the PCG signal. A portable device to capture synchronized ECG and PCG signals was developed. Wavelet de-noising technique was used to remove noise from the signal. Finally, by fusing the information provided by the ECG signal (R-peaks and T-end) into a hidden Markov model (HMM), the first and second heart sounds were identified in the PCG signal. Results: ECG and PCG signals from 15 healthy adults were acquired and analyzed using the developed system. The average accuracy of the system in correctly detecting the heart sounds was 95.6% for S1 and 93.4% for S2. Conclusion: The presented system is cost-effective, user-friendly, and accurate in identifying S1 and S2 in PCG signals. Therefore, it might be effective in quantitative PCG and diagnosing heart diseases.

12.
Heart Rhythm ; 20(9): 1316-1324, 2023 09.
Article in English | MEDLINE | ID: mdl-37247684

ABSTRACT

BACKGROUND: Continuous optimization of atrioventricular (AV) delay for cardiac resynchronization therapy (CRT) is mainly performed by electrical means. OBJECTIVE: The purpose of this study was to develop an estimation model of cardiac function that uses a piezoelectric microphone embedded in a pulse generator to guide CRT optimization. METHODS: Electrocardiogram, left ventricular pressure (LVP), and heart sounds were simultaneously collected during CRT device implantation procedures. A piezoelectric alarm transducer embedded in a modified CRT device facilitated recording of heart sounds in patients undergoing a pacing protocol with different AV delays. Machine learning (ML) was used to produce a decision-tree ensemble model capable of estimating absolute maximal LVP (LVPmax) and maximal rise of LVP (LVdP/dtmax) using 3 heart sound-based features. To gauge the applicability of ML in AV delay optimization, polynomial curves were fitted to measured and estimated values. RESULTS: In the data set of ∼30,000 heartbeats, ML indicated S1 amplitude, S2 amplitude, and S1 integral (S1 energy for LVdP/dtmax) as most prominent features for AV delay optimization. ML resulted in single-beat estimation precision for absolute values of LVPmax and LVdP/dtmax of 67% and 64%, respectively. For 20-30 beat averages, cross-correlation between measured and estimated LVPmax and LVdP/dtmax was 0.999 for both. The estimated optimal AV delays were not significantly different from those measured using invasive LVP (difference -5.6 ± 17.1 ms for LVPmax and +5.1 ± 6.7 ms for LVdP/dtmax). The difference in function at estimated and measured optimal AV delays was not statiscally significant (1 ± 3 mm Hg for LVPmax and 9 ± 57 mm Hg/s for LVdP/dtmax). CONCLUSION: Heart sound sensors embedded in a CRT device, powered by a ML algorithm, provide a reliable assessment of optimal AV delays and absolute LVPmax and LVdP/dtmax.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Heart Sounds , Humans , Cardiac Resynchronization Therapy/methods , Electrocardiography/methods , Cardiac Resynchronization Therapy Devices , Ultrasonography , Heart Failure/diagnosis , Heart Failure/therapy
13.
Comput Biol Med ; 156: 106707, 2023 04.
Article in English | MEDLINE | ID: mdl-36871337

ABSTRACT

Left ventricular diastolic dyfunction detection is particularly important in cardiac function screening. This paper proposed a phonocardiogram (PCG) transfer learning-based CatBoost model to detect diastolic dysfunction noninvasively. The Short-Time Fourier Transform (STFT), Mel Frequency Cepstral Coefficients (MFCCs), S-transform and gammatonegram were utilized to perform four different representations of spectrograms for learning the representative patterns of PCG signals in two-dimensional image modality. Then, four pre-trained convolutional neural networks (CNNs) such as VGG16, Xception, ResNet50 and InceptionResNetv2 were employed to extract multiple domain-specific deep features from PCG spectrograms using transfer learning, respectively. Further, principal component analysis and linear discriminant analysis (LDA) were applied to different feature subsets, respectively, and then these different selected features are fused and fed into CatBoost for classification and performance comparison. Finally, three typical machine learning classifiers such as multilayer perceptron, support vector machine and random forest were employed to compared with CatBoost. The hyperparameter optimization of the investigated models was determined through grid search. The visualized result of the global feature importance showed that deep features extracted from gammatonegram by ResNet50 contributed most to classification. Overall, the proposed multiple domain-specific feature fusion based CatBoost model with LDA achieved the best performance with an area under the curve of 0.911, accuracy of 0.882, sensitivity of 0.821, specificity of 0.927, F1-score of 0.892 on the testing set. The PCG transfer learning-based model developed in this study could aid in diastolic dysfunction detection and could contribute to non-invasive evaluation of diastolic function.


Subject(s)
Machine Learning , Neural Networks, Computer , Fourier Analysis , Random Forest , Support Vector Machine
14.
Phys Eng Sci Med ; 46(1): 279-288, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36625996

ABSTRACT

Accurate and rapid cardiac function assessment is critical for disease diagnosis and treatment strategy. However, the current cardiac function assessment methods have their adaptability and limitations. Heart sounds (HS) can reflect changes in heart function. Therefore, HS signals were proposed to assess cardiac function, and a specially designed pruning convolutional neural network (CNN) was applied to recognize subjects' cardiac function at different levels in this paper. Firstly, the adaptive wavelet denoising algorithm and logistic regression based hidden semi-Markov model were utilized for signal denoising and segmentation. Then, the continuous wavelet transform (CWT) was employed to convert the preprocessed HS signals into spectra as input to the convolutional neural network, which can extract features automatically. Finally, the proposed method was compared with AlexNet, Resnet50, Xception, GhostNet and EfficientNet to verify the superiority of the proposed method. Through comprehensive comparison, the proposed approach achieves the best classification performance with an accuracy of 94.34%. The study indicates HS analysis is a non-invasive and effective method for cardiac function classification, which has broad research prospects.


Subject(s)
Heart Sounds , Humans , Neural Networks, Computer , Algorithms , Wavelet Analysis
15.
J Vet Med Educ ; 50(1): 104-110, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35100100

ABSTRACT

Veterinary students often struggle to correctly interpret heart sounds. This study sought to evaluate if additional online training using digital phonocardiograms (DPCGs) improves students' ability to identify normal and pathologic heart sounds in dogs. Thirty-six randomly assigned veterinary students listened to and interpreted 10 audio recordings of normal heart sounds (2), heart murmurs (4), and arrhythmias (4) at the start and the end of a 4-week period. Twenty-two students participated in training with DPCGs, including those created from these recordings during this period, via a self-study website (n = 12) or online webinar (n = 10). Their results were compared with those of a control group (n = 14) that did not undergo additional training. Although pre- and post-training test scores did not differ between groups, both training groups showed within-group improvement between the two tests (p = .024, p = .037); the control group did not (p = .49). Although neither training group showed differences in ability to differentiate normal heart sounds from arrhythmias, both showed increased ability to detect and specify heart murmurs and provide refined diagnoses of detected arrhythmias. These results suggest additional training, even without actual patients, improves students' ability to identify heart murmurs and provide specific diagnoses for arrhythmias. Further study with a larger sample size and an additional group without DPCG-based training would help evaluate the effectiveness of DPCGs regarding arrhythmias. Studying a larger sample size would also allow for a training group participating in both training methods, measuring cumulative effectiveness of both methods.


Subject(s)
Education, Veterinary , Heart Sounds , Animals , Dogs , Clinical Competence , Heart Auscultation/veterinary , Heart Murmurs/diagnosis , Heart Murmurs/veterinary , Teaching
16.
Front Artif Intell ; 6: 1309750, 2023.
Article in English | MEDLINE | ID: mdl-38274051

ABSTRACT

Heart sound detection technology plays an important role in the prediction of cardiovascular disease, but the most significant heart sounds are fleeting and may be imperceptible. Hence, obtaining heart sound information in an efficient and accurate manner will be helpful for the prediction and diagnosis of heart disease. To obtain heart sound information, we designed an audio data analysis tool to segment the heart sounds from single heart cycle, and validated the heart rate using a finger oxygen meter. The results from our validated technique could be used to realize heart sound segmentation. Our robust algorithmic platform was able to segment the heart sounds, which could then be compared in terms of their difference from the background. A combination of an electronic stethoscope and artificial intelligence technology was used for the digital collection of heart sounds and the intelligent identification of the first (S1) and second (S2) heart sounds. Our approach can provide an objective basis for the auscultation of heart sounds and visual display of heart sounds and murmurs.

17.
Front Cardiovasc Med ; 10: 1170804, 2023.
Article in English | MEDLINE | ID: mdl-38328674

ABSTRACT

Objective: This study aims to assess the ability of state-of-the-art machine learning algorithms to detect valvular heart disease (VHD) from digital heart sound recordings in a general population that includes asymptomatic cases and intermediate stages of disease progression. Methods: We trained a recurrent neural network to predict murmurs from heart sound audio using annotated recordings collected with digital stethoscopes from four auscultation positions in 2,124 participants from the Tromsø7 study. The predicted murmurs were used to predict VHD as determined by echocardiography. Results: The presence of aortic stenosis (AS) was detected with a sensitivity of 90.9%, a specificity of 94.5%, and an area under the curve (AUC) of 0.979 (CI: 0.963-0.995). At least moderate AS was detected with an AUC of 0.993 (CI: 0.989-0.997). Moderate or greater aortic and mitral regurgitation (AR and MR) were predicted with AUC values of 0.634 (CI: 0.565-703) and 0.549 (CI: 0.506-0.593), respectively, which increased to 0.766 and 0.677 when clinical variables were added as predictors. The AUC for predicting symptomatic cases was higher for AR and MR, 0.756 and 0.711, respectively. Screening jointly for symptomatic regurgitation or presence of stenosis resulted in an AUC of 0.86, with 97.7% of AS cases (n = 44) and all 12 MS cases detected. Conclusions: The algorithm demonstrated excellent performance in detecting AS in a general cohort, surpassing observations from similar studies on selected cohorts. The detection of AR and MR based on HS audio was poor, but accuracy was considerably higher for symptomatic cases, and the inclusion of clinical variables improved the performance of the model significantly.

18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-996337

ABSTRACT

@#Objective     To identify the heart sounds of aortic stenosis by deep learning model based on DenseNet121 architecture, and to explore its application potential in clinical screening aortic stenosis. Methods      We prospectively collected heart sounds and clinical data of  patients with aortic stenosis in Tianjin Chest Hospital, from June 2021 to February 2022. The collected heart sound data were used to train, verify and test a deep learning model. We evaluated the performance of the model by drawing receiver operating characteristic curve and precision-recall curve.  Results     A total of 100 patients including 11 asymptomatic patients were included. There were 50 aortic stenosis patients with 30 males and 20 females at an average age of 68.18±10.63 years in an aortic stenosis group (stenosis group). And 50 patients without aortic valve disease were in a negative group, including 26 males and 24 females at an average age of 45.98±12.51 years. The model had an excellent ability to distinguish heart sound data collected from patients with aortic stenosis in clinical settings: accuracy at 91.67%, sensitivity at 90.00%, specificity at 92.50%, and area under receiver operating characteristic curve was 0.917.   Conclusion     The model of heart sound diagnosis of aortic stenosis based on deep learning has excellent application prospects in clinical screening, which can provide a new idea for the early identification of patients with aortic stenosis.

19.
Journal of Biomedical Engineering ; (6): 1152-1159, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008945

ABSTRACT

Feature extraction methods and classifier selection are two critical steps in heart sound classification. To capture the pathological features of heart sound signals, this paper introduces a feature extraction method that combines mel-frequency cepstral coefficients (MFCC) and power spectral density (PSD). Unlike conventional classifiers, the adaptive neuro-fuzzy inference system (ANFIS) was chosen as the classifier for this study. In terms of experimental design, we compared different PSDs across various time intervals and frequency ranges, selecting the characteristics with the most effective classification outcomes. We compared four statistical properties, including mean PSD, standard deviation PSD, variance PSD, and median PSD. Through experimental comparisons, we found that combining the features of median PSD and MFCC with heart sound systolic period of 100-300 Hz yielded the best results. The accuracy, precision, sensitivity, specificity, and F1 score were determined to be 96.50%, 99.27%, 93.35%, 99.60%, and 96.35%, respectively. These results demonstrate the algorithm's significant potential for aiding in the diagnosis of congenital heart disease.


Subject(s)
Humans , Heart Sounds , Neural Networks, Computer , Algorithms , Heart Defects, Congenital
20.
Stud Health Technol Inform ; 295: 491-494, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35773918

ABSTRACT

This paper explores the capabilities of a sophisticated deep learning method, named Deep Time Growing Neural Network (DTGNN), and compares its possibilities against a generally well-known method, Convolutional Neural network (CNN). The comparison is performed by using time series of the heart sound signal, so-called Phonocardiography (PCG). The classification objective is to discriminate between healthy and patients with cardiac diseases by applying a deep machine learning method to PCGs. This approach which is called intelligent phonocardiography has received interest from the researchers toward the development of a smart stethoscope for decentralized diagnosis of heart disease. It is found that DTGNN associates further flexibility to the approach which enables the classifier to learn subtle contents of PCG, and meanwhile better copes with the complexities intrinsically that exist in the medical applications such as the imbalance training. The structural risk of the two methods is compared using the A-Test method.


Subject(s)
Heart Diseases/diagnosis , Heart Sounds , Neural Networks, Computer , Phonocardiography , Deep Learning , Heart Diseases/diagnostic imaging , Heart Diseases/physiopathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...