Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Adv Sci (Weinh) ; : e2404756, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377228

ABSTRACT

Hepatocellular carcinoma (HCC) often occurs in the context of fibrosis or cirrhosis. Methylation of histone is an important epigenetic mechanism, but it is unclear whether histone methyltransferases are potent targets for fibrosis-associated HCC therapy. ASH1L, an H3K4 methyltransferase, is found at higher levels in activated hepatic stellate cells (HSCs) and hepatoma cells. To determine the role of ASH1L in vivo, transgenic mice with conditional Ash1l depletion in the hepatocyte cell lineage (Ash1lflox/floxAlbcre) or HSCs (Ash1lflox/floxGFAPcreERT2) are generated, and these mice are challenged in a diethylnitrosamine (DEN)/carbon tetrachloride (CCl4)-induced model of liver fibrosis and HCC. Depleting Ash1l in both hepatocytes and HSCs mitigates hepatic fibrosis and HCC development. Multicolor flow cytometry, bulk, and single-cell transcriptomic sequencing reveal that ASH1L creates an immunosuppressive microenvironment. Mechanically, ASH1L-mediated H3K4me3 modification increases the expression of CCL2 and CSF1, which recruites and polarizes M2-like pro-tumorigenic macrophages. The M2-like macrophages further enhance tumor cell proliferation and suppress CD8+ T cell activation. AS-99, a small molecule inhibitor of ASH1L, demonstrates similar anti-fibrosis and tumor-suppressive effects. Of pathophysiological significance, the increased expression levels of mesenchymal ASH1L and M2 marker CD68 are associated with poor prognosis of HCC. The findings reveal ASH1L as a potential small-molecule therapeutic target against fibrosis-related HCC.

2.
Int Immunopharmacol ; 141: 112938, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39163683

ABSTRACT

Alcoholic liver disease (ALD) is a broad category of disorders that begin with liver injury, lead to liver fibrosis, and ultimately conclude in alcohol-induced liver cirrhosis, the most chronic and irreversible liver damage. Liver fibrosis (LF) is a common pathological characteristic observed in most chronic liver inflammatory conditions that involve prolonged inflammation. In this review, we have summarized ethanol-mediated hepatic stellate cell (HSCs) activation and its role in liver fibrosis progression. We highlight important molecular mechanisms that are modulated by ethanol, play a role in the activation of HSCs and the progression of liver fibrosis and identifying potential targets to ameliorate liver fibrosis.


Subject(s)
Ethanol , Hepatic Stellate Cells , Liver Diseases, Alcoholic , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Humans , Animals , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/immunology , Liver Diseases, Alcoholic/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/immunology , Liver/pathology , Liver/drug effects , Liver/metabolism , Liver/immunology , Disease Progression
3.
Biomed Pharmacother ; 178: 117240, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094546

ABSTRACT

Infection with Schistosoma japonicum (S. japonicum) is an important zoonotic parasitic disease that causes liver fibrosis in both human and domestic animals. The activation of hepatic stellate cells (HSCs) is a crucial phase in the development of liver fibrosis, and inhibiting their activation can alleviate this progression. Total flavonoids of litchi seed (TFL) is a naturally extracted drug, and modern pharmacological studies have shown its anti-fibrotic and liver-protective effects. However, the role of TFL in schistosomiasis liver fibrosis is still unclear. This study investigated the therapeutic effects of TFL on liver fibrosis in S. japonicum infected mice and explored its potential mechanisms. Animal study results showed that TFL significantly reduced the levels of Interleukin-1ß (IL-1ß), Tumor Necrosis Factor-α (TNF-α), Interleukin-4 (IL-4), and Interleukin-6 (IL-6) in the serum of S. japonicum infected mice. TFL reduced the spleen index of mice and markedly improved the pathological changes in liver tissues induced by S. japonicum infection, decreasing the expression of alpha-smooth muscle actin (α-SMA), Collagen I and Collagen III protein in liver tissues. In vitro studies indicated that TFL also inhibited the activation of HCSs induced by Transforming Growth Factor-ß1 (TGF-ß1) and reduced the levels of α-SMA. Gut microbes metagenomics study revealed that the composition, abundance, and functions of the mice gut microbiomes changed significantly after S. japonicum infection, and TLF treatment reversed these changes. Therefore, our study indicated that TFL alleviated granulomatous lesions and improved S. japonicum induced liver fibrosis in mice by inhibiting the activation of HSCs and by improving the gut microbiomes.


Subject(s)
Flavonoids , Gastrointestinal Microbiome , Hepatic Stellate Cells , Litchi , Liver Cirrhosis , Seeds , Animals , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/parasitology , Liver Cirrhosis/pathology , Gastrointestinal Microbiome/drug effects , Flavonoids/pharmacology , Mice , Litchi/chemistry , Seeds/chemistry , Schistosomiasis japonica/drug therapy , Schistosomiasis japonica/complications , Cytokines/metabolism , Schistosoma japonicum/drug effects , Schistosoma japonicum/pathogenicity , Male , Liver/drug effects , Liver/pathology , Liver/parasitology
4.
J Zhejiang Univ Sci B ; 25(6): 499-512, 2024 Jun 01.
Article in English, Chinese | MEDLINE | ID: mdl-38910495

ABSTRACT

Artificial vascular graft (AVG) fistula is widely used for hemodialysis treatment in patients with renal failure. However, it has poor elasticity and compliance, leading to stenosis and thrombosis. The ideal artificial blood vessel for dialysis should replicate the structure and components of a real artery, which is primarily maintained by collagen in the extracellular matrix (ECM) of arterial cells. Studies have revealed that in hepatitis B virus (HBV)-induced liver fibrosis, hepatic stellate cells (HSCs) become hyperactive and produce excessive ECM fibers. Furthermore, mechanical stimulation can encourage ECM secretion and remodeling of a fiber structure. Based on the above factors, we transfected HSCs with the hepatitis B viral X (HBX) gene for simulating the process of HBV infection. Subsequently, these HBX-HSCs were implanted into a polycaprolactone-polyurethane (PCL-PU) bilayer scaffold in which the inner layer is dense and the outer layer consists of pores, which was mechanically stimulated to promote the secretion of collagen nanofiber from the HBX-HSCs and to facilitate crosslinking with the scaffold. We obtained an ECM-PCL-PU composite bionic blood vessel that could act as access for dialysis after decellularization. Then, the vessel scaffold was implanted into a rabbit's neck arteriovenous fistula model. It exhibited strong tensile strength and smooth blood flow and formed autologous blood vessels in the rabbit's body. Our study demonstrates the use of human cells to create biomimetic dialysis blood vessels, providing a novel approach for creating clinical vascular access for dialysis.


Subject(s)
Hepatic Stellate Cells , Polyesters , Renal Dialysis , Rabbits , Animals , Polyesters/chemistry , Viral Regulatory and Accessory Proteins , Tissue Scaffolds , Transfection , Bionics , Polyurethanes , Blood Vessel Prosthesis , Extracellular Matrix/metabolism , Humans , Hepatitis B virus/genetics , Collagen , Tissue Engineering/methods , Trans-Activators
5.
Antioxidants (Basel) ; 13(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38929168

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects approximately one-third of the global population. MASLD and its advanced-stage liver fibrosis and cirrhosis are the leading causes of liver failure and liver-related death worldwide. Mitochondria are crucial organelles in liver cells for energy generation and the oxidative metabolism of fatty acids and carbohydrates. Recently, mitochondrial dysfunction in liver cells has been shown to play a vital role in the pathogenesis of MASLD and liver fibrosis. Mitophagy, a selective form of autophagy, removes and recycles impaired mitochondria. Although significant advances have been made in understanding mitophagy in liver diseases, adequate summaries concerning the contribution of liver cell mitophagy to MASLD and liver fibrosis are lacking. This review will clarify the mechanism of liver cell mitophagy in the development of MASLD and liver fibrosis, including in hepatocytes, macrophages, hepatic stellate cells, and liver sinusoidal endothelial cells. In addition, therapeutic strategies or compounds related to hepatic mitophagy are also summarized. In conclusion, mitophagy-related therapeutic strategies or compounds might be translational for the clinical treatment of MASLD and liver fibrosis.

6.
Hum Cell ; 37(2): 435-450, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218754

ABSTRACT

Continuously progressive hepatic fibrosis might cause chronic liver diseases, resulting in hepatic failure. The activation of hepatic stellate cells (HSCs) residing in the liver might induce and influence hepatic fibrosis. In the present study, microRNA 3074 (miR-3074) was found increased within transforming growth factor-ß (TGF-ß)-activated HSCs and enriched within the TGF-ß signaling. In activated HSCs by TGF-ß, miR-3074 overexpression aggravated TGF-ß-induced fibrotic changes, whereas miR-3074 inhibition exerted opposite effects. miR-3074 directly targeted bone morphogenetic protein 7 (BMP7) and inhibited BMP7 expression. Under TGF-ß induction, overexpressed BMP7 notably attenuated the promotive roles of miR-3074 overexpression in TGF-ß-activated HSCs. Within carbon tetrachloride (CCl4)-caused liver fibrosis murine model, miR-3074 agomir administration promoted, while LV-BMP7 administration alleviated CCl4-induced fibrotic changes; LV-BMP7 significantly attenuated the effects of miR-3074 agomir. Lastly, mmu-miR-3074 also targeted mouse BMP7 and inhibited mouse BMP7 expression. In conclusion, the miR-3074/BMP7 axis regulates TGF-ß-caused activation of HSCs in vitro and CCl4-caused murine liver fibrosis in vivo. BMP7-mediated Smad1/5/8 activation might be involved.


Subject(s)
Hepatic Stellate Cells , MicroRNAs , Animals , Mice , Bone Morphogenetic Protein 7/genetics , Bone Morphogenetic Protein 7/adverse effects , Bone Morphogenetic Protein 7/metabolism , Hepatic Stellate Cells/pathology , Liver/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/chemically induced , MicroRNAs/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism
7.
Front Genet ; 14: 1265506, 2023.
Article in English | MEDLINE | ID: mdl-37636271

ABSTRACT

[This corrects the article DOI: 10.3389/fgene.2023.1124330.].

8.
J Hepatol ; 79(5): 1214-1225, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37348791

ABSTRACT

BACKGROUND & AIMS: Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-ß docking molecule. While the immune regulatory properties of GARP on blood cells have been studied, the function of GARP on tissue stromal cells remains unclear. Here, we investigate the role of GARP expressed on hepatic stellate cells (HSCs) in the development of liver fibrosis. METHODS: The function of GARP on HSCs was explored in toxin-induced and metabolic liver fibrosis models, using conditional GARP-deficient mice or a newly generated inducible system for HSC-specific gene ablation. Primary mouse and human HSCs were isolated to evaluate the contribution of GARP to the activation of latent TGF-ß. Moreover, cell contraction of HSCs in the context of TGF-ß activation was tested in a GARP-dependent fashion. RESULTS: Mice lacking GARP in HSCs were protected from developing liver fibrosis. Therapeutically deleting GARP on HSCs alleviated the fibrotic process in established disease. Furthermore, natural killer T cells exacerbated hepatic fibrosis by inducing GARP expression on HSCs through IL-4 production. Mechanistically, GARP facilitated fibrogenesis by activating TGF-ß and enhancing endothelin-1-mediated HSC contraction. Functional GARP was expressed on human HSCs and significantly upregulated in the livers of patients with fibrosis. Lastly, deletion of GARP on HSCs did not augment inflammation or liver damage. CONCLUSIONS: GARP expressed on HSCs drives the development of liver fibrosis via cell contraction-mediated activation of latent TGF-ß. Considering that systemic blockade of TGF-ß has major side effects, we highlight a therapeutic niche provided by GARP and surface-mediated TGF-ß activation. Thus, our findings suggest an important role of GARP on HSCs as a promising target for the treatment of liver fibrosis. IMPACT AND IMPLICATIONS: Liver fibrosis represents a substantial and increasing public health burden globally, for which specific treatments are not available. Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-ß docking molecule. Here, we show that GARP expressed on hepatic stellate cells drives the development of liver fibrosis. Our findings suggest GARP as a novel target for the treatment of fibrotic disease.

9.
Front Genet ; 14: 1124330, 2023.
Article in English | MEDLINE | ID: mdl-37056286

ABSTRACT

Liver fibrosis is a repair response to injury caused by various chronic stimuli that continually act on the liver. Among them, the activation of hepatic stellate cells (HSCs) and their transformation into a myofibroblast phenotype is a key event leading to liver fibrosis, however the mechanism has not yet been elucidated. The molecular basis of HSC activation involves changes in the regulation of gene expression without changes in the genome sequence, namely, via epigenetic regulation. DNA methylation is a key focus of epigenetic research, as it affects the expression of fibrosis-related, metabolism-related, and tumor suppressor genes. Increasing studies have shown that DNA methylation is closely related to several physiological and pathological processes including HSC activation and liver fibrosis. This review aimed to discuss the mechanism of DNA methylation in the pathogenesis of liver fibrosis, explore DNA methylation inhibitors as potential therapies for liver fibrosis, and provide new insights on the prevention and clinical treatment of liver fibrosis.

10.
Aging Cell ; 22(5): e13811, 2023 05.
Article in English | MEDLINE | ID: mdl-36999514

ABSTRACT

Our studies indicate that the longevity factor SIRT1 is implicated in metabolic disease; however, whether and how hepatocyte-specific SIRT1 signaling is involved in liver fibrosis remains undefined. We characterized a functional link of age-mediated defects in SIRT1 to the NLRP3 inflammasome during age-related liver fibrosis. In multiple experimental murine models of liver fibrosis, we compared the development of liver fibrosis in young and old mice, as well as in liver-specific SIRT1 knockout (SIRT1 LKO) mice and wild-type (WT) mice. Liver injury, fibrosis, and inflammation were assessed histologically and quantified by real-time PCR analysis. In a model of hepatotoxin-induced liver fibrosis, old mice displayed more severe and persistent liver fibrosis than young mice during liver injury and after injury cessation, as characterized by inhibition of SIRT1, induction of NLRP3, infiltration of macrophages and neutrophils, activation of hepatic stellate cells (HSCs), and excessive deposition and remodeling of the extracellular matrix. Mechanistically, deletion of SIRT1 in hepatocytes resulted in NLRP3 and IL-1ß induction, pro-inflammatory response, and severe liver fibrosis in young mice, mimicking the ability of aging to impair the resolution of established fibrosis. In an aging mouse model, chronic-plus-binge alcohol feeding-induced liver fibrosis was attenuated by treatment with MCC950, a selective NLRP3 inhibitor. NLRP3 inhibition ameliorated alcoholic liver fibrosis in old mice by repressing inflammation and reducing hepatocyte-derived danger signaling-ASK1 and HMGB1. In conclusion, age-dependent SIRT1 defects lead to NLRP3 activation and inflammation, which in turn impairs the capacity to resolve fibrosis during aging.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sirtuin 1 , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Fibrosis , Inflammation , Mice, Knockout
11.
Front Immunol ; 14: 1131588, 2023.
Article in English | MEDLINE | ID: mdl-36875101

ABSTRACT

Hepatic fibrosis is often secondary to chronic inflammatory liver injury. During the development of hepatic fibrosis, the damaged hepatocytes and activated hepatic stellate cells (HSCs) caused by the pathogenic injury could secrete a variety of cytokines and chemokines, which will chemotactic innate and adaptive immune cells of liver tissue and peripheral circulation infiltrating into the injury site, mediating the immune response against injury and promoting tissue reparation. However, the continuous release of persistent injurious stimulus-induced inflammatory cytokines will promote HSCs-mediated fibrous tissue hyperproliferation and excessive repair, which will cause hepatic fibrosis development and progression to cirrhosis even liver cancer. And the activated HSCs can secrete various cytokines and chemokines, which directly interact with immune cells and actively participate in liver disease progression. Therefore, analyzing the changes in local immune homeostasis caused by immune response under different pathological states will greatly enrich our understanding of liver diseases' reversal, chronicity, progression, and even deterioration of liver cancer. In this review, we summarized the critical components of the hepatic immune microenvironment (HIME), different sub-type immune cells, and their released cytokines, according to their effect on the development of progression of hepatic fibrosis. And we also reviewed and analyzed the specific changes and the related mechanisms of the immune microenvironment in different chronic liver diseases.Moreover, we retrospectively analyzed whether the progression of hepatic fibrosis could be alleviated by modulating the HIME.We aimed to elucidate the pathogenesis of hepatic fibrosis and provide the possibility for exploring the therapeutic targets for hepatic fibrosis.


Subject(s)
Liver Cirrhosis , Liver Neoplasms , Humans , Retrospective Studies , Cytokines , Tumor Microenvironment
12.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902241

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) can progress to non-alcoholic steatohepatitis (NASH), characterized by inflammation and fibrosis. Fibrosis is mediated by hepatic stellate cells (HSC) and their differentiation into activated myofibroblasts; the latter process is also promoted by inflammation. Here we studied the role of the pro-inflammatory adhesion molecule vascular cell adhesion molecule-1 (VCAM-1) in HSCs in NASH. VCAM-1 expression was upregulated in the liver upon NASH induction, and VCAM-1 was found to be present on activated HSCs. We therefore utilized HSC-specific VCAM-1-deficient and appropriate control mice to explore the role of VCAM-1 on HSCs in NASH. However, HSC-specific VCAM-1-deficient mice, as compared to control mice, did not show a difference with regards to steatosis, inflammation and fibrosis in two different models of NASH. Hence, VCAM-1 on HSCs is dispensable for NASH development and progression in mice.


Subject(s)
Hepatic Stellate Cells , Non-alcoholic Fatty Liver Disease , Vascular Cell Adhesion Molecule-1 , Animals , Mice , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Inflammation/metabolism , Liver/metabolism , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Vascular Cell Adhesion Molecule-1/metabolism , Disease Models, Animal
13.
Phytomedicine ; 110: 154626, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36603342

ABSTRACT

BACKGROUND: Ganoderma lucidum polysaccharide (GLP) has many biological properties, however, the anti-fibrosis effect of GLP is unknown at present. PURPOSE: This study aimed to examine the anti-fibrogenic effect of GLP and its underlying molecular mechanisms in vivo and in vitro. STUDY DESIGN: Both CCl4-induced mouse and TGF-ß1-induced HSC-T6 cellular models of fibrosis were established to examine the anti-fibrogenic effect of a water-soluble GLP (25 kDa) extracted from the sporoderm-removed spores of G. lucidum.. METHOD: Serum markers of liver injury, histology and fibrosis of liver tissues, and collagen formation were examined using an automatic biochemical analyzer, H&E staining, Sirius red staining, immunohistochemistry, immunofluorescence, ELISA, Western blotting, and qRT-PCR. RNA-sequencing, enrichment pathway analysis, Western blotting, qRT-PCR, and flow cytometry were employed to identify the potential molecular targets and signaling pathways that are responsible for the anti-fibrotic effect of GLP. RESULTS: We showed that GLP (150 and 300 mg/kg) significantly inhibited hepatic fibrogenesis and inflammation in CCl4-treated mice as mediated by the TLR4/NF-κB/MyD88 signaling pathway. We further demonstrated that GLP significantly inhibited hepatic stellate cell (HSCs) activation in mice and in TGF-ß1-induced HSC-T6 cells as manifested by reduced collagen I and a-SMA expressions. RNA-sequencing uncovered inflammation, apoptosis, cell cycle, ECM-receptor interaction, TLR4/NF-κB, and TGF-ß/Smad signalings as major pathways suppressed by GLP administration. Further studies demonstrated that GLP elicits anti-fibrotic actions that are associated with a novel dual effect on apoptosis in vivo (inhibit) or in vitro (promote), suppression of cell cycle in vivo, induction of S phase arrest in vitro, and attenuation of ECM-receptor interaction-associated molecule expressions including integrins ITGA6 and ITGA8. Furthermore, GLP significantly inhibited the TGF-ß/Smad signaling in mice, and reduced TGF-ß1 or its agonist SRI-011381-induced Smad2 and Smad3 phosphorylations, but increased Samd7 expression in HSC-T6 cells. CONCLUSION: This study provides the first evidence that GLP could be a promising dietary strategy for treating liver fibrosis, which protects against liver fibrosis and HSC activation through targeting inflammation, apoptosis, cell cycle, and ECM-receptor interactions that are mediated by TGF-ß/Smad signaling.


Subject(s)
Reishi , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Smad Proteins/metabolism , Hepatic Stellate Cells , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Collagen Type I/metabolism , Cell Cycle , Inflammation/metabolism , Apoptosis , RNA/metabolism
14.
Biotechnol Bioeng ; 120(5): 1241-1253, 2023 05.
Article in English | MEDLINE | ID: mdl-36639871

ABSTRACT

Hepatic stellate cells (HSCs) play an important role in liver fibrosis; however, owing to the heterogeneity and limited supply of primary HSCs, the development of in vitro liver fibrosis models has been impeded. In this study, we established and characterized a novel human HSC line (LSC-1), and applied it to various types of three-dimensional (3D) co-culture systems with differentiated HepaRG cells. Furthermore, we compared LSC-1 with a commercially available HSC line on conventional monolayer culture. LSC-1 exhibited an overall upregulation of the expression of fibrogenic genes along with increased levels of matrix and adhesion proteins, suggesting a myofibroblast-like or transdifferentiated state. However, activated states reverted to a quiescent-like phenotype when cultured in different 3D culture formats with a relatively soft microenvironment. Additionally, LSC-1 exerted an overall positive effect on co-cultured differentiated HepaRG, which significantly increased hepatic functionality upon long-term cultivation compared with that achieved with other HSC line. In 3D spheroid culture, LSC-1 exhibited enhanced responsiveness to transforming growth factor beta 1 exposure that is caused by a different matrix-related protein expression mechanism. Therefore, the LSC-1 line developed in this study provides a reliable candidate model that can be used to address unmet needs, such as development of antifibrotic therapies.


Subject(s)
Hepatic Stellate Cells , Liver Cirrhosis , Humans , Hepatic Stellate Cells/metabolism , Coculture Techniques , Liver Cirrhosis/metabolism , Liver/metabolism , Cell Line
15.
Int J Biochem Cell Biol ; 157: 106375, 2023 04.
Article in English | MEDLINE | ID: mdl-36716817

ABSTRACT

The activation and proliferation of hepatic stellate cells (HSCs) are critical processes for the treatment of liver fibrosis. It is necessary to identify effective drugs for the treatment of liver fibrosis and elucidate their mechanisms of action. Metformin can inhibit HSCs; however, no systematic studies demonstrating the effects of metformin on mitochondria in HSCs have been reported. This study demonstrated that metformin induces mitochondrial fission by phosphorylating AMPK/DRP1 (S616) in HSCs to decrease the expression of α-SMA and collagen. Additionally, metformin repressed the total ATP production rate, especially the production rate of ATP produced through mitochondrial oxidative phosphorylation, by inhibiting the enzymatic activity of complex I. Further analysis revealed that metformin strongly constrained the transcription of mitochondrial genes (ND1-ND6 and ND4L) that encode the core subunits of respiratory chain I. Upregulation of the mRNA expression of HK2 and GLUT1 slightly enhanced glycolysis. Additionally, metformin increased mitochondrial DNA (mtDNA) copy number to suppress the proliferation and activation of HSCs, indicating that mtDNA copy number can alter the fate of HSCs. In conclusion, metformin can induce mitochondrial fragmentation and low-level energy metabolism in HSCs, thereby suppressing HSCs activation and proliferation to reverse liver fibrosis.


Subject(s)
Metformin , Humans , Metformin/pharmacology , Liver/metabolism , Hepatic Stellate Cells/metabolism , Mitochondrial Dynamics , Electron Transport , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Energy Metabolism , DNA, Mitochondrial/metabolism , Adenosine Triphosphate/metabolism
16.
Biomed Pharmacother ; 157: 114014, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36379119

ABSTRACT

Liver fibrosis is the result of a chronic pathological condition caused by the activation of hepatic stellate cells (HSCs), which induces the excessive deposition of extracellular matrix. Fibrogenesis is sustained by an exaggerated production of reactive oxidative species (ROS) by NADPH oxidases (NOXs), which are overactivated in hepatic inflammation. In this study, we investigated the antifibrotic properties of two phenolic compounds of natural origin, tyrosol (Tyr) and hydroxytyrosol (HTyr), known for their antioxidant and anti-inflammatory effects. We assessed Tyr and HTyr antifibrotic and antioxidant activity both in vitro, by a co-culture of LX2, HepG2 and THP1-derived Mϕ macrophages, set up to simulate the hepatic microenvironment, and in vivo, in a mouse model of liver fibrosis obtained by carbon tetrachloride treatment. We evaluated the mRNA and protein expression of profibrotic and oxidative markers (α-SMA, COL1A1, NOX1/4) by qPCR and/or immunocytochemistry or immunohistochemistry. The expression of selected miRNAs in mouse livers were measured by qPCR. Tyr and HTyr reduces fibrogenesis in vitro and in vivo, by downregulating all fibrotic markers. Notably, they also modulated oxidative stress by restoring the physiological levels of NOX1 and NOX4. In vivo, this effect was accompanied by a transcriptional regulation of inflammatory genes and of 2 miRNAs involved in the control of oxidative stress damage (miR-181-5p and miR-29b-3p). In conclusion, Tyr and HTyr exert antifibrotic and anti-inflammatory effects in preclinical in vitro and in vivo models of liver fibrosis, by modulating hepatic oxidative stress, representing promising candidates for further development.


Subject(s)
MicroRNAs , NADPH Oxidases , Mice , Animals , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , MicroRNAs/metabolism , Liver/metabolism , Hepatic Stellate Cells/metabolism , Oxidative Stress , Liver Cirrhosis/pathology , Antioxidants/metabolism , Anti-Inflammatory Agents/pharmacology
17.
Cancer Sci ; 114(2): 504-520, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36169092

ABSTRACT

Hepatic stellate cell (HSC) activation is a critical event in the development of hepatic fibrosis and hepatocellular carcinoma (HCC). By the release of soluble cytokines, chemokines, and chemotaxis, HSCs affect HCC cell phenotypes through a complex tumor microenvironment. In this study, weighted gene co-expression network analysis (WGCNA) was used to identify the TGF-ß signaling pathway as a key signaling pathway in Hep3B cells cultured in HSC conditioned medium. MIR4435-2HG is a hub lncRNA associated with the TGF-ß signaling pathway and HSC activation. HSC-condition medium (CM) culture induced HCC cell malignant behaviors, which were partially reversed by MIR4435-2HG silencing. miR-506-3p directly bound to MIR4435-2HG and the 3'UTR of TGFB1. Similarly, overexpression of miR-506-3p also attenuated HSC-CM-induced malignant behavior of HCC cells. In HSC-CM cultured HCC cells, the effects of MIR4435-2HG knockdown on TGFB1 expression and HCC cell phenotypes were partially reversed by miR-506-3p inhibition. HSCs affected HCC cell phenotypes by releasing CXCL1. In an orthotopic xenotransplanted tumor model of HCC cells plus HSCs in mice, CXCR2 knockdown in HCC cells significantly inhibited tumorigenesis, which was partially reversed by MIR4435-2HG overexpression in HCC cells. In HCC tissue samples, the levels of CXCL1, TGF-ß1, and MIR4435-2HG were upregulated, while miR-506-3p expression was downregulated. In conclusion, HSC-released CXCL1 aggravated HCC cell malignant behaviors through the MIR4435-2HG/miR-506-3p/TGFB1 axis. In addition to CXCL1, the MIR4435-2HG/miR-506-3p/TGFB1 axis might also be the underlying target for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Animals , Mice , Carcinoma, Hepatocellular/pathology , MicroRNAs/metabolism , Hepatic Stellate Cells/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Liver Neoplasms/pathology , Cell Proliferation/genetics , RNA, Long Noncoding/genetics , Tumor Microenvironment
18.
Int Immunopharmacol ; 113(Pt A): 109229, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36330907

ABSTRACT

CD73 is a membrane-bound glycoprotein that can dephosphorylate AMP to adenosine. Increasing evidence has shown that CD73 is involved in the occurrence and development of liver fibrosis. However, the potential mechanism by which CD73 affects the progression of alcohol-related liver fibrosis (ALF) remains unknown. This study aimed to examine the role and mechanism of CD73 in autophagy in HSC-T6 cells and its role in ALF in mice that treated with alcohol plus CCl4. We found that CD73 knockout reduced serum alanine aminotransferase and aspartate aminotransferase levels and decreased liver injury and collagen deposition. Furthermore, autophagy-related indicators were downregulated in the liver fibrosis tissues of CD73-/- (EtOH + CCl4) mice. In vitro, the expression of CD73 and autophagy increased in activated HSC-T6 cells. Autophagy inhibitor, 3-methyladenine, reduced autophagy and activation of acetaldehyde-induced HSC-T6 cells. When using CD73-siRNA, autophagy in HSC-T6 cells was found to be downregulated. However, the CD73 plasmid increased the activation and autophagy of hepatic stellate cells (HSCs). In addition, CD73 induced autophagy through the AMPK/AKT/mTOR pathway, which is characterized by an increase in the ratio of P-AMPKα/AMPKα and a decrease in the ratio of P-AKT/AKT and P-mTOR/mTOR. Our study found that CD73 promotes HSCs activation by regulating autophagy through the AMPK/AKT/mTOR signaling pathway.


Subject(s)
5'-Nucleotidase , Hepatic Stellate Cells , Liver Cirrhosis, Alcoholic , Signal Transduction , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Autophagy , Ethanol/metabolism , Hepatic Stellate Cells/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , 5'-Nucleotidase/metabolism , Liver Cirrhosis, Alcoholic/pathology
19.
Front Nutr ; 9: 1009139, 2022.
Article in English | MEDLINE | ID: mdl-36276815

ABSTRACT

Background: Activation of hepatic stellate cells (HSCs) is essential for the pathogenesis of liver fibrosis, there is no effective drug used to prevent or reverse the fibrotic process. Methods: With human hepatic stellate cell line LX-2 and mouse model of CCl4-induced liver fibrosis, we investigated the anti-fibrotic effect to liver fibrosis of extracellular vesicles (EVs) extracted from tea leaves through cytological tests such as cell proliferation, cell migration, and cell fibrotic marker. Results: It was found that tea-derived EVs (TEVs) inhibited HSCs activation. In CCl4-induced liver fibrosis model, TEVs treatment can significantly improve the pathological changes of liver tissue, inhibit collagen deposition, reduce the number of lipid droplets in liver tissue, and reduce serum AST and ALT levels. In addition, TEVs inhibited TGF-ß1 signaling and miR-44 in TEVs had the potential inhibitory effect on liver fibrosis. Conclusions: Taken together, our work suggesting that TEVs are novel therapeutic potential for liver fibrosis.

20.
Int Immunopharmacol ; 113(Pt A): 109326, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36252487

ABSTRACT

Alcoholic liver fibrosis(ALF), as a liver disease caused by long-term alcoholism, attracts international attention. Activation of hepatic stellate cells is a key step in the development of alcoholic-associated liver fibrosis. Increasing studies have shown that P2X4 receptor, as a component of purinoceptor family in adenosine pathway, plays an important role in numerous liver diseases. In this study, it was found that the expression of P2X4 receptor was significantly increased in the mouse liver fibrosis model fed with ethanol plus CCL4 and in the HSC-T6 cell model stimulated by acetaldehyde. In vivo, C57BL/6J mice were used to establish ALF models, and 5-BDBD, a specific inhibitor of P2X4 receptor, was injected intraperitoneally at 6-8 weeks of ALF development. The results indicated that 5-BDBD could reduce the expression of fibrotic markers and attenuate the pathological features of fibrosis, thus demonstrating the alleviation of ALF.In vitro, PI3K/AKT pathway was activated in HSC-T6 cells stimulated by acetaldehyde. Silencing P2X4 receptor or administration of 5-BDBD could inhibit the phosphorylation of PI3K and AKT, thereby inhibiting the activation of HSC-T6 cells. In addition, 5-BDBD was administered to RAW264.7 cells activated by acetaldehyde, and then part of the supernatant was added to HSC-T6 cells culture medium. The results showed that 5-BDBD could reduce the expression of classical inflammatory pathways such as TGF-ß pathway in RAW267.4 cells, thus inhibiting the activation of HSC-T6 cells. Taken together, these results suggest that P2X4 receptors may influence the progression of alcohol-related liver fibrosis by directly mediating the PI3K/AKT pathway, or indirectly by influencing RAW264.7 cells to regulate hepatic stellate cell activation.


Subject(s)
Hepatic Stellate Cells , Liver Cirrhosis , Phosphatidylinositol 3-Kinases , Receptors, Purinergic P2X4 , Animals , Mice , Acetaldehyde/pharmacology , Ethanol/toxicity , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Purinergic P2X4/metabolism , Signal Transduction , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL