Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 975
Filter
1.
Int J Biol Macromol ; : 133667, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969038

ABSTRACT

Targeting macrophages to regulate the tumor microenvironment is a promising strategy for treating cancer. This study developed a stable nano drug (PAP-SeNPs) using Se nanoparticles (SeNPs) and the Pholiota adiposa polysaccharide component (PAP-1a) and reported their physical stability, M2-like macrophages targeting efficacy and anti-hepatoma immunotherapy potential, as well as their molecular mechanisms. Furthermore, the zero-valent and well-dispersed spherical PAP-SeNPs were also successfully synthesized with an average size of 55.84 nm and a negative ζ-potential of -51.45 mV. Moreover, it was observed that the prepared PAP-SeNPs were stable for 28 days at 4 °C. Intravital imaging highlighted that PAP-SeNPs had the dual effect of targeting desirable immune organs and tumors. In vitro analyses showed that the PAP-SeNPs polarized M2-like macrophages towards the M1 phenotype to induce hepatoma cell death, triggered by the time-dependent lysosomal endocytosis in macrophages. Mechanistically, PAP-SeNPs significantly activated the Tlr4/Myd88/NF-κB axis to transform tumor-promoting macrophages into tumor-inhibiting macrophages and successfully initiated antitumor immunotherapy. Furthermore, PAP-SeNPs also enhanced CD3+CD4+ T cells and CD3+CD8+ T cells, thereby further stimulating anti-hepatoma immune responses. These results suggest that the developed PAP-SeNPs is a promising immunostimulant that can assist hepatoma therapy.

2.
Cureus ; 16(5): e60861, 2024 May.
Article in English | MEDLINE | ID: mdl-38910758

ABSTRACT

Background Hepatitis C virus (HCV) infection is still common in patients with chronic renal failure, even those on maintenance dialysis. A bidirectional association exists between HCV infection and chronic renal disease. Objective To assess the efficacy of sofosbuvir and velpatasvir combination in the treatment of chronic HCV in chronic kidney disease (CKD) patients. Methodology This descriptive, cross-sectional study was undertaken at the departments of Gastroenterology and Nephrology Lady Reading Hospital, Peshawar, from April 7, 2021, to October 7, 2021. Patients with chronic HCV and chronic renal disease at stage 4 or 5 were included while patients with decompensated cirrhosis liver, hepatoma, hepatitis B virus/HCV (HBV/HCV) coinfection, and post liver transplant patients were excluded. HCV infection was diagnosed based on detectable HCV ribonucleic acid (HCV RNA) by PCR (polymerase chain reaction). In contrast, CKD was diagnosed based on the Kidney Disease Improving Global Outcomes (KDIGO) criteria for CKD. Sofosbuvir 400 mg orally daily and velpatasvir 100 mg orally with meals were given daily for 12 weeks. Effectiveness was defined as negative HCV RNA by PCR 12 weeks after treatment completion called sustained virological response rate 12 weeks after treatment completion (SVR12). Results A total of 73 patients including 67 (91.78%) males and six (8.22%) females between the ages of 20 years and 70 years were included in this study. The mean age of the participants was 48.77±8.0 years. Twelve weeks after the treatment completion, 69 (94.52%) had negative HCV RNA, whereas four (5.48%) patients had detectable HCV RNA. Conclusion It can be concluded from our study that a fixed-dose combination of sofosbuvir 400 mg and velpatasvir 100 mg is quite effective and recommended for treating chronic hepatitis C infection in patients with chronic renal disease in our local setup.

3.
Open Med (Wars) ; 19(1): 20240954, 2024.
Article in English | MEDLINE | ID: mdl-38911252

ABSTRACT

This research delves into the influence of H2Valdien derivatives on the proliferation, migration, and apoptosis induction in hepatoma carcinoma cells (HepG2, Huh-7, and SMMC-7721), with a specific emphasis on inhibiting epithelial-mesenchymal transition (EMT) through modulation of the Hedgehog (Hh) signaling pathway. Utilizing the cell counting kit-8 method, flow cytometry, TUNEL assay, wound healing, and transwell assays, we observed a dose-dependent growth arrest and apoptosis induction in HepG2, Huh-7, and SMMC-7721 cells. Notably, H2Valdien derivatives exhibited a capacity to reduce migration and invasion, impacting the expression of EMT-associated proteins such as N-cadherin, vimentin, and E-cadherin. Mechanistically, these derivatives demonstrated the inhibition of the Hh signaling pathway by inactivating Sonic Hh (Shh) and smoothened proteins. This study underscores the robust antiproliferative and apoptosis-inducing effects of H2Valdien derivatives on hepatoma carcinoma cells and elucidates their regulatory role in EMT through modulation of the Hh signaling pathway, providing valuable insights for potential therapeutic interventions.

5.
Acta Biomater ; 183: 306-317, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38838902

ABSTRACT

Advanced hepatocellular carcinoma (HCC) is one of the most challenging cancers because of its heterogeneous and aggressive nature, precluding the use of curative treatments. Sorafenib (SOR) is the first approved molecular targeting agent against the mitogen-activated protein kinase (MAPK) pathway for the noncurative therapy of advanced HCC; yet, any clinically meaningful benefits from the treatment remain modest, and are accompanied by significant side effects. Here, we hypothesized that using a nanomedicine platform to co-deliver SOR with another molecular targeting drug, metformin (MET), could tackle these issues. A micelle self-assembled with amphiphilic polypeptide methoxy poly(ethylene glycol)-block-poly(L-phenylalanine-co-l-glutamic acid) (mPEG-b-P(LP-co-LG)) (PM) was therefore designed for combinational delivery of two molecular targeted drugs, SOR and MET, to hepatomas. Compared with free drugs, the proposed, dual drug-loaded micelle (PM/SOR+MET) enhanced the drugs' half-life in the bloodstream and drug accumulation at the tumor site, thereby inhibiting tumor growth effectively in the preclinical subcutaneous, orthotopic and patient-derived xenograft hepatoma models without causing significant systemic and organ toxicity. Collectively, these findings demonstrate an effective dual-targeting nanomedicine strategy for treating advanced HCC, which may have a translational potential for cancer therapeutics. STATEMENT OF SIGNIFICANCE: Treatment of advanced hepatocellular carcinoma (HCC) remains a formidable challenge due to its aggressive nature and the limitations inherent to current therapies. Despite advancements in molecular targeted therapies, such as Sorafenib (SOR), their modest clinical benefits coupled with significant adverse effects underscore the urgent need for more efficacious and less toxic treatment modalities. Our research presents a new nanomedicine platform that synergistically combines SOR with metformin within a specialized diblock polypeptide micelle, aiming to enhance therapeutic efficacy while reducing systemic toxicity. This innovative approach not only exhibits marked antitumor efficacy across multiple HCC models but also significantly reduces the toxicity associated with current treatments. Our dual-molecular targeting approach unveils a promising nanomedicine strategy for the molecular treatment of advanced HCC, potentially offering more effective and safer treatment alternatives with significant translational potential.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Micelles , Nanomedicine , Sorafenib , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Animals , Humans , Sorafenib/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Metformin/pharmacology , Molecular Targeted Therapy , Mice, Nude , Mice , Drug Synergism , Cell Line, Tumor , Polyethylene Glycols/chemistry , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Inbred BALB C
6.
J Prim Care Community Health ; 15: 21501319241259413, 2024.
Article in English | MEDLINE | ID: mdl-38884145

ABSTRACT

INTRODUCTION/OBJECTIVES: Chronic hepatitis B virus infection (CHBVI) is a major public health problem affecting about 296 million people worldwide. HBV infects the liver, and when it becomes chronic, may cause cirrhosis and hepatocellular carcinoma (HCC). The aim of our study was to identify the risk factors and comorbid medical conditions that were associated with HCC in patients who had CHBVI. METHODS: We performed a retrospective electronic medical record review of adult patients diagnosed with CHBVI, who presented to our primary care office between October 1, 2017 and October 21, 2022. Selected variables in patients with CHBVI with HCC (HCC group) were compared to those without HCC (NoHCC group). RESULTS: Among 125 patients with CHBVI, 24% had HCC and 76% did not have HCC. There were higher frequencies of association of certain comorbidities in the HCC group compared to NoHCC group, such as anemia (63.3% vs 26.3%; P < .001), ascites (53.3% vs 1.1%; P < .001), portal hypertension (43.3% vs 0.0%; P < .001), chronic kidney disease (40.0% vs 13.7%; P = .002), and HCV coinfection (13.3% vs 7.4%; P < .001). The logistic regression model showed increased odds of HCC for each year of increase in age (OR = 1.06, 95% CI = 1.01-1.11; P = .014), and increased odds in men (OR = 5.96, 95% CI = 1.71-20.73; P = .005). Although Asians represented the racial majority in both the groups, there was no significant difference in the race distribution between the two groups. CONCLUSION: In patients with CHBVI, increasing age and male sex are factors associated with increased odds of having HCC. Patients with CHBVI and HCC have higher frequencies of association of tobacco use, recreational drug use, anemia, ascites, portal hypertension, chronic kidney disease, and co-infection with HCV.


Subject(s)
Carcinoma, Hepatocellular , Comorbidity , Hepatitis B, Chronic , Liver Neoplasms , Humans , Male , Carcinoma, Hepatocellular/epidemiology , Female , Liver Neoplasms/epidemiology , Middle Aged , Retrospective Studies , Risk Factors , Hepatitis B, Chronic/epidemiology , Hepatitis B, Chronic/complications , Adult , Aged
7.
Cancer Cell Int ; 24(1): 215, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902716

ABSTRACT

Hepatocellular carcinoma (HCC) poses a significant clinical challenge, necessitating the integration of immunotherapeutic approaches. Palbociclib, a selective CDK4/6 inhibitor, has demonstrated promising efficacy in preclinical HCC models and is being evaluated as a novel therapeutic option in clinical trials. Additionally, CDK4/6 inhibition induces cellular senescence, potentially influencing the tumor microenvironment and immunogenicity of cancer cells. In this study, we conducted comprehensive bioinformatic analyses using diverse HCC transcriptome datasets, including bulk and single-cell RNA-sequencing data from public databases. We also utilized human and mouse HCC cells to investigate functional aspects. Primary T cells isolated from mouse blood were employed to assess T cell immunity against HCC cells. Results revealed that CD8+ T-cell infiltration correlates with improved outcomes in HCC patients with suppressed CDK4/6 expression. Moreover, CDK4/6 expression was associated with alterations in the immune landscape and immune checkpoint expression within the liver tumor microenvironment. Furthermore, we found that treatment with Palbociclib and Doxorubicin induces cellular senescence and a senescence-associated secretory phenotype in HCC cells. Notably, pretreatment with Palbociclib augmented T cell-mediated cytotoxicity against HCC cells, despite upregulation of PD-L1, surpassing the effects of Doxorubicin pretreatment. In conclusion, our study elucidates a novel mechanism by which CDK4/6 inhibition enhances T-cell-associated cancer elimination and proposes a potential therapeutic strategy to enhance T-cell immunotherapy on HCC.

8.
Acta Pharmacol Sin ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871923

ABSTRACT

Poly (ADP-ribose) polymerase 1 (PARP1) is a DNA-binding protein that is involved in various biological functions, including DNA damage repair and transcription regulation. It plays a crucial role in cisplatin resistance. Nevertheless, the exact regulatory pathways governing PARP1 have not yet been fully elucidated. In this study, we present evidence suggesting that the hepatitis B X-interacting protein (HBXIP) may exert regulatory control over PARP1. HBXIP functions as a transcriptional coactivator and is positively associated with PARP1 expression in tissues obtained from hepatoma patients in clinical settings, and its high expression promotes cisplatin resistance in hepatoma. We discovered that the oncogene HBXIP increases the level of PARP1 m6A modification by upregulating the RNA methyltransferase WTAP, leading to the accumulation of the PARP1 protein. In this process, on the one hand, HBXIP jointly activates the transcription factor ETV5, promoting the activation of the WTAP promoter and further facilitating the promotion of the m6A modification of PARP1 by WTAP methyltransferase, enhancing the RNA stability of PARP1. On the other hand, HBXIP can also jointly activate the transcription factor CEBPA, enhance the activity of the PARP1 promoter, and promote the upregulation of PARP1 expression, ultimately leading to enhanced DNA damage repair capability and promoting cisplatin resistance in hepatoma. Notably, aspirin inhibits HBXIP, thereby reducing the expression of PARP1. Overall, our research revealed a novel mechanism for increasing PARP1 abundance, and aspirin therapy could overcome cisplatin resistance in hepatoma.

9.
Viruses ; 16(5)2024 04 30.
Article in English | MEDLINE | ID: mdl-38793598

ABSTRACT

Chronic Hepatitis B and D Virus (HBV and HDV) co-infection is responsible for the most severe form of viral Hepatitis, the Hepatitis Delta. Despite an efficient vaccine against HBV, the HBV/HDV infection remains a global health burden. Notably, no efficient curative treatment exists against any of these viruses. While physiologically distinct, HBV and HDV life cycles are closely linked. HDV is a deficient virus that relies on HBV to fulfil is viral cycle. As a result, the cellular response to HDV also influences HBV replication. In vitro studying of HBV and HDV infection and co-infection rely on various cell culture models that differ greatly in terms of biological relevance and amenability to classical virology experiments. Here, we review the various cell culture models available to scientists to decipher HBV and HDV virology and host-pathogen interactions. We discuss their relevance and how they may help address the remaining questions, with one objective in mind: the development of new therapeutic approaches allowing viral clearance in patients.


Subject(s)
Hepatitis B virus , Hepatitis D , Hepatitis Delta Virus , Virus Replication , Humans , Hepatitis Delta Virus/physiology , Hepatitis Delta Virus/genetics , Hepatitis B virus/physiology , Hepatitis D/virology , Animals , Host-Pathogen Interactions , Coinfection/virology , Cell Culture Techniques , Hepatitis B/virology
11.
Leg Med (Tokyo) ; 69: 102458, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38781725

ABSTRACT

Arsenic trioxide (ATO), one of the oldest and most frequently used poisons, is well-known in forensic science for inducing hepatotoxicity. The regulation of peroxisomal antioxidative enzyme catalase (CAT) involves intricate mechanisms at both transcriptional and post-transcriptional levels. However, the molecular mechanisms underlying the regulation of CAT gene expression in hepatic cells remain elusive. Furthermore, the regulation of CAT gene expression evident in animals administered with ATO in vivo is not well-explored, although several studies have revealed ATO-induced reductions in CAT enzymatic activity in rat livers. In this study, we revealed ATO-dependent reductions in CAT gene expression in both rat liver and Huh-7 human hepatoma cells. Our results indicate that the decline in CAT enzymatic activity can be attributed, at least in part, to the downregulation of its gene expression. The ATO-induced reduction in CAT expression was concurrent with the reduction in peroxisome proliferator-activated receptor-gamma (PPARγ) coactivator (PGC)-1α and inactivation of PPARγ, both considered as positive regulators of CAT gene expression. Moreover, antioxidant N-acetylcysteine (NAC) demonstrated the capability to alleviate the downregulation of CAT gene expression both in vivo and in vitro. Additionally, NAC played a role in alleviating ATO-induced hepatotoxicity, potentially by mitigating the transcriptional downregulation of the CAT gene. Altogether, these results indicate that ATO exerts toxicity by inhibiting the antioxidant defense mechanism, which may be useful for forensic diagnosis of arsenic poisoning and clinical treatment of mitigating ATO-induced hepatotoxicity.

12.
Article in English | MEDLINE | ID: mdl-38709266

ABSTRACT

Hepatocellular carcinoma (HCC) is a common and lethal tumor worldwide. Atractylenolide II (AT-II) is a natural sesquiterpenoid monomer, with anti-tumor effect. To address the effect and mechanisms of AT-II on HCC. The role and mechanisms of AT-II were assessed through cell counting kit-8, flow cytometry, enzyme-linked immunosorbent assay, immunofluorescence, and western blot experiments in Hep3B and Huh7 cells. In vivo experiments were conducted in BALB/c nude mice using immunohistochemistry and western blot assays. AT-II decreased the cell viability of Hep3B and Huh7 cells with a IC50 of 96.43 µM and 118.38 µM, respectively. AT-II increased relative Fe2+ level, which was further promoted with the incubation of erastin and declined with the ferrostatin-1 in Hep3B and Huh7 cells. AT-II enhanced the level of ROS and MDA, but reduced the GSH level, and the expression of xCT and GPX4. AT-II elevated the percent of CD8+ T cells and the IFN-γ contents, and declined the IL-10 concentrations and the expression of PD-L1 in Hep3B and Huh7 cells. AT-II downregulated the relative protein level of TRAF6, p-p65/p-65, and p-IkBα/IkBα, which was rescued with overexpression of TRAF6. Upregulation of TRAF6 also reversed the effect of AT-II on proliferation, ferroptosis, and immune escape in Hep3B cells. In vivo, AT-II reduced tumor volume and weight, the level of GPX4, xCT, and PD-L1, and the expression of TRAF6, p-p65/p-65, and p-IkBα/IkBα, with the increased expression of CD8. AT-II modulated the proliferation, ferroptosis, and immune escape of HCC cells by downregulating the TRAF6/NF-κB pathway.

13.
Korean J Radiol ; 25(6): 550-558, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807336

ABSTRACT

Hepatocellular carcinoma (HCC) is a biologically heterogeneous tumor characterized by varying degrees of aggressiveness. The current treatment strategy for HCC is predominantly determined by the overall tumor burden, and does not address the diverse prognoses of patients with HCC owing to its heterogeneity. Therefore, the prognostication of HCC using imaging data is crucial for optimizing patient management. Although some radiologic features have been demonstrated to be indicative of the biologic behavior of HCC, traditional radiologic methods for HCC prognostication are based on visually-assessed prognostic findings, and are limited by subjectivity and inter-observer variability. Consequently, artificial intelligence has emerged as a promising method for image-based prognostication of HCC. Unlike traditional radiologic image analysis, artificial intelligence based on radiomics or deep learning utilizes numerous image-derived quantitative features, potentially offering an objective, detailed, and comprehensive analysis of the tumor phenotypes. Artificial intelligence, particularly radiomics has displayed potential in a variety of applications, including the prediction of microvascular invasion, recurrence risk after locoregional treatment, and response to systemic therapy. This review highlights the potential value of artificial intelligence in the prognostication of HCC as well as its limitations and future prospects.


Subject(s)
Artificial Intelligence , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Prognosis , Image Interpretation, Computer-Assisted/methods
14.
Molecules ; 29(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611836

ABSTRACT

As a traditional Chinese medicine, Salvia miltiorrhiza Bunge was first recorded in the Shennong Materia Medica Classic and is widely used to treat "the accumulation of symptoms and masses". The main active ingredient of Salvia miltiorrhiza Bunge, Tanshinone IIA (TIIA), has shown anti-inflammatory, antitumor, antifibrosis, antibacterial, and antioxidative activities, etc. In this study, the results showed that TIIA could inhibit the proliferation and migration of HepG2 cells and downregulate glutathione (GSH) and Glutathione Peroxidase 4 (GPX4) levels; besides, TIIA induced the production of Reactive Oxygen Species (ROS), and upregulated the total iron content. Based on network pharmacology analysis, the antitumor effect of TIIA was found to be focused on the endoplasmic reticulum (ER)-mediated ferroptosis signaling pathway, with protein kinase R (PKR)-like ER kinase (PERK)-activating transcription factor 4 (ATF4)-heat shock 70 kDa protein 5 (HSPA5) as the main pathway. Herein, TIIA showed typical ferroptosis characteristics, and a ferroptosis inhibitor (ferrostatin-1) was used to verify the effect. The antitumor effects of TIIA, occurring through the inhibition of the PERK-ATF4-HSPA5 pathway, were further observed in vivo as significantly inhibited tumor growth and the improved pathological morphology of tumor tissue in H22-bearing mice. In summary, the antitumor mechanism of TIIA might be related to the downregulation of the activation of PERK-ATF4-HSPA5 pathway-mediated ferroptosis.


Subject(s)
Activating Transcription Factor 4 , Ferroptosis , Animals , Mice , Activating Transcription Factor 4/genetics , Endoplasmic Reticulum Chaperone BiP , Abietanes/pharmacology , Glutathione
15.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1073-1081, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621914

ABSTRACT

The present study aimed to investigate the effect and mechanism of Bupleuri Radix-Paeoniae Radix Alba medicated plasma on HepG2 hepatoma cells by regulating the microRNA-1297(miR-1297)/phosphatase and tensin homologue deleted on chromosome 10(PTEN) signaling axis. Real-time quantitative PCR(RT-qPCR) was carried out to determine the mRNA levels of miR-1297 and PTEN in different hepatoma cell lines. The dual luciferase reporter assay was employed to verify the targeted interaction between miR-1297 and PTEN. The cell counting kit-8(CCK-8) was used to detect cell proliferation, and the optimal concentration and intervention time of the medicated plasma were determined. The cell invasion and migration were examined by Transwell assay and wound healing assay. Cell cycle distribution was detected by PI staining, and the apoptosis of cells was detected by Annexin V-FITC/PI double staining. The mRNA levels of miR-1297, PTEN, protein kinase B(Akt), and phosphatidylinositol 3-kinase(PI3K) were determined by RT-qPCR. Western blot was employed to determine the protein levels of PTEN, Akt, p-Akt, caspase-3, caspase-9, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). The results showed that HepG2 cells were the best cell line for subsequent experiments. The dual luciferase reporter assay confirmed that miR-1297 could bind to the 3'-untranslated region(3'UTR) in the mRNA of PTEN. The medicated plasma inhibited the proliferation of HepG2 cells, and the optimal intervention concentration and time were 20% and 72 h. Compared with the blank plasma, the Bupleuri Radix-Paeoniae Radix Alba medicated plasma, miR-1297 inhibitor, miR-1297 inhibitor + medicated plasma all inhibited the proliferation, invasion, and migration of HepG2 cells, increased the proportion of cells in the G_0/G_1 phase, decreased the proportion of cells in the S phase, and increased the apoptosis rate. The medicated plasma down-regulated the mRNA levels of miR-1297, PI3K, and Akt and up-regulated the mRNA level of PTEN. In addition, it up-regulated the protein levels of PTEN, Bax, caspase-3, and caspsae-9 and down-regulated the protein levels of p-Akt, p-PI3K, and Bcl-2. In conclusion, Bupleuri Radix-Paeoniae Radix Alba medicated plasma can inhibit the expression of miR-1297 in HepG2 hepatoma cells, promote the expression of PTEN, and negatively regulate PI3K/Akt signaling pathway, thereby inhibiting the proliferation and inducing the apoptosis of HepG2 cells.


Subject(s)
Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , MicroRNAs , Paeonia , Plant Extracts , Humans , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Hep G2 Cells , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Caspase 3/metabolism , bcl-2-Associated X Protein , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Apoptosis , Cell Proliferation , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , RNA, Messenger , Luciferases/metabolism , Luciferases/pharmacology , Cell Line, Tumor
16.
Arch Biochem Biophys ; 754: 109958, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499054

ABSTRACT

The aryl hydrocarbon receptor (AhR) functions as a vital ligand-activated transcription factor, governing both physiological and pathophysiological processes. Notably, it responds to xenobiotics, leading to a diverse array of outcomes. In the context of drug repurposing, we present here a combined approach of utilizing structure-based virtual screening and molecular dynamics simulations. This approach aims to identify potential AhR modulators from Drugbank repository of clinically approved drugs. By focusing on the AhR PAS-B binding pocket, our screening protocol included binding affinities calculations, complex stability, and interactions within the binding site as a filtering method. Comprehensive evaluations of all DrugBank small molecule database revealed ten promising hits. This included flibanserin, butoconazole, luliconazole, naftifine, triclabendazole, rosiglitazone, empagliflozin, benperidol, nebivolol, and zucapsaicin. Each exhibiting diverse binding behaviors and remarkably very low binding free energy. Experimental studies further illuminated their modulation of AhR signaling, and showing that they are consistently reducing AhR activity, except for luliconazole, which intriguingly enhances the AhR activity. This work demonstrates the possibility of using computational modelling as a quick screening tool to predict new AhR modulators from extensive drug libraries. Importantly, these findings hold immense therapeutic potential for addressing AhR-associated disorders. Consequently, it offers compelling prospects for innovative interventions through drug repurposing.


Subject(s)
Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , Binding Sites , Protein Binding , Protein Domains , Ligands
17.
Chem Biol Drug Des ; 103(3): e14511, 2024 03.
Article in English | MEDLINE | ID: mdl-38508859

ABSTRACT

Docetaxel (DTX) is a semi-synthetic analogue of paclitaxel which has attracted extensive attention in the treatment of cancer. However, the current clinically used DTX formulations display low tumor targeting ability, leading to unsatisfactory therapeutic outcomes with adverse effects, which poses significant challenges to the clinical application. In this study, three galactosamine (Gal) and docetaxel conjugates with different linkers were synthesized, namely DTX-(suc-Gal)2, DTX-(DTDPA-Gal)2, and DTX-(DSeDPA-Gal)2. These three conjugates were characterized by 1H NMR, FT-IR and HRMS. The in vitro drug release study shows that DTX-(DTDPA-Gal)2 and DTX-(DSeDPA-Gal)2 exhibit glutathione (GSH)-responsive drug release and DTX-(DSeDPA-Gal)2 displays higher GSH-responsiveness. The in vitro antitumor activity study shows that DTX-(DTDPA-Gal)2 and DTX-(DSeDPA-Gal)2 exhibit enhanced cytotoxicity, cell apoptosis rate and G2/M phase arrest against HepG2 cells as compared to DTX-(suc-Gal)2, DTX-(DSeDPA-Gal)2 displays the highest cytotoxicity, cell apoptosis rate and G2/M phase arrest among these three conjugates. In addition, DTX-(DSeDPA-Gal)2 exhibits higher selectivity to HepG2 cells as compared to free DTX. The DTX-(DSeDPA-Gal)2 developed in this study has been proven to be an effective DTX conjugate for selective killing hepatoma cells.


Subject(s)
Antineoplastic Agents , Docetaxel/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Galactosamine , Spectroscopy, Fourier Transform Infrared , Taxoids/pharmacology , Taxoids/chemistry , Drug Carriers/chemistry , Cell Line, Tumor
18.
Virus Res ; 344: 199364, 2024 06.
Article in English | MEDLINE | ID: mdl-38522562

ABSTRACT

The hepatitis E virus (HEV) can cause acute and chronic hepatitis in humans. Whereas HEV genotypes 1-4 of species Paslahepevirus balayani are commonly found in humans, infections with ratHEV (species Rocahepevirus ratti) were previously considered to be restricted to rats. However, several cases of human ratHEV infections have been described recently. To investigate the zoonotic potential of this virus, a genomic clone was constructed here based on sequence data of ratHEV strain pt2, originally identified in a human patient with acute hepatitis from Hongkong. For comparison, genomic clones of ratHEV strain R63 from a rat and of HEV genotype 3 strain 47832mc from a human patient were used. After transfection of in vitro-transcribed RNA from the genomic clones into the human hepatoma cell line HuH-7-Lunet BLR, virus replication was shown for all strains by increasing genome copy numbers in cell culture supernatants. These cells developed persistent virus infections, and virus particles in the culture supernatant as well as viral antigen within the cells were demonstrated. All three generated virus strains successfully infected fresh HuH-7-Lunet BLR cells. In contrast, the human hepatoma cell lines HuH-7 and PLC/PRF/5 could only be infected with the genotype 3 strain and to a lesser extent with ratHEV strain R63. Infection of the rat-derived hepatoma cell lines clone 9, MH1C1 and H-4-II-E did not result in efficient virus replication for either strain. The results indicate that ratHEV strains from rats and humans can infect human hepatoma cells. The replication efficiency is strongly dependent on the cell line and virus strain. The investigated rat hepatoma cell lines could not be infected and other rat-derived cells should be tested in future to identify permissive cell lines from rats. The developed genomic clone can represent a useful tool for future research investigating pathogenicity and zoonotic potential of ratHEV.


Subject(s)
Hepatitis E virus , Virus Replication , Animals , Humans , Rats , Hepatitis E virus/genetics , Hepatitis E virus/classification , Hepatitis E virus/physiology , Cell Line, Tumor , Hepatitis E/virology , Genotype , Genome, Viral , Carcinoma, Hepatocellular/virology , RNA, Viral/genetics , Hepatocytes/virology
19.
Discov Nano ; 19(1): 33, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386123

ABSTRACT

New selective therapeutics are needed for the treatment of hepatocellular carcinoma (HCC), the 7th most common cancer. In this study, we compared the cytotoxic effect induced by the release of pH-dependent iron nanoparticles from nitrogen-doped graphene-coated mixed iron oxide nanoparticles (FexOy/N-GN) with the cytotoxic effect of nitrogen-doped graphene (N-GN) and commercial graphene nanoflakes (GN) in Hepatoma G2 (HepG2) cells and healthy cells. The cytotoxic effect of nanocomposites (2.5-100 ug/ml) on HepG2 and healthy fibroblast (BJ) cells (12-48 h) was measured by Cell Viability assay, and the half maximal inhibitory concentration (IC50) was calculated. After the shortest (12 h) and longest incubation (48 h) incubation periods in HepG2 cells, IC50 values of FexOy/N-GN were calculated as 21.95 to 2.11 µg.mL-1, IC50 values of N-GN were calculated as 39.64 to 26.47 µg.mL-1 and IC50 values of GN were calculated as 49.94 to 29.94, respectively. After 48 h, FexOy/N-GN showed a selectivity index (SI) of 10.80 for HepG2/BJ cells, exceeding the SI of N-GN (1.27) by about 8.5-fold. The high cytotoxicity of FexOy/N-GN was caused by the fact that liver cancer cells have many transferrin receptors and time-dependent pH changes in their microenvironment increase iron release. This indicates the potential of FexOy/N-GN as a new selective therapeutic.

20.
FASEB J ; 38(4): e23491, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38363556

ABSTRACT

According to recent research, metabolic-associated fatty liver disease (MAFLD) has emerged as an important underlying etiology of hepatocellular carcinoma (HCC). However, the molecular mechanism of MAFLD-HCC is still unclear. Tumor necrosis factor receptor-associated factor 2 (TRAF2) is the key molecule to mediate the signal of inflammatory NF-κB pathway. This study aims to investigate the potential dysregulation of TRAF2 and its biological function in MAFLD-HCC. Huh7 TRAF2-/- demonstrated increased tumor formation ability compared to huh7 TRAF2+/+ when stimulated with transforming growth factor-ß (TGF-ß). The decisive role of TGF-ß in the development of MAFLD-HCC was confirmed through the specific depletion of TGF-ß receptor II gene in the hepatocytes (Tgfbr2ΔHep) of mice. In TRAF2-/- cells treated with TGF-ß, both the glycolysis rate and lipid synthesis were enhanced. We proved the signal of the mechanistic target of rapamycin complex 1 (mTORC1) could be activated in the presence of TGF-ß, and was enhanced in TRAF2-/- cells. The coimmunoprecipitation (co-IP) experiments revealed that TRAF2 fortified the Smurf2-mediated ubiquitination degradation of AXIN1. Hence, TRAF2 depletion resulted in increased Smad7 degradation induced by AXIN1, thus promoting the TGF-ß signal. We also discovered that PLX-4720 could bind with AXIN1 and restrained the tumor proliferation of TRAF2-/- in mice fed with high-fat diet (HFD). Our findings indicate that TRAF2 plays a significant role in the pathogenesis of MAFLD-HCC. The reduction of TRAF2 expression leads to the enhancement of the TGF-ß-mTORC1 pathway by facilitating AXIN1-mediated Smad7 degradation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/metabolism , Transforming Growth Factor beta/metabolism , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , Liver Neoplasms/metabolism , Hepatocytes/metabolism , Smad7 Protein/genetics , Smad7 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...