Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.280
Filter
1.
J Exp Child Psychol ; 246: 105994, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991312

ABSTRACT

Early-life positive and adverse parental factors, such as positive parent personality and parental stress, affect the environmental context in which children develop and may influence individual differences in children's sleep health. This study examined the moderating role of early-life parental factors in the heritability (i.e., the extent to which individual differences are due to genetic influences) of objectively assessed childhood sleep duration. A total of 351 families from the Arizona Twin Project were studied. Primary caregivers (95% mothers) reported on multiple dimensions of stress and facets of their own personality when the twins were 12 months old. Seven years later (Mage = 8.43 years, SD = 0.68), families completed a home visit, and twins (51% female; 57% White, 29% Hispanic; 30% monozygotic, 39% same-sex dizygotic, 31% other-sex dizygotic) wore actigraph watches to assess their sleep, with caregivers completing similar assessments on their personality attributes and stress. Early-life positive parent personality moderated the heritability of sleep duration (Δ-2LL [-2 log likelihood] = 2.54, Δdf = 2, p = .28), such that as positive parent personality increased, the heritability of duration decreased. Early-life parental stress also moderated the genetic contribution to sleep duration (Δ-2LL = 2.02, Δdf = 2, p = .36), such that as stress increased, the heritability of duration increased. Concurrent positive parent personality and parental stress composites showed similar patterns of findings. Results highlight the likely contribution of parent positive traits and adverse experiences to the etiology of children's sleep health, with genetic influences on children's sleep more prominent in "riskier" environments. Understanding how genetics and environments work together to influence the etiology of sleep may inform prevention programs.

2.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38980374

ABSTRACT

Gene-environment (GE) interactions are essential in understanding human complex traits. Identifying these interactions is necessary for deciphering the biological basis of such traits. In this study, we review state-of-art methods for estimating the proportion of phenotypic variance explained by genome-wide GE interactions and introduce a novel statistical method Linkage-Disequilibrium Eigenvalue Regression for Gene-Environment interactions (LDER-GE). LDER-GE improves the accuracy of estimating the phenotypic variance component explained by genome-wide GE interactions using large-scale biobank association summary statistics. LDER-GE leverages the complete Linkage Disequilibrium (LD) matrix, as opposed to only the diagonal squared LD matrix utilized by LDSC (Linkage Disequilibrium Score)-based methods. Our extensive simulation studies demonstrate that LDER-GE performs better than LDSC-based approaches by enhancing statistical efficiency by ~23%. This improvement is equivalent to a sample size increase of around 51%. Additionally, LDER-GE effectively controls type-I error rate and produces unbiased results. We conducted an analysis using UK Biobank data, comprising 307 259 unrelated European-Ancestry subjects and 966 766 variants, across 217 environmental covariate-phenotype (E-Y) pairs. LDER-GE identified 34 significant E-Y pairs while LDSC-based method only identified 23 significant E-Y pairs with 22 overlapped with LDER-GE. Furthermore, we employed LDER-GE to estimate the aggregated variance component attributed to multiple GE interactions, leading to an increase in the explained phenotypic variance with GE interactions compared to considering main genetic effects only. Our results suggest the importance of impacts of GE interactions on human complex traits.


Subject(s)
Gene-Environment Interaction , Linkage Disequilibrium , Phenotype , Humans , Multifactorial Inheritance , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Models, Genetic
3.
Epigenetics ; 19(1): 2370542, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38963888

ABSTRACT

Although DNA methylation (DNAm) has been implicated in the pathogenesis of numerous complex diseases, from cancer to cardiovascular disease to autoimmune disease, the exact methylation sites that play key roles in these processes remain elusive. One strategy to identify putative causal CpG sites and enhance disease etiology understanding is to conduct methylome-wide association studies (MWASs), in which predicted DNA methylation that is associated with complex diseases can be identified. However, current MWAS models are primarily trained using the data from single studies, thereby limiting the methylation prediction accuracy and the power of subsequent association studies. Here, we introduce a new resource, MWAS Imputing Methylome Obliging Summary-level mQTLs and Associated LD matrices (MIMOSA), a set of models that substantially improve the prediction accuracy of DNA methylation and subsequent MWAS power through the use of a large summary-level mQTL dataset provided by the Genetics of DNA Methylation Consortium (GoDMC). Through the analyses of GWAS (genome-wide association study) summary statistics for 28 complex traits and diseases, we demonstrate that MIMOSA considerably increases the accuracy of DNA methylation prediction in whole blood, crafts fruitful prediction models for low heritability CpG sites, and determines markedly more CpG site-phenotype associations than preceding methods. Finally, we use MIMOSA to conduct a case study on high cholesterol, pinpointing 146 putatively causal CpG sites.


Subject(s)
DNA Methylation , Epigenome , Genome-Wide Association Study , Humans , Genome-Wide Association Study/methods , Quantitative Trait Loci , CpG Islands , Phenotype , Models, Genetic
4.
Plants (Basel) ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999637

ABSTRACT

The limited knowledge about the inheritance of traits in roses makes the efficient development of rose varieties challenging. In order to achieve breeding goals, the inheritance of traits needs to be explored. Additionally, for the inheritance of a trait like scent, which remains a mystery, it is crucial to know the success of parental traits in transmitting them to the next generation. Understanding this allows for accurate parental selection, ensuring sustainability in meeting market demand and providing convenience to breeders. The aim of this study was to assess the success of cross-combinations between scented old garden roses and hybrid tea roses used in cut roses in transferring their existing traits, with the objective of achieving scented cut roses. The evaluated traits included recurrent blooming, flower stem length, flower diameter, petal number, scent, and bud length of both parents and progenies. The inheritance of these traits was evaluated through theoretical evaluations, including calculating heterosis and heterobeltiosis and determining narrow-sense heritability. The combinations and examined traits were assessed using a hierarchical clustering heat map. The results of this study indicated that flower stem length, flower diameter, petal number, and bud length traits had a moderate degree of narrow-sense heritability, suggesting the influence of non-additive genes on these traits. This study observed a low success rate in obtaining progenies with scent in cross combinations between cut roses and old garden roses, indicating the challenges in obtaining scented genotypes. The discrepancy between the observed phenotypic rates and the expected phenotypic and genotypic rates, according to Punnett squares, suggests that the examined traits could be controlled by polygenic genes. The progenies were observed to exhibit a greater resemblance to old garden roses than hybrid tea roses and did not meet the commercial quality standards for cut flowers. The significant negative heterosis observed in 65.12% (petal number) and 99.61% (flower diameter) of the progenies provides strong evidence of resemblance to old garden roses. Considering these findings, it is recommended to consider old garden roses as parents, taking into account their suitability for other breeding objectives.

5.
Data Brief ; 55: 110575, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38948404

ABSTRACT

The dataset extensively examines the factors considered when choosing sweet potato genotypes, considering various characteristics. Notably, Moz1.15 demonstrated the highest marketable root yield at 46.46 t/ha, H5.ej.10 exhibited the highest beta-carotene level at 48.94 mg/100 g, and Moz1.9 recorded the highest vitamin C content at 23.89 mg/100 g. Moreover, there were significant correlations (ranging from 0.21 to 0.84) among the yield and quality traits studied in sweet potatoes. Principal component analysis (PCA) confirmed the connections among these traits, identifying four distinct clusters of genotypes, each characterized by specific significant combinations of traits. Factor analysis using the multi-trait genotype-ideotype index (MGIDI) highlighted the considerable impact of sweet potato traits across two growing seasons (2020-21 and 2021-22), facilitating the selection of genotypes with potential genetic gains ranging from 1.86 % to 75.4 %. Broad-sense heritability (h2) varied from 64.9 % to 99.8 %. The use of the MGIDI index pinpointed several promising genotypes, with BARI Mistialu-12 and H9.7.12 consistently performing well over both years. These genotypes exhibited both strengths and weaknesses.

6.
Ethn Dis ; 34(2): 103-112, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38973806

ABSTRACT

Intracranial volume (ICV) reflects maximal brain development and is associated with later-life cognitive abilities. We quantified ICV among first- and second-generation Hispanic and Latino adults from the Study of Latinos-Investigation of Cognitive Aging - MRI (SOL-INCA-MRI), estimated ICV heritability, and tested its associations with previously reported genetic variants, both individually and as a genetic risk score (GRS). We also estimated the association of ICV with early life environmental measures: nativity or age of immigration and parental education. The estimated heritability of ICV was 19% (95% CI, 0.1%-56%) in n=1781 unrelated SOL-INCA-MRI individuals. Four of 10 tested genetic variants were associated with ICV and an increase of 1 SD of the ICV-GRS was associated with an increase of 10.37 cm3 in the ICV (95% CI, 5.29-15.45). Compared to being born in the continental United States, immigrating to the United States at age 11 years or older was associated with 24 cm3 smaller ICV (95% CI, -39.97 to -8.06). Compared to both parents having less than high-school education, at least 1 parent completing high-school education was associated with 15.4 cm3 greater ICV (95% CI, 4.46-26.39). These data confirm the importance of early life health on brain development.


Subject(s)
Brain , Hispanic or Latino , Magnetic Resonance Imaging , Humans , Female , Male , Brain/diagnostic imaging , Adult , Middle Aged , United States , Organ Size , Aged , Child
7.
BMC Genomics ; 25(1): 690, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003468

ABSTRACT

BACKGROUND: Heritability partitioning approaches estimate the contribution of different functional classes, such as coding or regulatory variants, to the genetic variance. This information allows a better understanding of the genetic architecture of complex traits, including complex diseases, but can also help improve the accuracy of genomic selection in livestock species. However, methods have mainly been tested on human genomic data, whereas livestock populations have specific characteristics, such as high levels of relatedness, small effective population size or long-range levels of linkage disequilibrium. RESULTS: Here, we used data from 14,762 cows, imputed at the whole-genome sequence level for 11,537,240 variants, to simulate traits in a typical livestock population and evaluate the accuracy of two state-of-the-art heritability partitioning methods, GREML and a Bayesian mixture model. In simulations where a single functional class had increased contribution to heritability, we observed that the estimators were unbiased but had low precision. When causal variants were enriched in variants with low (< 0.05) or high (> 0.20) minor allele frequency or low (below 1st quartile) or high (above 3rd quartile) linkage disequilibrium scores, it was necessary to partition the genetic variance into multiple classes defined on the basis of allele frequencies or LD scores to obtain unbiased results. When multiple functional classes had variable contributions to heritability, estimators showed higher levels of variation and confounding between certain categories was observed. In addition, estimators from small categories were particularly imprecise. However, the estimates and their ranking were still informative about the contribution of the classes. We also demonstrated that using methods that estimate the contribution of a single category at a time, a commonly used approach, results in an overestimation. Finally, we applied the methods to phenotypes for muscular development and height and estimated that, on average, variants in open chromatin regions had a higher contribution to the genetic variance (> 45%), while variants in coding regions had the strongest individual effects (> 25-fold enrichment on average). Conversely, variants in intergenic or intronic regions showed lower levels of enrichment (0.2 and 0.6-fold on average, respectively). CONCLUSIONS: Heritability partitioning approaches should be used cautiously in livestock populations, in particular for small categories. Two-component approaches that fit only one functional category at a time lead to biased estimators and should not be used.


Subject(s)
Linkage Disequilibrium , Livestock , Animals , Livestock/genetics , Cattle/genetics , Bayes Theorem , Models, Genetic , Gene Frequency , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Genetic Variation , Genomics/methods , Phenotype
8.
Article in English | MEDLINE | ID: mdl-39011872

ABSTRACT

Cognitive deficits in people with bipolar disorder (BD) may be the result of the illness or its treatment, but they could also reflect genetic risk factors shared between BD and cognition. We investigated this question using empirical genetic relationships within a sample of patients with BD and their unaffected relatives. Participants with bipolar I, II, or schizoaffective disorder ("narrow" BD, n = 69), related mood disorders ("broad" BD, n = 135), and their clinically unaffected relatives (n = 227) completed five cognitive tests. General cognitive function (g) was quantified via principal components analysis (PCA). Heritability and genetic correlations were estimated with SOLAR-Eclipse. Participants with "narrow" or "broad" diagnoses showed deficits in g, although affect recognition was unimpaired. Cognitive performance was significantly heritable (h2 = 0.322 for g, p < 0.005). Coheritability between psychopathology and g was small (0.0184 for narrow and 0.0327 for broad) and healthy relatives of those with BD were cognitively unimpaired. In this family sample, cognitive deficits were present in participants with BD but were not explained by substantial overlaps in genetic determinants of mood and cognition. These findings support the view that cognitive deficits in BD are largely the result of the illness or its treatment.

9.
BMC Med ; 22(1): 289, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987783

ABSTRACT

BACKGROUND: Epigenetic clocks were known as promising biomarkers of aging, including original clocks trained by individual CpG sites and principal component (PC) clocks trained by PCs of CpG sites. The effects of genetic and environmental factors on epigenetic clocks are still unclear, especially for PC clocks. METHODS: We constructed univariate twin models in 477 same-sex twin pairs from the Chinese National Twin Registry (CNTR) to estimate the heritability of five epigenetic clocks (GrimAge, PhenoAge, DunedinPACE, PCGrimAge, and PCPhenoAge). Besides, we investigated the longitudinal changes of genetic and environmental influences on epigenetic clocks across 5 years in 134 same-sex twin pairs. RESULTS: Heritability of epigenetic clocks ranged from 0.45 to 0.70, and those for PC clocks were higher than those for original clocks. For five epigenetic clocks, the longitudinal stability was moderate to high and was largely due to genetic effects. The genetic correlations between baseline and follow-up epigenetic clocks were moderate to high. Special unique environmental factors emerged both at baseline and at follow-up. PC clocks showed higher longitudinal stability and unique environmental correlations than original clocks. CONCLUSIONS: For five epigenetic clocks, they have the potential to identify aging interventions. High longitudinal stability is mainly due to genetic factors, and changes of epigenetic clocks over time are primarily due to changes in unique environmental factors. Given the disparities in genetic and environmental factors as well as longitudinal stability between PC and original clocks, the results of studies with original clocks need to be further verified with PC clocks.


Subject(s)
Epigenesis, Genetic , Humans , Male , Female , Epigenesis, Genetic/genetics , Middle Aged , Longitudinal Studies , Adult , Twins/genetics , Aged , Gene-Environment Interaction , China , DNA Methylation , Aging/genetics
10.
Trop Anim Health Prod ; 56(6): 204, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995429

ABSTRACT

Mithun (Bos frontalis), a domestically raised herbivore, holds significant economic importance for the farming community of Northeast India. This study aimed to elucidate the genetic parameters governing Mithun body weight traits across different ages using data from the sole organized semi-intensive Mithun farm in India. Information was gathered from 110 Mithuns born over a period spanning from 2011 to 2022. Body weight taken at week 1 (W1), 1-month (M1), 3-months (M3), 6-months (M6), 9-months (M9), 12-months (M12), 30-months (M30) and 45-months (M45) were considered for the study. The genetic parameters estimation employed the BLUPF90 suite of programs, incorporating univariate Gibbs sampler animal model with fixed effects; season and period of birth, and sex of the animal. Variance and covariance components, including direct additive genetic effects, were estimated. Heritability estimates for the eight body weight traits ranged from 0.47 ± 0.0050 to 0.50 ± 0.0043, indicating varying genetic influence across growth stages. Results revealed that Mithun herd has a substantial genetic variability for growth traits and therefore there is ample scope to select for a better growth rate. Here, we conclude that Month 12 (M12) and Month 9 (M9) body weights exhibit higher heritability, indicating potential for genetic improvement through selective breeding.


Subject(s)
Body Weight , Animals , Male , Female , India , Models, Animal , Cattle/genetics , Cattle/growth & development , Cattle/physiology , Genetic Variation
11.
Article in English | MEDLINE | ID: mdl-38946116

ABSTRACT

There is increasing evidence that competent handling of social interactions among conspecifics has positive effects on individual fitness. While individual variation in social competence has been appreciated, the role of long-term experience in the acquisition of superior social skills has received less attention. With the goal of promoting further research, we integrate knowledge across disciplines to assess social expertise, defined as the characteristics, skills and knowledge allowing individuals with extensive social experience to perform significantly better than novices on a given social task. We focus on three categories of social behaviour. First, animals can gain from adjusting social behaviour towards individually recognised conspecifics that they interact with on a regular basis. For example, there is evidence that some territorial animals individually recognise their neighbours and modify their social interactions based on experience with each neighbour. Similarly, individuals in group-living species learn to associate with specific group members based on their expected benefits from such social connections. Individuals have also been found to devote considerable time and effort to learning about the spatial location and timing of sexual receptivity of opposite-sex neighbours to optimise reproduction. Second, signallers can enhance their signals, and receivers can refine their response to signals with experience. In many birds and insects, individuals can produce more consistent signals with experience, and females across a wide taxonomic range can adaptively adjust mating preferences after perceiving distinct male signals. Third, in many species, individuals that succeed in reproducing encounter the novel, complex task of caring for vulnerable offspring. Evidence from a few species of mammals indicates that mothers improve in providing for and protecting their young over successive broods. Finally, for social expertise to evolve, heritable variation in social expertise has to be positively associated with fitness. Heritable variation has been shown in traits contributing to social expertise including social attention, empathy, individual recognition and maternal care. There are currently limited data associating social expertise with fitness, most likely owing to sparse research effort. Exceptions include maternal care, signal refinement, and familiarity with neighbours and group members. Overall, there is evidence that individuals in many species keep refining their social skills with experience throughout life. Hence we propose promising lines of research that can quantify more thoroughly the development of social expertise and its effects on fitness.

12.
J Exp Bot ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946283

ABSTRACT

Phenotypic plasticity and rapid evolution are fundamental processes by which organisms can maintain their function and fitness in the face of environmental changes. Here we quantified the plasticity and evolutionary potential of an alpine herb Wahlenbergia ceracea. Utilising its mixed-mating system, we generated outcrossed and self-pollinated families that were grown in either cool or warm environments, and that had parents that had also been grown in either cool or warm environments. We then analysed the contribution of environmental and genetic factors to variation in a range of phenotypic traits including phenology, leaf mass per area, photosynthetic function, thermal tolerance, and reproductive fitness. The strongest effect was that of current growth temperature, indicating strong phenotypic plasticity. All traits except thermal tolerance were plastic, whereby warm-grown plants flowered earlier, grew larger, produced more reproductive stems compared to cool-grown plants. Flowering onset and biomass were heritable and under selection, with early flowering and larger plants having higher relative fitness. There was little evidence for transgenerational plasticity, maternal effects, or genotype-by-environment interactions. Inbreeding delayed flowering and reduced reproductive fitness and biomass. Overall, we found that W. ceracea has the capacity to respond rapidly to climate warming via plasticity, and the potential for evolutionary change.

13.
Best Pract Res Clin Rheumatol ; : 101972, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971692

ABSTRACT

Osteoarthritis (OA) is the most common form of arthritis with well recognized multifactorial nature. While several environmental factors such as older age, obesity and previous joint injury are strongly associated with its development, a genetic influence on OA has been recognized for over 80 years. Identification of genes associated with OA has received considerable attention over the last two decades, aided by the rapidly evolving genotyping and sequencing technologies. More than 300 genomic loci have been identified to be associated with OA at different joints. These findings are likely to help our better understanding of the pathogenesis of OA and lead to important therapeutic and diagnostic advances in this most common disabling rheumatic disorder. This article will review the data that support the role of genetic factors in common idiopathic OA.

14.
New Phytol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978318

ABSTRACT

Rare variants contribute significantly to the 'missing heritability' of quantitative traits. The genome-wide characteristics of rare variants and their roles in environmental adaptation of woody plants remain unexplored. Utilizing genome-wide rare variant association study (RVAS), expression quantitative trait loci (eQTL) mapping, genetic transformation, and molecular experiments, we explored the impact of rare variants on stomatal morphology and drought adaptation in Populus. Through comparative analysis of five world-wide Populus species, we observed the influence of mutational bias and adaptive selection on the distribution of rare variants. RVAS identified 75 candidate genes correlated with stomatal size (SS)/stomatal density (SD), and a rare haplotype in the promoter of serine/arginine-rich splicing factor PtoRSZ21 emerged as the foremost association signal governing SS. As a positive regulator of drought tolerance, PtoRSZ21 can recruit the core splicing factor PtoU1-70K to regulate alternative splicing (AS) of PtoATG2b (autophagy-related 2). The rare haplotype PtoRSZ21hap2 weakens binding affinity to PtoMYB61, consequently affecting PtoRSZ21 expression and SS, ultimately resulting in differential distribution of Populus accessions in arid and humid climates. This study enhances the understanding of regulatory mechanisms that underlie AS induced by rare variants and might provide targets for drought-tolerant varieties breeding in Populus.

15.
Animals (Basel) ; 14(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38997993

ABSTRACT

The aim of this study was to analyze suitable genetic models and selection indices to estimate the genetic parameters and breeding values of native Thai roosters. A total of 3475 records of seven semen traits (mass movement, semen pH, semen color, volume, sperm viability, sperm abnormalities, and sperm concentration) from 242 Thai native grandparent roosters were analyzed. Multiple-trait random regression test-day models with five covariance functions were used to analyze the variance components, genetic parameters, and breeding values. The selection index (SI) was calculated to determine the optimal genetic value for different selection percentages. The results showed that a multiple-trait random regression test-day model with a second-order Legendre polynomial function was the most appropriate genetic model for this population. The estimated heritability values were low to moderate, ranging from 0.110 to 0.112 (mass movement), 0.040 to 0.051 (semen pH), 0.092 to 0.097 (semen color), 0.220 to 0.225 (semen volume), 0.067 to 0.083 (sperm viability), 0.086 to 0.099 (sperm abnormalities), and 0.134 to 0.138 (sperm concentration). The repeatability values exceeded the heritability values and were within the range of 0.133 to 0.688. The genetic correlations among semen traits ranged from -0.332 to 0.677, and phenotypic correlations ranged from -0.260 to 0.460. When considering heritability and genetic correlation values, semen volume, sperm concentration, and mass movement were the top three priority semen traits calculated as selection indices. Finally, the top 10% of the selection index was recommended for creating the next generation. Our findings provide useful information on genetic parameters and an appropriate selection index of semen traits for selecting the genetics of individual Thai native grandparent roosters. The heritability estimates for semen traits reported here suggest an adequate response to selection through a genetic evaluation approach. Our results indicate that it is possible to select grandparent roosters with better reproductive performance.

16.
Foods ; 13(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998529

ABSTRACT

Dry bean (Phaseolus vulgaris L.) is a crop of high nutritional interest widespread throughout the world. This research had two objectives. On the one hand, the development and validation of an analytical method to quantify fatty acids in dry beans based on the extraction and derivatization in a single step and later quantification by gas chromatography. On the other, its application to characterize the fatty acid content in a diversity panel consisting of 172 lines. The method was successfully validated in terms of accuracy, precision and robustness. Among the 14 fatty acids that constitute the fatty acid profile of dry bean, the most quantitatively important were linolenic acid, the major fatty acid in all cases, with an average value of 6.7 mg/g, followed by linoleic acid (3.9 mg/g), palmitic acid (2.9 mg/g) and oleic acid (1.5 mg/g). The concentrations of fatty acids in dry bean were influenced by the gene pool, with the Mesoamerican gene pool showing a higher content of palmitic, stearic, linoleic and linolenic acids and the Andean gene pool a higher level of cis-vaccenic acid. Also, the expression of fatty acid content showed high heritability. The information generated constitutes a robust database of interest in food technology, nutrition and breeding programs.

17.
Heliyon ; 10(12): e33379, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022008

ABSTRACT

Background: Groundnut is one of the world's major food and oil crops. Being sources of nutrition and vegetable oil, rich in affordable and digestible protein, it is a strategic crop in Burkina Faso for food security, nutrition, and cash income. Understanding the nature of gene effect and genetic variation affecting yield and yield component traits will contribute to designing appropriate breeding methods for groundnut improvement and increase selection efficiency in Burkina Faso. Methods: In 2018, a total of 30 F2 progenies were generated through a 6 x 6 full diallel mating using six different and contrasting varieties. In 2019, parents and progenies were evaluated in a lattice square design in 3 replications at ICRISAT-Mali experimental field to assess the general combining ability (GCA) and specific combining ability (SCA) effects, the inheritance and the maternal and reciprocal effects for yield component traits (YCT) and oil content (OC). Results: Significant variabilities were observed among the parental genotypes and their F2 progenies for DTH, PSR, HPW, PL, PWD, SL, SWD, and OAC. Mean performance of the six parents were HPW (117.05g), HSW (57.24 g), PYH (1914.76), SYH (1312.73), PL (2.52), PWD (1,19), SL (1.38), SWD (0.83), OC (49.43), OAC (50.43) and LAC (33.61). Parent QH243C presented the highest value for SWD (1.02 cm) and OAC (60.76) while the parent ICGV09195 had the highest value of OC (50.36). Chalimbana presented the highest value of HPW (169.61 g), PL (2.98 cm), PWD (1. 41 cm), and SL (1.57 cm) while CG7 presented the highest value for HSW (75. 14 g), and SYH (1639.28 kg). Both YCT and OC are controlled by additive and non-additive gene effects with a predominance of additive gene action for HSW, SL, and SWD, whereas HPW, PL, PWD, and OAC were found to be more controlled by non-additive gene effects. Maternal effects as well as nuclear and cytoplasmic interaction effects were observed for both YCT and OC indicating that YCT and OC are influenced by a combination of genetic factors from both the maternal parent and the nuclear genome, as well as cytoplasmic factors such as mitochondrial DNA. Broad sense heritability ranged from 3.76 % to 91.56 %, and higher broad sense heritability values were recorded for pod length (91.56 %), hundred pod weight (83.71 %) and pod width (80.95 %). Conclusion: The study yields valuable insights into the inheritance of YCT and OC. The parents, Chalimbana and CG7, showed promise as good combiners for both yield component traits and oil content when used as male parents while TE3, Sh470P and QH243C can be used as female for the oil content and its components (oleic and linoleic content).

18.
Front Genet ; 15: 1394656, 2024.
Article in English | MEDLINE | ID: mdl-38854430

ABSTRACT

Infectious hematopoietic necrosis (IHN) is a disease of salmonid fish that is caused by the IHN virus (IHNV), which can cause substantial mortality and economic losses in rainbow trout aquaculture and fisheries enhancement hatchery programs. In a previous study on a commercial rainbow trout breeding line that has undergone selection, we found that genetic resistance to IHNV is controlled by the oligogenic inheritance of several moderate and many small effect quantitative trait loci (QTL). Here we used genome wide association analyses in two different commercial aquaculture lines that were naïve to previous exposure to IHNV to determine whether QTL were shared across lines, and to investigate whether there were major effect loci that were still segregating in the naïve lines. A total of 1,859 and 1,768 offspring from two commercial aquaculture strains were phenotyped for resistance to IHNV and genotyped with the rainbow trout Axiom 57K SNP array. Moderate heritability values (0.15-0.25) were estimated. Two statistical methods were used for genome wide association analyses in the two populations. No major QTL were detected despite the naïve status of the two lines. Further, our analyses confirmed an oligogenic architecture for genetic resistance to IHNV in rainbow trout. Overall, 17 QTL with notable effect (≥1.9% of the additive genetic variance) were detected in at least one of the two rainbow trout lines with at least one of the two statistical methods. Five of those QTL were mapped to overlapping or adjacent chromosomal regions in both lines, suggesting that some loci may be shared across commercial lines. Although some of the loci detected in this GWAS merit further investigation to better understand the biological basis of IHNV disease resistance across populations, the overall genetic architecture of IHNV resistance in the two rainbow trout lines suggests that genomic selection may be a more effective strategy for genetic improvement in this trait.

19.
Animal ; 18(7): 101206, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38905778

ABSTRACT

In beef cattle, dams play a crucial role in shaping the pre- and postnatal environment for the growth of their offspring. Acknowledging the substantial impact of maternal influence on the early development of calves, researchers utilize maternal animal models. These models take into account both maternal genetic and permanent environmental effects, operating under the assumption that these influences remain constant throughout the productive life of the cow. Nevertheless, it cannot be ruled out that these genetic and environmental effects may evolve throughout the lifespan of the cows. Therefore, this study aims to describe the changes in genetic and environmental maternal effects over the productive lifespan of cows. To accomplish this goal, we utilized random regression models, incorporating the age of the dam effect, maternal genetic effects, and environmental permanent effects using Legendre orthogonal polynomials. Additionally, the analytical model incorporated a covariate to adjust for the calf's age at recording, a two-level sex effect, a random herd-year-season effect, and an additive direct genetic effect associated linked to the calf. The dataset comprised information from dams aged between 2 and 16 years, resulting in a final database that comprised weight records of 58 332 calves from 21 673 dams. The average weight at 90 days was 135.0 ± 39.3 kg, and the mean age of the dam at calving was 7.03 ± 3.41 years. We evaluated models incorporating 2, 3, 4, 5, and 6 orthogonal polynomials alongside the standard maternal animal model. Afterward, we selected the model with five orthogonal polynomials based on the Akaike Information Criteria. The Restricted Maximum Likelihood estimates within this model indicated a direct heritability of around 0.50, and a maternal heritability ranging between 0.15 and 0.25, exhibiting a consistent increase between 4, 5 to 13 years. The genetic correlation estimates between direct and maternal genetic effects remained stable at approximately -0.55 across the lifespan of the cows. Furthermore, maternal genetic correlations between different ages of the dam decreased to around 0.7 for more distant age points. The maternal permanent correlations were notably lower, occasionally even reaching negative values, suggesting variability in environmental influence on maternal effects over the productive lifespan of the cow. Finally, the model enables the prediction of breeding values for the maternal genetic effects of the cow across its lifespan, providing opportunities for innovative selection strategies on the maternal side.

20.
Chest ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857779

ABSTRACT

BACKGROUND: An autoimmune component in the cause of sarcoidosis long has been debated, but population-based data on the clustering of immune-mediated diseases (IMDs) and sarcoidosis in individuals and families suggestive of shared cause is limited. RESEARCH QUESTION: Do patients with a history of IMDs have a higher risk of sarcoidosis and do IMDs cluster in families with sarcoidosis? STUDY DESIGN AND METHODS: We conducted a case-control family study (2001-2020). Patients with sarcoidosis (N = 14,146) were identified in the Swedish National Patient Register using a previously validated definition (≥ 2 International Classification of Diseases [ICD]-coded inpatient or outpatient visits). At diagnosis, patients were matched to up to 10 control participants from the general population (N = 118,478) for birth year, sex, and residential location. Patients, control participants, and their first-degree relatives (FDRs; Multi-Generation Register) were ascertained for IMDs by means of ICD codes in the Patient Register (1968-2020). Conditional logistic regression was used to estimate ORs and 95% CIs of sarcoidosis associated with a history of IMDs in patients and control participants and in FDRs. RESULTS: Patients with sarcoidosis exhibited a higher prevalence of IMDs compared with control participants (7.7% vs 4.7%), especially connective tissue diseases, cytopenia, and celiac disease. Familial aggregation was observed across IMDs; the strongest association was with celiac disease (OR, 2.09; 95% CI, 1.22-3.58), followed by cytopenia (OR, 1.88; 95% CI, 0.97-3.65), thyroiditis (OR, 1.72; 95% CI, 1.14-2.60), skin psoriasis (OR, 1.70; 95% CI, 1.34-2.15), inflammatory bowel disease (OR, 1.53; 95% CI, 1.14-2.03), immune-mediated arthritis (OR, 1.49; 95% CI, 1.20-1.85), and connective tissue disease (OR, 1.39; 95% CI, 1.00-1.93). INTERPRETATION: IMDs confer a higher risk of sarcoidosis and they aggregate in families with sarcoidosis, signaling a shared cause between IMDs and sarcoidosis. Our findings warrant further evaluation of shared genetic mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...