Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Explor Target Antitumor Ther ; 5(2): 278-295, 2024.
Article in English | MEDLINE | ID: mdl-38745771

ABSTRACT

Aim: Triple negative breast cancer (TNBC) is usually treated with high doses of paclitaxel, whose effectiveness may be modulated by the action of environmental contaminants such as hexachlorobenzene. High doses of paclitaxel cause adverse effects such as low cellular selectivity and the generation of resistance to treatment due to an increase in the expression of multidrug resistance proteins (MRPs). These effects can be reduced using a metronomic administration scheme with low doses. This study aimed to investigate whether hexachlorobenzene modulates the response of cells to conventional chemotherapy with paclitaxel or metronomic chemotherapy with paclitaxel plus carbachol, as well as to study the participation of the MRP ATP-binding cassette transporter G2 (ABCG2) in human TNBC MDA-MB231 cells. Methods: Cells were treated with hexachlorobenzene alone or in combination with conventional or metronomic chemotherapies. The effects of treatments on cell viability were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the nuclear factor kappa B pathway participation was evaluated using a selective inhibitor. ABCG2 expression and its modulation were determined by western blot. Results: Results confirmed that paclitaxel reduces MDA-MB231 cell viability in a concentration-dependent manner. Results also showed that both conventional and metronomic chemotherapies reduced cell viability with similar efficacy. Although hexachlorobenzene did not modify cell viability per se, it did reverse the effect induced by the conventional chemotherapy, without affecting the efficacy of the metronomic chemotherapy. Additionally, a differential modulation of ABCG2 expression was determined, mediated by the nuclear factor kappa B pathway, which was directly related to the modulation of cell sensitivity to another cycle of paclitaxel treatment. Conclusions: The findings indicate that, in human TNBC MDA-MB231 cells, in the presence of hexachlorobenzene, the metronomic combination of paclitaxel plus carbachol is more effective in affecting the tumor biology than the conventional therapeutic administration scheme of paclitaxel.

2.
Environ Health ; 23(1): 28, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504322

ABSTRACT

BACKGROUND: The effects of organochlorine pesticide (OCP) exposure on the development of human papillary thyroid cancer (PTC) are not well understood. A nested case-control study was conducted with data from the U.S. Department of Defense Serum Repository (DoDSR) cohort between 2000 and 2013 to assess associations of individual OCPs serum concentrations with PTC risk. METHODS: This study included 742 histologically confirmed PTC cases (341 females, 401 males) and 742 individually-matched controls with pre-diagnostic serum samples selected from the DoDSR. Associations between categories of lipid-corrected serum concentrations of seven OCPs and PTC risk were evaluated for classical PTC and follicular PTC using conditional logistic regression, adjusted for body mass index category and military branch to compute odds ratios (OR) and 95% confidence intervals (CIs). Effect modification by sex, birth cohort, and race was examined. RESULTS: There was no evidence of associations between most of the OCPs and PTC, overall or stratified by histological subtype. Overall, there was no evidence of an association between hexachlorobenzene (HCB) and PTC, but stratified by histological subtype HCB was associated with significantly increased risk of classical PTC (third tertile above the limit of detection (LOD) vs.

Subject(s)
Hexachlorocyclohexane , Hydrocarbons, Chlorinated , Military Personnel , Pesticides , Thyroid Neoplasms , Male , Humans , Female , Thyroid Cancer, Papillary/epidemiology , Hexachlorobenzene , Case-Control Studies , Thyroid Neoplasms/chemically induced , Thyroid Neoplasms/epidemiology
3.
Molecules ; 29(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276605

ABSTRACT

(1) Background: Hexachlorobenzene (HCB) is a persistent organic pollutant that is possibly carcinogenic to humans. It is still found in the environment, humans and animals, and in foods, including milk and dairy products; (2) Methods: The influence of the probiotic cultures Lacticaseibacillus rhamnosus LCR and Lactiplantibacillus plantarum subsp. plantarum LP on the possibility of effecting the biodegradation of HCB in dairy products fermented from mare milk was investigated, taking into account the product storage time (maximum 21 days). HCB content was determined using the GC/MS method; (3) Results: A strong negative Pearson correlation (p < 0.05) was found between HCB concentration and the refrigeration storage time of the fermented beverages. The highest HCB reduction was observed in milk fermented with both Lacticaseibacillus rhamnosus LCR and Lactiplantibacillus plantarum subsp. plantarum LP (78.77%), while the lowest was noted when only Lactiplantibacillus plantarum subsp. plantarum LP was used (73.79%); (4) Conclusions: This pilot study confirmed that probiotics commonly used to give products health-promoting properties can also contribute to reducing the content of undesirable substances, and the bacterial cultures used might provide an alternative method for reducing HCB residues in fermented drinks.


Subject(s)
Cultured Milk Products , Lacticaseibacillus rhamnosus , Lactobacillus , Probiotics , Humans , Horses , Animals , Female , Cultured Milk Products/analysis , Hexachlorobenzene/analysis , Pilot Projects , Fermentation , Probiotics/analysis
4.
Prev Sci ; 25(Suppl 2): 225-248, 2024 May.
Article in English | MEDLINE | ID: mdl-38108946

ABSTRACT

Exposure to certain chemicals prenatally and in childhood can impact development and may increase risk for attention-deficit/hyperactivity disorder (ADHD). Leveraging a larger set of literature searches conducted to synthesize results from longitudinal studies of potentially modifiable risk factors for childhood ADHD, we present meta-analytic results from 66 studies that examined the associations between early chemical exposures and later ADHD diagnosis or symptoms. Studies were eligible for inclusion if the chemical exposure occurred at least 6 months prior to measurement of ADHD diagnosis or symptomatology. Included papers were published between 1975 and 2019 on exposure to anesthetics (n = 5), cadmium (n = 3), hexachlorobenzene (n = 4), lead (n = 22), mercury (n = 12), organophosphates (n = 7), and polychlorinated biphenyls (n = 13). Analyses are presented for each chemical exposure by type of ADHD outcome reported (categorical vs. continuous), type of ADHD measurement (overall measures of ADHD, ADHD symptoms only, ADHD diagnosis only, inattention only, hyperactivity/impulsivity only), and timing of exposure (prenatal vs. childhood vs. cumulative), whenever at least 3 relevant effect sizes were available. Childhood lead exposure was positively associated with ADHD diagnosis and symptoms in all analyses except for the prenatal analyses (odds ratios (ORs) ranging from 1.60 to 2.62, correlation coefficients (CCs) ranging from 0.14 to 0.16). Other statistically significant associations were limited to organophosphates (CC = 0.11, 95% confidence interval (CI): 0.03-0.19 for continuous measures of ADHD outcomes overall), polychlorinated biphenyls (CC = 0.08, 95% CI: 0.02-0.14 for continuous measures of inattention as the outcome), and both prenatal and childhood mercury exposure (CC = 0.02, 95% CI: 0.00-0.04 for continuous measures of ADHD outcomes overall for either exposure window). Our findings provide further support for negative impacts of prenatal and/or childhood exposure to certain chemicals and raise the possibility that primary prevention and targeted screening could prevent or mitigate ADHD symptomatology. Furthermore, these findings support the need for regular review of regulations as our scientific understanding of the risks posed by these chemicals evolves.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Attention Deficit Disorder with Hyperactivity/chemically induced , Humans , Child , Environmental Exposure/adverse effects , Female , Prenatal Exposure Delayed Effects , Pregnancy
5.
Sci Total Environ ; 896: 165262, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37400031

ABSTRACT

Climate-related changes in environmental conditions, such as reduction of sea ice, intensive glacier retreat, and increasing summer precipitation, directly influence the arctic marine environment and, therefore, the organisms living there. Benthic organisms, being an important food source for organisms from higher trophic levels, constitute an important part of the Arctic trophic network. Moreover, the long lifespan and limited mobility of some benthic species make them suitable for the study of the spatial and temporal variability of contaminants. In this study, organochlorine pollutants (polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB)) were measured in benthic organisms collected in three fjords of western Spitsbergen. Two of these were recommended by the Marine Biodiversity and Ecosystem Functioning (MARBEF) Network of Excellence as European flagship sites, namely Hornsund as the Biodiversity Inventory and Kongsfjorden as the Long-Term Biodiversity Observatory. Adventfjorden, with notable human activity, was also studied. Æ©7 PCB and HCB concentrations in sediments were up to 2.4 and 0.18 ng/g d.w. respectively. Concentrations of Æ©7 PCBs and HCB measured in collected benthic organisms were up to 9.1 and 13 ng/g w.w., respectively. In several samples (41 of 169) the concentrations of ∑7 PCBs were below the detection limit values, yet nevertheless the results of the research show effective accumulation of target organochlorine contaminants by many Arctic benthic organisms. Important interspecies differences were observed. Free-living, mobile taxa, such as shrimp Eualus gaimardii, have accumulated a large quantity of contaminants, most probably due to their predatory lifestyle. ∑7 PCB and HCB concentrations were both significantly higher in Hornsund than in Kongsfjorden. Biomagnification occurred in 0 to 100 % of the predator-prey pairs, depending on the congener analyzed. Although the sampled organisms were proved to have accumulated organochlorine contaminants, the measured levels can be considered low, and not posing a substantial threat to the biota.


Subject(s)
Environmental Pollutants , Polychlorinated Biphenyls , Water Pollutants, Chemical , Humans , Polychlorinated Biphenyls/analysis , Hexachlorobenzene/analysis , Ecosystem , Svalbard , Estuaries , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
6.
Environ Sci Technol ; 57(25): 9342-9352, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37294896

ABSTRACT

Persistent organic pollutants (POPs) are recognized as pollutants of global concern, but so far, information on the trends of legacy POPs in the waters of the world has been missing due to logistical, analytical, and financial reasons. Passive samplers have emerged as an attractive alternative to active water sampling methods as they accumulate POPs, represent time-weighted average concentrations, and can easily be shipped and deployed. As part of the AQUA-GAPS/MONET, passive samplers were deployed at 40 globally distributed sites between 2016 and 2020, for a total of 21 freshwater and 40 marine deployments. Results from silicone passive samplers showed α-hexachlorocyclohexane (HCH) and γ-HCH displaying the greatest concentrations in the northern latitudes/Arctic Ocean, in stark contrast to the more persistent penta (PeCB)- and hexachlorobenzene (HCB), which approached equilibrium across sampling sites. Geospatial patterns of polychlorinated biphenyl (PCB) aqueous concentrations closely matched original estimates of production and use, implying limited global transport. Positive correlations between log-transformed concentrations of Σ7PCB, ΣDDTs, Σendosulfan, and Σchlordane, but not ΣHCH, and the log of population density (p < 0.05) within 5 and 10 km of the sampling sites also supported limited transport from used sites. These results help to understand the extent of global distribution, and eventually time-trends, of organic pollutants in aquatic systems, such as across freshwaters and oceans. Future deployments will aim to establish time-trends at selected sites while adding to the geographical coverage.


Subject(s)
Air Pollutants , Environmental Pollutants , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Polychlorinated Biphenyls/analysis , Environmental Monitoring/methods , Hexachlorobenzene/analysis , Fresh Water , Air Pollutants/analysis , Pesticides/analysis , Hydrocarbons, Chlorinated/analysis
7.
Sci Total Environ ; 893: 164909, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37327905

ABSTRACT

Fe2O3 plays a complex role in soil electron transfer. A microbial fuel cell (MFC) was constructed to drive the directional transfer of electrons in soil, and the results revealed that Fe2O3 acts first as a capacitor, intercepting and reserving the electrons produced by electrochemically active bacteria (EAB) in the soil, which leads to a decrease in hexachlorobenzene (HCB) removal efficiency with increasing proportions of Fe2O3 dosing (R2 = 0.85). The Fe2O3 then exerted its semiconductor properties in synergy with dissolved Fe2+ as an electron mediator to promote the flow of electrons in the soil. Power generation by the MFC was significantly and positively correlated with the concentration of dissolved Fe2+ (r = 0.51) and the Fe2O3 dosing proportion (r = 0.97). The higher HCB removal efficiency, spatial distribution of intercepted electrons, and abundance of electron transfer metabolic pathways confirmed that Fe2O3 promoted electron-flow fluxes in soil. Additionally, Geobacter sp., (direct electron transfer) and Pseudomonas sp., (indirect electron transfer) were the dominant electrochemically active bacteria in the anode and soil of MFC, respectively. In this study, both dissolved (Fe2+) and solid state (Fe2O3) electron mediators functioned as electron transporters in soil, we propose an internal "electron internet" of soil consisting of points and lines.


Subject(s)
Bioelectric Energy Sources , Electrons , Soil , Hexachlorobenzene/metabolism , Bacteria/metabolism , Electron Transport , Bioelectric Energy Sources/microbiology , Electrodes
8.
Food Chem Toxicol ; 177: 113822, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37169060

ABSTRACT

Breast cancer is one of the leading cancers among women worldwide. Given the evidence that pesticides play an important role in breast cancer, interest has grown in pesticide impact on disease progression. Hexachlorobenzene (HCB), an aryl hydrocarbon receptor (AhR) ligand, promotes triple-negative breast cancer cell migration and invasion. Estrogen receptor ß (ERß) inhibits cancer motility, while G protein-coupled ER (GPER) modulates the neoplastic transformation. Tryptophan is metabolized through the kynurenine pathway by indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO), with kynurenine signaling activation often predicting worse prognosis in cancer. In this context, we examined the HCB (0.005; 0.05; 0.5 and 5 µM) effect on LM3 cells, a human epidermal growth factor receptor 2 (HER2)-positive breast cancer model. Results show that HCB increases IDO and TDO mRNA levels and promotes cell viability, proliferation and migration through the AhR pathway. Moreover, HCB boosts mammosphere formation, vascular endothelial growth factor and cyclooxygenase-2 expression and reduces IL-10 levels. For some parameters, U-shaped or inverted U-shaped dose-response curves are shown. HCB alters ER levels, reducing ERß while increasing GPER. These results demonstrate that exposure to environmentally relevant concentrations of HCB up-regulates the kynurenine pathway and dysregulates ERß and GPER levels, collaborating in HER2-positive breast cancer progression.


Subject(s)
Dioxygenases , Pesticides , Triple Negative Breast Neoplasms , Female , Humans , Hexachlorobenzene/toxicity , Kynurenine , Tryptophan , Estrogen Receptor beta , Vascular Endothelial Growth Factor A , Cell Line, Tumor , Triple Negative Breast Neoplasms/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
9.
Environ Res ; 222: 115350, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36709023

ABSTRACT

INTRODUCTION: Although often overlooked in clinical settings, accumulation of persistent organic pollutants (POPs) in visceral adipose tissue (VAT) is thought to be a relevant risk factor for metabolic syndrome (MetS). METHODS: One hundred and seventeen patients undergoing non-oncological surgery were randomly recruited and classified as MetS + if presented 3 out of the 5 MetS components: waist circumference (WC), systolic and diastolic blood pressure (SBP and DBP, respectively), serum glucose, insulin, triglycerides (TG) and high-density lipoprotein (HDL) cholesterol levels, according International Diabetes Federation (IDF) criteria. Seventeen organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were measured in adipose tissue samples. Linear, logistic and weighted quantile sum (WQS) regression models, adjusted for age and sex, were performed. RESULTS: One third of the participants were males (36.8%) with a median age of 44 years, showing clinical evidences of MetS (35.0%). Adjusted linear regression models showed that WC correlated positively with all OCP concentrations. Higher fasting serum glucose levels were related to higher HCB and γ-HCH concentrations. The remaining OCPs and PCBs were not associated with this MetS component. HCB was inversely associated with HDL cholesterol levels, while PCB-180 was positively associated. HCB and γ-HCH concentrations were also positively correlated with DBP and SBP levels. PCB-138 was also positively associated with SBP. Adjusted logistic models revealed that exposure to HCB and γ-HCH were associated with increased odds of MetS [ORs (95%CI) 1.53 (1.22-1.92) and 1.39 (1.10-1.76) respectively; p < 0.01]. No associations were observed for the remaining POPs. WQS models showed a positive and significant mixture effect of POPs on the odds of MetS (exp [beta] = 2.34; p < 0.001), with γ-HCH (52.9%), o,p'-DDT (26.9%) and HCB (19.7%) driving the association. CONCLUSIONS: Our findings support that POPs accumulated in VAT, specifically HCB and (gamma)-HCH, are associated with both isolated components and clinically diagnosed SMT.


Subject(s)
Environmental Pollutants , Hydrocarbons, Chlorinated , Metabolic Syndrome , Pesticides , Polychlorinated Biphenyls , Middle Aged , Male , Adult , Humans , Female , Persistent Organic Pollutants , Environmental Exposure , Hexachlorocyclohexane , Cross-Sectional Studies , Environmental Pollutants/metabolism , Hydrocarbons, Chlorinated/analysis , Adipose Tissue/chemistry , Glucose
10.
Environ Geochem Health ; 45(6): 3971-3983, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36629959

ABSTRACT

It is well known that many chlorinated organic pollutants can be dechlorinated by nanoscale zero-valent iron. However, in the real chlorinated organic compounds contaminated soil, the congeners of high- and low-chlorinated isomer often coexist and their dechlorination behaviors are poorly known, such as hexachlorobenzene (HCB). In this work, the degradation behaviors of three coexisting chlorobenzene congeners pentachlorobenzene (PeCB), 1,2,4,5-tetrachlorobenzene (1,2,4,5-TeCB) and 1,2,4-trichlorobenzene (1,2,4-TCB) and the influence of initial pH and reaction temperature on the dechlorination of HCB in HCB-contaminated soil by nanoscale zero-valent iron were studied. The amount and extent of accumulated coexisting chlorobenzenes was analyzed under different environmental conditions. The results indicate that nanoscale zero-valent iron can improve the degradation efficiency of highly toxic chlorinated benzenes and reduce the accumulative effects of highly toxic chlorinated benzenes on dechlorination of HCB. The accumulative effects of three coexisting chlorobenzene congeners on the dechlorination of HCB were ranked as follows: 1,2,4-TCB > 1,2,4,5-TeCB > PeCB.


Subject(s)
Hexachlorobenzene , Soil , Hexachlorobenzene/chemistry , Iron/chemistry , Chlorobenzenes/chemistry , Chlorobenzenes/metabolism
11.
Hum Exp Toxicol ; 42: 9603271221149201, 2023.
Article in English | MEDLINE | ID: mdl-36606752

ABSTRACT

This present study was designed to investigate ameliorating potential of thymol (THY) on hexachlorobenzene (HBC)-induced epididymal and testicular toxicities in adult male rats. Forty adult male rats were orally treated by gavage daily for 28 consecutive days and divided into four groups; control group administered with corn oil, HBC-treated group (16 mg/kg b. wt), thymol-treated group (30 mg/kg b. wt), and HBC + THY-treated group. The results revealed that HBC exposure caused a significant decrease in the body weight change, organ weights, sperm functional parameters, serum testosterone level with widespread histological abnormalities. Furthermore, HBC-treated rats showed increased in the serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH), epididymal and testicular myeloperoxidase activity, tumor necrosis-α, interleukin-1ß level and caspase-3 activity, induced oxidative damage as evidenced by elevated malondialdehyde (MDA), reactive oxygen species (RONS) levels and significant reduction in antioxidant enzyme activities and reduced glutathione (GSH). However, co-treatment of THY with HBC alleviated the HBC-induced epididymal and testicular toxicities. Our findings revealed that HBC acts as a reproductive toxicant in rats and thymol could be a potential remedial agent for HBC-induced reproductive toxicity.


Subject(s)
Hexachlorobenzene , Testis , Thymol , Animals , Male , Rats , Antioxidants/metabolism , Hexachlorobenzene/toxicity , Oxidative Stress , Semen , Spermatozoa , Testis/drug effects , Testosterone , Thymol/pharmacology
13.
Front Public Health ; 10: 968296, 2022.
Article in English | MEDLINE | ID: mdl-36211646

ABSTRACT

In the last century, many Mediterranean coastal areas have been subjected to anthropogenic disturbances from industrial activities, uncontrolled landfills, shipyards, and high maritime traffic. The Augusta Bay (eastern Sicily, Italy) represents an example of a strongly impacted coastal environment with an elevated level of sediments contamination due to the presence of one of the largest European petrochemical plants, combined with an extensive commercial and military harbor. The most significant contaminants were represented by mercury (Hg) and hexachlorobenzene (HCB), derived from a former chlor-alkali plant, and other organic compounds like polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs). Since the 1970s, Augusta Bay has become internationally recognized as a contaminated marine environment, although very little information is available regarding the temporal trend of contaminants bioavailability and biological impacts on aquatic organisms. In this study, the Hg and HCB concentrations were investigated over 10 years (from 2003 to 2013) in sediments and invertebrate and vertebrate organisms; these two contaminants' ecotoxicity was further evaluated at a biochemical and cellular level by analyzing the induction of organic biotransformation processes and DNA damages. The results showed high concentrations of Hg and HCB in sediments and their strong bioaccumulation in different species with significantly higher values than those measured in reference sites. This trend was paralleled by increased micronuclei frequency (DNA damage biomarker) and activity of the biotransformation system. While levels of chemicals in sediments remained elevated during the time course, their bioavailability and biological effects showed a gradual decrease after 2003, when the chlor-alkali plant was closed. Environmental persistence of Hg and HCB availability facilitates their bioaccumulation and affects the health status of marine organisms, with possible implications for environmental risk, pollutants transfer, and human health.


Subject(s)
Mercury , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Alkalies , Aquatic Organisms , Bays , Biological Availability , Environmental Monitoring/methods , Geologic Sediments/chemistry , Hexachlorobenzene , Humans , Mercury/analysis , Mercury/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
14.
Int J Mol Sci ; 23(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36232717

ABSTRACT

The species of Comamonas testosteroni is the most common human pathogen of the genus, which can be associated with acute appendicitis, infections of the bloodstream, the peritoneal cavity, cerebrospinal fluid, inflammatory bowel disease, and in general, bacteremia. According to the literature, Comamonas testosteroni has destructive activity to a wide range of toxic chemical compounds, including chlorobenzenes. The specified strains were isolated from the soil of the organochlorine waste landfill, where hexachlorobenzene (HCB) was predominant. These strains were expected to be capable of degrading HCB. Microbiological (bacterial enrichment and cultivating, bacterial biomass obtaining), molecular biology, biochemical (enzymatic activities, malondialdehyde measuring, peroxidation lipid products measuring), and statistical methods were carried out in this research. The reaction of both strains (UCM B-400 and UCM B-401) to the hexachlorobenzene presence differed in the content of diene and triene conjugates and malondialdehyde, as well as different catalase and peroxidase activity levels. In terms of primary peroxidation products, diene conjugates were lower, except conditions with 20 mg/L HCB, where these were higher up to two times, than the pure control. Malondialdehyde in strain B-400 cells decreased up to five times, in B-401, but increased up to two times, compared to the pure control. Schiff bases in strain B-400 cells were 2-3 times lower than the pure control. However, in B-401 cells Schiff bases under higher HCB dose were in the same level with the pure control. Catalase activity was 1.5 times higher in all experimental variants, compared to the pure control (in the strain B-401 cells), but in the B-400 strain, cells were 2 times lower, compared to the pure control. The response of the two strains to hexachlorobenzene was similar only in peroxidase activity terms, which was slightly higher compared to the pure control. The physiological response of Comamonas testosteroni strains to hexachlorobenzene has a typical strain reaction. The physiological response level of these strains to hexachlorobenzene confirms its tolerance, and indirectly, the ability to destroy the specified toxic compound.


Subject(s)
Comamonas testosteroni , Hexachlorobenzene , Antioxidants , Catalase , Chlorobenzenes , Humans , Lipid Peroxidation , Lipids , Malondialdehyde , Schiff Bases , Soil
15.
Molecules ; 27(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35956769

ABSTRACT

The geometrical effect of chlorine atom positions in polyatomic molecules after capturing a low-energy electron is shown to be a prevalent mechanism yielding Cl2-. In this work, we investigated hexachlorobenzene reduction in electron transfer experiments to determine the role of chlorine atom positions around the aromatic ring, and compared our results with those using ortho-, meta- and para-dichlorobenzene molecules. This was achieved by combining gas-phase experiments to determine the reaction threshold by means of mass spectrometry together with quantum chemical calculations. We also observed that Cl2- formation can only occur in 1,2-C6H4Cl2, where the two closest C-Cl bonds are cleaved while the chlorine atoms are brought together within the ring framework due to excess energy dissipation. These results show that a strong coupling between electronic and C-Cl bending motion is responsible for a positional isomeric effect, where molecular recognition is a determining factor in chlorine anion formation.

16.
Environ Sci Technol ; 56(12): 7945-7953, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35670489

ABSTRACT

Hexachlorobenzene (HCB), listed on the Stockholm Convention on persistent organic pollutants and regulated as a hazardous priority pollutant by the Water Framework Directive (WFD), is ubiquitously distributed in the environment and assumed to mildly biomagnify in aquatic foodwebs. The proposal to include trophic magnification factors (TMFs) in the procedure for comparing contaminant levels in biota at different trophic levels (TLs) with WFD environmental quality standards requires adequate selection of TMFs. In the first step of our study, we compared two independently obtained datasets of pentachlorobenzene (PeCB) and HCB concentration ratios from passive sampling (PS) in water and in fish through routine monitoring programs in Norway to evaluate possible biomagnification. In this procedure, PeCB is used for benchmarking the bioconcentration in fish, and the observed HCB/PeCB ratios in fish are compared with ratios expected in the case of (i) HCB bioconcentration or (ii) biomagnification using published TMF values. Results demonstrate that it is not possible to confirm that HCB biomagnifies in fish species that would be used for WFD monitoring in Norway and challenges the proposed monitoring procedures for such compounds in Norwegian or European waters. In the second step, fish-water chemical activity ratios for HCB and PeCB as well as for polychlorinated biphenyls where biota and PS were conducted alongside were calculated and found to rarely exceed unity for cod (Gadus morhua), a fish species with a TL of approximately 4.


Subject(s)
Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Bioaccumulation , Environmental Monitoring/methods , Fishes , Food Chain , Hexachlorobenzene/analysis , Polychlorinated Biphenyls/analysis , Water , Water Pollutants, Chemical/analysis
17.
Mar Pollut Bull ; 177: 113488, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35276612

ABSTRACT

Concentrations of seven polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), and twelve polycyclic aromatic hydrocarbons (PAHs) were examined in plankton collected in summer from different Arctic fjords (Hornsund, Kongsfjorden, Adventfjorden). The levels of all target contaminants in arctic protists have been analyzed for the first time. This is also the first report on PAH levels in arctic fjords zooplankton. ∑7 PCB, HCB and ∑12 PAH concentrations were up to 3.58 ng/g w.w., 0.28 ng/g w.w. and 249 ng/g w.w., respectively. Among the zooplankton species, the highest concentrations of the most analyzed contaminants were detected in Themisto abyssorum. This could be explained by the predatory feeding strategy of this species. The importance of diet was confirmed by the low concentrations of contaminants detected in the herbivorous copepod Calanus spp. Depending on contaminant, bioaccumulation occurred in 50 to 100% studied cases. Studies have shown significant biomagnification of PCBs and PAHs in zooplankton predator-prey pairs.


Subject(s)
Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Bioaccumulation , Environmental Monitoring , Estuaries , Hexachlorobenzene/analysis , Plankton , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Svalbard , Water Pollutants, Chemical/analysis
18.
Sci Total Environ ; 829: 154602, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35306068

ABSTRACT

The atmospheric gas-phase concentrations of several polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), hexachlorobenzene (HCB), and pentachlorobenzene (PeCB) were measured in six high-mountain sites in the Pyrenees (1619-2453 m). Polyurethane foam passive air samplers were used for this purpose, providing continuous records spanning over three years (2017-2020). The mean concentrations of ∑PCBs, HCB, and PeCB, 13 ± 4 pg m-3, 44 ± 18 pg m-3, and 23 ± 20 pg m-3, respectively, were of the order of those reported in other mountain sites and similar to those measured 20 years ago in the same area, evidencing the persistence of these compounds despite the international regulatory actions. The mean concentration of ∑PAHs was 631 ± 238 pg m-3, representing between two- and three-times lower values than 20 years ago in the same area, but still in the range of other mountain regions. Statistically significant increases in gas-phase concentrations at higher temperatures were observed for most compounds. The experimental phase-change pseudo-enthalpies calculated from the slopes of the regressions between the natural logarithm of the concentrations and the reciprocal of temperature were lower than the reference values for nearly all compounds. This difference suggested a main contribution of long-range atmospheric transport of the gas-phase PAH and organochlorine concentrations in this mountain area. However, the less volatile compounds such as benz[a]anthracene, PCB138, and PCB180 showed a closer similarity between experimental and laboratory enthalpies, indicating that a significant portion of the variations in concentration of these compounds originated from temperature-dependent diffusive exchange by re-volatilization from local surfaces. The concentrations found in these sentinel ecosystems demonstrate that long-range transport of organic pollutants remains a risk in remote continental environments.


Subject(s)
Air Pollutants , Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Ecosystem , Environmental Monitoring , Hexachlorobenzene/analysis , Hydrocarbons, Chlorinated/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis
19.
Chemphyschem ; 23(10): e202200038, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35286008

ABSTRACT

Gas phase molecules of hexachlorobenzene (C6 Cl6 ) were investigated by means of dissociative electron attachment spectroscopy (DEAS). Three channels of molecular negative ions decay have been identified: abstraction of Cl- and Cl2- as well as electron detachment (τa ∼250 µs at 343 K). All three channels exhibit temperature dependence. The adiabatic electron affinity estimated using a simple but typically accurate Arrhenius model (EAa =1.6-1.9 eV) turns out to be much higher than the quantum-chemical predictions (EAa =0.9-1.0 eV). We discuss the possible reasons behind the observed discrepancy.


Subject(s)
Electrons , Hexachlorobenzene , Hexachlorobenzene/chemistry , Temperature
20.
Chemosphere ; 295: 133907, 2022 May.
Article in English | MEDLINE | ID: mdl-35151701

ABSTRACT

As one of the first batch of persistent organic pollutants (POPs) included in Stockholm Convention, hexachlorobenzene (HCB) has attracted great attention because of its wide occurrence and great environmental risks. Considering the easy adsorption of HCB on solids and the complexity of natural particles, we systematically investigated the photodegradation of HCB on the surface of silica gel (SG) in aqueous solution in this work to reveal its fate in natural waters. Under mercury lamp irradiation, more than 90% of HCB loaded on SG could be removed after 240 min. Moreover, the effects of solution pH and water constituents were examined, and results showed that the presence of NO2-, NO3-, Fe3+ and humic acid (HA) significantly inhibited the reaction due to the scavenging of ROS and/or competitive absorption of light. According to radical quenching experiments and electron paramagnetic resonance (EPR) spectra, hydroxyl radicals and singlet oxygen generated on the surface of SG could participate in the transformation of HCB, but •OH played a dominant role. Based on products identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS), two main pathways were proposed for the removal of HCB, including dechlorination and hydroxylation which represent direct and indirect photodegradation, respectively, and the occurrence of these two reactions was further supported by density functional theory (DFT) calculations. From the quantitative analysis of penta-chlorobenzene, it was estimated that dechlorination and hydroxylation contributed to approximately 44.4% and 55.6% of initial HCB degradation, respectively. Furthermore, toxicity predictions by the ecological structure-activity relationship model (ECOSAR) suggested that the toxicity of HCB was decreased in the photodegradation process. This study would provide important information for understanding the photochemical transformation mechanism of HCB at the solid/water interface.


Subject(s)
Hexachlorobenzene , Water , Hexachlorobenzene/chemistry , Humic Substances/analysis , Kinetics , Photolysis , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...