Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
J Forensic Sci ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997947

ABSTRACT

The collection, storage, and transport of samples prior to and during analysis is of utmost importance, especially for highly potent analogs that may not be present in high concentrations and are susceptible to pH or thermally mediated degradation. An accelerated stability study was performed on 17 fentanyl analogs (fentalogs) over a wide range of pH (2-10) and temperature (20-60°C) conditions over 24 h. Dilute aqueous systems were used to investigate temperature and pH-dependent kinetics using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Liquid chromatography-quadrupole/time-of-flight-mass spectrometry (LC-Q/TOF-MS) was used for structural elucidation of degradants. With the exception of remifentanil, all fentalogs evaluated were stable at pH 6 or lower. Fentalogs were generally unstable in strongly alkaline environments and at elevated temperatures. Remifentanil was the least stable drug and N-dealkylated fentalogs were the most stable. Fentanyl degraded to acetylfentanyl, norfentanyl, fentanyl N-oxide, and 1-phenethylpyridinium salt (1-PEP). A total of 26 unique breakdown products were observed for 15 of the fentanyl derivatives studied. Common degradation pathways involved N-dealkylation, oxidation of the piperidine nitrogen, and ß-elimination of N-phenylpropanamide followed by oxidation/dehydration of the piperidine ring. Ester and amide hydrolysis, demethylation at the propanamide, and O-demethylation were observed for selected fentalogs only. The potential for analyte loss should be considered during the pre-analytical phase (i.e., shipping and transport) where environmental conditions may not be controlled, as well as during the analysis itself.

2.
Environ Int ; 189: 108802, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38875816

ABSTRACT

Organophosphorus compounds (OPs) are widely used as flame retardants (FRs) and plasticizers, yet strategies for comprehensively screening of suspect OPs in environmental samples are still lacking. In this work, a neoteric, robust, and general suspect screening technique was developed to identify novel chemical exposures by use of ultra-high performance liquid chromatography-Q Exactive hybrid quadrupole-Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). We firstly established a suspect chemical database which had 7,922 OPs with 4,686 molecular formulas, and then conducted suspect screening in n = 50 indoor dust samples, n = 76 sediment samples, and n = 111 water samples. By use of scoring criteria such as retention time prediction models, we successfully confirmed five compounds by comparison with their authentic standards, and prioritized three OPs candidates including a nitrogen/fluorine-containing compound, that is dimethyl {1H-indol-3-yl[3-(trifluoromethyl)anilino]methyl} phosphonate (DMITFMAMP). Given that the biodegradation half-life values in water (t1/2,w) of DMITFMAMP calculated by EPI Suite is 180 d, it is considered to be potentially persistent. This strategy shows promising potential in environmental pollution assessment, and can be expected to be widely used in future research.


Subject(s)
Environmental Monitoring , Flame Retardants , Organophosphorus Compounds , Organophosphorus Compounds/analysis , Environmental Monitoring/methods , Flame Retardants/analysis , Dust/analysis , Chromatography, High Pressure Liquid , Environmental Pollutants/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Mass Spectrometry/methods
3.
Environ Toxicol Chem ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923620

ABSTRACT

Perfluoroalkyl sulfonamides (FASAs) and other FASA-based per- and polyfluoroalkyl substances (PFASs) can transform into recalcitrant perfluoroalkyl sulfonates in vivo. We conducted high-resolution mass spectrometry suspect screening of urine and tissues (kidney and liver) from mice dosed with an electrochemically fluorinated aqueous film-forming foam (AFFF) to better understand the biological fate of AFFF-associated precursors. The B6C3F1 mice were dosed at five levels (0, 0.05, 0.5, 1, and 5 mg kg-1 day-1) based on perfluorooctane sulfonate and perfluorooctanoate content of the AFFF mixture. Dosing continued for 10 days followed by a 6-day depuration. Total oxidizable precursor assay of the AFFF suggested significant contributions from precursors with three to six perfluorinated carbons. We identified C4 to C6 FASAs and N-glucuronidated FASAs (FASA-N-glus) excreted in urine collected throughout dosing and depuration. Based on normalized relative abundance, FASA-N-glus accounted for up to 33% of the total excreted FASAs in mouse urine, highlighting the importance of phase II metabolic conjugation as a route of excretion. High-resolution mass spectrometry screening of liver and kidney tissue revealed accumulation of longer-chain (C7 and C8) FASAs not detected in urine. Chain-length-dependent conjugation of FASAs was also observed by incubating FASAs with mouse liver S9 fractions. Shorter-chain (C4) FASAs conjugated to a much greater extent over a 120-min incubation than longer-chain (C8) FASAs. Overall, this study highlights the significance of N-glucuronidation as an excretion mechanism for short-chain FASAs and suggests that monitoring urine for FASA-N-glus could contribute to a better understanding of PFAS exposure, as FASAs and their conjugates are often overlooked by traditional biomonitoring studies. Environ Toxicol Chem 2024;00:1-11. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

4.
Environ Sci Technol ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696305

ABSTRACT

Identifying causative toxicants in mixtures is critical, but this task is challenging when mixtures contain multiple chemical classes. Effect-based methods are used to complement chemical analyses to identify toxicants, yet conventional bioassays typically rely on an apical and/or single endpoint, providing limited diagnostic potential to guide chemical prioritization. We proposed an event-driven taxonomy framework for mixture risk assessment that relied on high-throughput screening bioassays and toxicant identification integrated by deep learning. In this work, the framework was evaluated using chemical mixtures in sediments eliciting aryl-hydrocarbon receptor activation and oxidative stress response. Mixture prediction using target analysis explained <10% of observed sediment bioactivity. To identify additional contaminants, two deep learning models were developed to predict fingerprints of a pool of bioactive substances (event driver fingerprint, EDFP) and convert these candidates to MS-readable information (event driver ion, EDION) for nontarget analysis. Two libraries with 121 and 118 fingerprints were established, and 247 bioactive compounds were identified at confidence level 2 or 3 in sediment extract using GC-qToF-MS. Among them, 12 toxicants were analytically confirmed using reference standards. Collectively, we present a "bioactivity-signature-toxicant" strategy to deconvolute mixtures and to connect patchy data sets and guide nontarget analysis for diverse chemicals that elicit the same bioactivity.

5.
Sci Total Environ ; 924: 171622, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38467255

ABSTRACT

Roadway runoff serves as a crucial pathway for transporting contaminants of emerging concern (CECs) from urban environments to receiving water bodies. Tire-related compounds originating from tire wear particles (TWPs) have been frequently detected, posing a potential ecological threat. Yet, the photolysis of tire-related compounds within roadway runoff remains inadequately acknowledged. Addressing this deficit, our study utilized high-resolution mass spectrometry (HRMS) to characterize the chemical profile of roadway runoff across eight strategically selected sites in Guangzhou, China. 219 chemicals were identified or detected within different confidence levels. Among them, 29 tire-related contaminants were validated with reference standards, including hexa(methoxymethyl)melamine (HMMM), 1,3-diphenylguanidine (DPG), dicyclohexylurea (DCU), and N-cyclohexyl-2-benzothiazol-amine (DCMA). HMMM exhibited with the abundance ranging from 2.30 × 104-3.10 × 106, followed by DPG, 1.69 × 104-8.34 × 106. Runoff sample were exposed to irradiation of 500 W mercury lamp for photodegradation experiment. Photolysis results indicated that tire-related compounds with a low photolysis rate, notably DCU, DCMA, and DPG, are more likely to persist within the runoff. The photolytic rates were significantly correlated with the spatial distribution patterns of these contaminants. Our findings underscore TWPs as a significant source of pollution in water bodies, emphasizing the need for enhanced environmental monitoring and assessment strategies.

6.
Sci Total Environ ; 922: 171250, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38423314

ABSTRACT

In this work, organic chemicals associated with microplastics (MPs) exposed to a coastal anthropogenized environment for up to eight weeks have been screened for, in order to discern the (de)sorption dynamics of chemicals in the marine ecosystem. Low-density polyethylene (LDPE) pellets were studied since they represent primary MPs used by the plastic industry and a relevant input of MPs into the oceans. To maximize the coverage of chemicals that could be detected, both liquid and gas chromatography coupled to quadrupole-time-of-flight (GC-QTOF and LC-QTOF, respectively) were used. In the case of LC-QTOF, an electrospray ionization source was employed, and the compounds were investigated by combining suspect and non-target screening workflows. The GC-QTOF was equipped with an electron ionization source and compounds were screened in raw and derivatized (silylated) extracts by deconvolution and contrast to high- and low-resolution libraries. A total of 50 compounds of multifarious classes were tentatively identified. Among them, melamine and 2-ethylhexyl salicylate (EHS) were detected in the original MPs but were rapidly desorbed. Melamine was completely released into the marine environment, while EHS was partly released but a portion remained bound to the MPs. On the other hand, many other chemicals of both anthropogenic (e.g. phenanthrene or benzophenone) and natural origin (e.g. betaine and several fatty acids) accumulated onto MPs over time. Quantification of 12 unequivocally identified chemicals resulted into a total concentration of 810 µg/kg after MPs exposure for 8 weeks.

7.
Chemosphere ; 352: 141242, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280648

ABSTRACT

Biomass burning is a significant source of particulate matter (PM) in ambient air and its accurate source apportionment is a major concern for air quality. The discrimination between residential wood heating (RWH) and garden green waste burning (GWB) particulate matter (PM) is rarely achieved. The objective of this work was to evaluate the potential of non-targeted screening (NTS) analyses using HRMS (high resolution mass spectrometry) data to reveal discriminating potential molecular markers of both sources. Two residential wood combustion appliances (wood log stove and fireplace) were tested under different output conditions and wood moisture content. GWB experiments were carried out using two burning materials (fallen leaves and hedge trimming). PM samples were characterized using NTS approaches with both LC- and GC-HRMS (liquid and gas chromatography-HRMS). The analytical procedures were optimized to detect as many species as possible. Chemical fingerprints obtained were compared combining several multivariate statistical analyses (PCA, HCA and PLS-DA). Results showed a strong impact of the fuel nature and the combustion quality on the chemical fingerprints. 31 and 4 possible markers were discovered as characteristic of GWB and RWH, respectively. Complementary work was attempted to identify potential molecular formulas of the different potential marker candidates. The combination of HRMS NTS chemical characterization with multivariate statistical analyses shows promise for uncovering organic aerosol fingerprinting and discovering potential PM source markers.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Gardens , Wood/chemistry , Heating , Gas Chromatography-Mass Spectrometry , Particulate Matter/analysis , Environmental Monitoring
8.
Sci Total Environ ; 914: 169958, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38211863

ABSTRACT

Aquaculture wastewater, rich in organic nutrients, is an essential environmental factor. When applied to seaweed cultivation systems, this wastewater holds the potential to notably increase the growth rate and carbon capture of Sarcodia suae. Sarcodia suae has the potential to be a healthy food due to its various biological activities; however, its chemical composition has yet to be completely defined. In this study, we applied a UHPLC-HRMS-based foodomics strategy to determine and classify possible bioactive metabolites in S. suae. From pooled seaweed samples (S. suae cultured in filtered running, FR, aquaponic recirculation, AR systems), we identified 179 and 146 compounds in POS and NEG modes, respectively. These compounds were then classified based on their structures using the Classyfire classification. Results show that S. suae in AR exhibited higher growth performance, and ten upregulated metabolites were determined. We also validated the anti-inflammatory and antioxidative bioactivities of some selected compounds. Our study provided important insights into the potential use of fish wastewater in aquaponic systems to profile and produce bioactive compounds in S. suae comprehensively. This has significant implications for the development of sustainable food and the promotion of environmental health.


Subject(s)
Seaweed , Wastewater , Animals , Antioxidants , Fishes , Aquaculture/methods , Vegetables , Anti-Inflammatory Agents , Chromatography, High Pressure Liquid
10.
Chemosphere ; 349: 140893, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072205

ABSTRACT

In regulatory environmental monitoring programs, only a very small fraction of the vast number of per- and polyfluoroalkyl substances (PFAS) are investigated by target analysis. Therefore, non-target analysis (NTA) studies are increasingly conducted to detect unknown or unnoticed PFAS. These studies are often based on a few grab samples. Thus, discontinuously emitted PFAS from industrial batch processes might be easily overlooked. To address this deficiency and obtain in-depth information on the occurrence and temporal trend of PFAS in surface water impacted by treated industrial waste water, a comprehensive target and NTA study was implemented for 29 months. Elevated PFAS concentrations with up to 10.8 µg L-1 were detected in the river water by target analysis. In addition to PFAS target analysis, the water samples were analyzed by liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS). Data processing strategies and various filtering steps were applied to prioritize PFAS. Substances were identified by comparing data to available internal and external PFAS suspect lists, a fragment ion and neutral loss list, and spectral libraries. Several compounds were unequivocally identified based on reference standards. Fifty-five PFAS were (tentatively) identified using NTA. Of those, 43 could be assigned to 13 different homologous series. Partly fluorinated short-chain carboxylic acids (H-PFCA) and sulfonic acids (H-PFSA) were predominantly found in addition to perfluoroalkyl carboxylic acids (PFCA) and the alkyl ether carboxylic acid DONA. To the best of our knowledge, 12 PFAS were reported in surface water for the first time. Signal intensities of individual PFAS and signal ratios varied widely over time, which may indicate batch operations leading to discontinuous emission. Results and insights from this screening approach on PFAS can be used to optimize forthcoming surface water monitoring programs by including newly identified PFAS and selecting appropriate sampling intervals.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Carboxylic Acids/analysis
11.
Chemosphere ; 349: 140831, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040251

ABSTRACT

Effective water treatment to remove antibiotics and its activity from contaminated water is urgently needed to prevent antibiotic-resistant bacteria (ARB) emergence. In this study, we investigated degradation of Ampicillin (AMP), an extensively used ß-lactam antibiotic, using submersible Ultraviolet C Light Emitting Diode (λmax = 276 nm) irradiation source, and Persulfate (UVC LED/PS system). Pseudo first order rate constant (kobs) for degradation of AMP (1 ppm) by UVC LED/PS system was determined to be 0.5133 min-1 (PS = 0.2 mM). kobs value at pH 2.5 (0.7259 min-1) was found to be higher than pH 6.5 (0.5133 min-1) and pH 12 (0.1745 min-1). kobs value for degradation of AMP in deionized water spiked with inorganic anions (Cl-=0.5369 min-1,SO42-=0.4545 min-1, NO3-=0.1526 min-1, HCO3-=0.0226 min-1), in real tap water (0.1182 min-1) and simulated ground water (0.0372 min-1) were presented. Radical scavenging experiment reveal involvement of sulfate radical anion and hydroxyl radical in UVC LED/PS system. EPR analysis confirms the generation of sulfate radical anion and hydroxyl radical. Importantly, 74% reduction of total organic carbon (TOC) occurred within 60 min of AMP treatment by UVC LED/PS system. Seven degradation by-products were identified by high resolution mass spectrometry, and degradation pathways were proposed. Antibacterial activity of AMP towards Bacillus subtilis and Staphylococcus aureus was completely removed after UVC LED/PS treatment. ECOSAR model predicted no very toxic degradation by-products generation by UVC LED/PS system. Electrical Energy per order (EEo) and cost of UVC LED/PS system were determined to be 0.9351 kW/m3/order and ₹ 7.91/m3 ($ 0.095/m3 or € 0.087/m3), respectively. Overall, this study highlights, UVC LED/PS system as energy efficient, low-cost, and its potential to emerge as sulfate radical anion based advanced oxidation process (AOP) to treat water with antibiotics.


Subject(s)
Water Pollutants, Chemical , Water Purification , Anti-Bacterial Agents/pharmacology , Hydroxyl Radical , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Sulfates/chemistry , Kinetics , Oxidation-Reduction , Costs and Cost Analysis , Ampicillin/pharmacology , Water Pollutants, Chemical/analysis , Ultraviolet Rays , Water Purification/methods
12.
Se Pu ; 41(11): 960-975, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-37968815

ABSTRACT

Various types of milk powder purportedly providing diverse health functions have emerged with the growth of the country's elderly population. Some manufacturers illegally add chemical drugs to their products to achieve their reported benefits, which poses a threat to consumer health. The existing standard methods are inapplicable to such complex sample matrices and require testing based on functional claims and classification. These limitations not only consume manpower and resources but also seriously impede daily regulatory efforts to detect unknown risk substances. In this study, a high-throughput method for the screening and quantitative analysis of 300 illegally added chemical drugs in functional milk powder and an identification strategy for unknown structural analogues were established using Zeno SWATH® data-independent acquisition (DIA) ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) technology combined with a QuEChERS sample purification method. The QuEChERS purification process was developed according to the characteristics of milk powder matrix. The supernatant was separated on a Kinetex F5 column (100 mm×3.0 mm, 2.6 µm) by gradient elution using 5 mmol/L ammonium formate aqueous solution (0.1% (v/v) formic acid, ) and methanol-acetonitrile (1∶1, v/v) as mobile phases. The method was validated in terms of selectivity, linearity, limits of detection and quantification (LODs and LOQs, respectively), matrix effect, accuracy, and precision. Based on a screening database for the 300 target substances, electron-activated dissociation (EAD) fragmentation was applied to obtain rich secondary MS fragmentation information, and unknown structural analogues were identified and confirmed through fragment attribution analysis. The results indicated that all compounds had good linear relationships in certain ranges with correlation coefficients >0.99. The LODs and LOQs were 0.04-2.7 and 0.2-8.0 µg/kg, respectively. The average recoveries at three spiked levels were in the range of 73.1%-125.2%, and the relative standard deviations were ≤14.8% (n=6). When the developed method was applied to detect illegally added chemicals in 60 functional milk powder samples, it detected benzoguanidine and sildenafil and successfully identified ethylphenidate, which is the structural analogue of an amphetamine. The proposed method is simple, sensitive, and accurate; thus, it may have practical application value for the daily supervision and law enforcement of milk powders with reported health functions.


Subject(s)
Milk , Tandem Mass Spectrometry , Humans , Aged , Animals , Powders/analysis , Milk/chemistry , Chromatography, High Pressure Liquid , Sildenafil Citrate/analysis
13.
Se Pu ; 41(11): 1038-1043, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-37968823

ABSTRACT

Furosine is often used both domestically and internationally as an indicator of the degree of heating to evaluate milk quality. However, in actual detection, the complexity of the milk matrix may lead to the inaccurate quantification of furosine in liquid milk. Therefore, in this study, an efficient and accurate method based on high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS) was established to determine furosine in liquid milk. A 2.00 mL milk sample was hydrolyzed with 5 mL 12.00 mol/L hydrochloric acid solution and 1 mL water at 110 ℃ for 12 h. After hydrolysis, vortex-mixing and filtration were performed. The filtrate was diluted six times with 6.00 g/L ammonium acetate solution and then analyzed. Gradient elution was performed with 0.20% formic acid aqueous solution and acetonitrile solution as mobile phases, followed by chromatographic separation on an AQ-C18 column (150 mm×3.5 mm, 5 µm). The data were collected by Q-TOF/MS with an electrospray ionization source operated in positive-ion mode. The accuracy of the quantification of furosine in milk was assessed by investigating the effects of the hydrochloric acid concentration (0.30, 1.25, and 3.00 mol/L) in the furosine solution on the MS response. The results showed that high hydrochloric acid concentrations inhibited the response signals. A good linear relationship was obtained in the mass concentration range of 0.05-2.00 mg/L, with a correlation coefficient (r) of 0.994. The limit of detection of the method was 0.50 mg/100 g, which meets the requirements of actual sample detection. The average recoveries of furosine ranged from 79.9% to 119.7% at three spiked levels of 1.52, 3.03, and 15.17 mg/100 g, with relative standard deviations of 1.4%-2.6%. The method was applied to detect 303 samples from 101 batches of pasteurized milk sold in the market, and the contents of furosine in these samples ranged from 5.1 to 11.9 mg/100 g. The proposed method is characterized with high efficiency, recovery, sensitivity, and accuracy. Thus, it can be used for the determination of large quantities of samples and provides technical support for the continuous promotion of the high-quality development of the whole dairy industry chain.


Subject(s)
Hydrochloric Acid , Milk , Animals , Chromatography, High Pressure Liquid , Milk/chemistry , Hydrochloric Acid/analysis , Mass Spectrometry/methods
14.
Anal Bioanal Chem ; 415(29-30): 7297-7313, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37946034

ABSTRACT

Chemicals infiltrate our daily experiences through multiple exposure pathways. Human biomonitoring (HBM) is routinely used to comprehensively understand these chemical interactions. Historically, HBM depended on targeted screening methods limited to a relatively small set of chemicals with triple quadrupole instruments typically. However, recent advances in high-resolution mass spectrometry (HRMS) have facilitated the use of broad-scope target, suspect, and non-target strategies, enhancing chemical exposome characterization within acceptable detection limits. Despite these advancements, establishing robust and efficient sample treatment protocols is still essential for trustworthy broad-range chemical analysis. This study sought to validate a methodology leveraging HRMS-based strategies for accurate profiling of exogenous chemicals and related metabolites in urine samples. We evaluated five extraction protocols, each encompassing various chemical classes, such as pharmaceuticals, plastic additives, personal care products, and pesticides, in terms of their extraction recoveries, linearity, matrix effect, sensitivity, and reproducibility. The most effective protocol was extensively validated and subsequently applied to 10 real human urine samples using wide-scope target analysis encompassing over 2000 chemicals. We successfully identified and semi-quantified a total of 36 chemicals using an ionization efficiency-based model, affirming the methodology's robust performance. Notably, our results dismissed the need for a deconjugation step, a typically labor-intensive and time-consuming process.


Subject(s)
Environmental Monitoring , Humans , Environmental Monitoring/methods , Chromatography, Liquid/methods , Reproducibility of Results , Gas Chromatography-Mass Spectrometry , Mass Spectrometry/methods
15.
Environ Sci Technol ; 57(48): 20194-20205, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37991390

ABSTRACT

Oil refinery activity can be an emission source of perfluoroalkyl and polyfluoroalkyl substances (PFAS) to the environment, while the contamination profiles in soils remain unknown. This study investigated 44 target PFAS in soil samples collected from an oil refinery in Southeastern China, identified novel PFAS, and characterized their behaviors by assessing their changes before and after employing advanced oxidation using a combination of nontarget analysis and a total oxidizable precursor (TOP) assay. Thirty-four target PFAS were detected in soil samples. Trifluoroacetic acid (TFA) and hexafluoropropylene oxide dimer acid (HFPO-DA) were the dominant PFAS. Twenty-three novel PFAS of 14 classes were identified, including 8 precursors, 11 products, and 4 stable PFAS characterized by the TOP assay. Particularly, three per-/polyfluorinated alcohols were identified for the first time, and hexafluoroisopropanol (HFIP) quantified up to 657 ng/g dw is a novel precursor for TFA. Bistriflimide (NTf2) potentially associated with an oil refinery was also reported for the first time in the soil samples. This study highlighted the advantage of embedding the TOP assay in nontarget analysis to reveal not only the presence of unknown PFAS but also their roles in environmental processes. Overall, this approach provides an efficient way to uncover contamination profiles of PFAS especially in source-impacted areas.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Soil , Water Pollutants, Chemical/analysis , China , Fluorocarbons/analysis , Oxidation-Reduction
16.
MethodsX ; 11: 102403, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37854711

ABSTRACT

Classically, the characterization of wastewater components has been restricted to the measurement of indirect parameters (chemical and biological oxygen demand, total nitrogen) and small molecules of interest in epidemiology or for environmental control. Despite the fact that metaproteomics has provided important knowledge about the microbial communities in these waters, practically nothing is known about other non-microbial proteins transported in the wastewater. The method described here has allowed us to perform a large-scale characterization of the wastewater proteome. Wastewater protein profiles have shown to be very different in different collection sites probably reflecting their human population and industrial activities. We believe that wastewater proteomics is opening the doors to the discovery of new environmental and health biomarkers and the development of new, more effective monitoring devices for issues like monitorization of population health, pest control, or control of industry discharges. The method developed is relatively simple and combines procedures for the separation of the soluble and particulate fractions of wastewater and their concentration, and conventional shotgun proteomics using high-resolution mass spectrometry for protein identification. •Unprecedented method for wastewater proteome characterization.•Proteins as new potential biomarkers for sewage chemical-information mining, wastewater epidemiology and environmental monitoring.•Wastewater protein profiles reflect human and industrial activities.

17.
Environ Sci Technol ; 57(43): 16361-16371, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37844127

ABSTRACT

Natural dissolved organic matter (DOM) represents a ubiquitous molecular mixture, progressively characterized by spatiotemporal resolution. However, an inadequate comprehension of DOM molecular dynamics, especially the stochastic processes involved, hinders carbon cycling predictions. This study employs ecological principles to introduce a neutral theory to elucidate the fundamental processes involving molecular generation, degradation, and migration. A neutral model is thus formulated to assess the probability distribution of DOM molecules, whose frequencies and abundances follow a ß-distribution relationship. The neutral model is subsequently validated with high-resolution mass spectrometry (HRMS) data from various waterbodies, including lakes, rivers, and seas. The model fitting highlights the prevalence of molecular neutral distribution and quantifies the stochasticity within DOM molecular dynamics. Furthermore, the model identifies deviations of HRMS observations from neutral expectations in photochemical and microbial experiments, revealing nonrandom molecular transformations. The ecological null model further validates the neutral modeling results, demonstrating that photodegradation reduces molecular stochastic dynamics at the surface of an acidic pit lake, while random distribution intensifies at the river surface compared with the porewater. Taken together, the DOM molecular neutral model emphasizes the significance of stochastic processes in shaping a natural DOM pool, offering a potential theoretical framework for DOM molecular dynamics in aquatic and other ecosystems.


Subject(s)
Dissolved Organic Matter , Ecosystem , Organic Chemicals/analysis , Mass Spectrometry , Lakes/analysis , Lakes/chemistry , Rivers/chemistry , Stochastic Processes , Spectrometry, Fluorescence
18.
Anal Chim Acta ; 1278: 341717, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37709460

ABSTRACT

Accurate and sensitive measurements of free fatty acids (FFAs) in biological samples are valuable for diagnosing and prognosing diseases. In this study, an in-source microdroplet derivation strategy combined with high-resolution mass spectrometry was developed to analyze FFAs in lipid extracts of biological samples directly. FFAs were rapidly derivated with 2-picolylamine (PA) in the microdroplet which is derived by electrospray. With the proposed method, twelve typical FFAs were determined reliably with high sensitivity and acceptable linearities (R2 ≥ 0.94). The LODs and LOQs for the twelve FFAs were 9-76 pg mL-1 and 30-253 pg mL-1, respectively. The developed method was applied to analyze the alteration of FFAs in liver and kidney samples of rats induced by perfluorooctane sulfonate (PFOS) exposure. The good results demonstrate that the established analysis technique is dependable and has promising applications in detecting FFAs associated with complex biological samples.


Subject(s)
Fatty Acids, Nonesterified , Kidney , Animals , Rats , Limit of Detection , Liver , Mass Spectrometry
19.
J Mass Spectrom ; 58(10): e4969, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37604670

ABSTRACT

Within the last decades, in the EU, there has been an increasing interest in toxic plant alkaloids as food contaminants, especially after the continuous and growing consumption of plant-based foods compared with food of animal origin. In this regard, the once neglected presence of these tropane alkaloids (TAs) and pyrrolizidine alkaloids (PAs) has recently been reconsidered by the European Food Safety Authority, highlighting the lack of data and the need to develop risk assessment strategies. For this reason, the emphasis has been placed on detecting their occurrence in food through the development of accurate and sensitive analytical methods to achieve the determination of these compounds. The present study aims to elaborate and validate an analytical method based on QuEChERS sample preparation approach, exploiting the UHPLC coupled to the HRMS to simultaneously identify and quantify 21 PAs and two TAs in cereals and spices. For TAs, the obtained limit of detection (LOD) is 0.1 µg·kg-1 and the limit of quantification (LOQ) is 0.4 µg·kg-1 , while for PAs, the LODs values ranging between 0.2 to 0.3 µg·kg-1 and the LOQ, between 0.4 and 0.8 µg·kg-1 , ensuring compliance with the recently established European Regulations. Several commercial samples were analysed to further verify the applicability of this comprehensive analytical approach.


Subject(s)
Edible Grain , Pyrrolizidine Alkaloids , Animals , Edible Grain/chemistry , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Tropanes/analysis , Pyrrolizidine Alkaloids/analysis , Chromatography, High Pressure Liquid , Food Contamination/analysis
20.
J Hazard Mater ; 459: 132202, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37562352

ABSTRACT

Household dust contains a wide variety of semi-volatile organic compounds (SVOCs) that may pose health risks. We developed a method integrating non-targeted analysis (NTA) and targeted analysis (TA) to identify SVOCs in indoor dust. Based on a combined use of gas and liquid chromatography with high-resolution mass spectrometry, an automated, time-efficient NTA workflow was developed, and high accuracy was observed. A total of 128 compounds were identified at confidence level 1 or 2 in NIST standard reference material dust (SRM 2585). Among them, 113 compounds had not been reported previously, and this suggested the value of NTA in characterizing contaminants in dust. Additionally, TA was done to avoid the loss of trace compounds. By integrating data obtained from the NTA and TA approaches, SVOCs in SRM 2585 were prioritized based on exposure and chemical toxicity. Six of the top 20 compounds have never been reported in SRM 2585, including melamine, dinonyl phthalate, oxybenzone, diheptyl phthalate, drometrizole, and 2-phenylphenol. Additionally, significant influences of analytical instruments and sample preparation on NTA results were observed. Overall, the developed method provided a powerful tool for identifying SVOCs in indoor dust, which is necessary to obtain a more complete understanding of chemical exposures and risks in indoor environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...