Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Crit Rev Food Sci Nutr ; : 1-9, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38069579

ABSTRACT

Several cardiometabolic disorders are risk factors for cardiovascular diseases (CVDs), and prevention is imperative in reducing the burden of these diseases on the healthcare system. Although novel high-oleic acid oils (HOOs) are now commonly used for high-temperature frying in both foodservice and the manufacture of processed foods, there are still limited data regarding their effects on CVD risk. This narrative review aims to clarify these effects by comparing HOOs with saturated fatty acid (SFA)-rich and polyunsaturated fatty acid (PUFA)-rich oils, first regarding their physicochemical properties and then concerning their effects on CVD risk factors using recent randomized controlled trials (RCTs). Overall, although HOOs are more stable than PUFA-rich oils, they do not have the same high-temperature stability as SFA-rich oils. RCTs demonstrate that HOO consumption improves the plasma lipid profile compared with SFA-rich oils while showing similar effects to those of PUFA-rich oils on CVD risk factors. Finally, the current literature lacks information on the actual consumption of HOOs, their long-term effects on cardiometabolic health, and the impact of prolonged heating of these oils on CVD risk factors. In sum, the short-term intake of HOOs may be beneficial for cardiometabolic health; however, more research is needed.

2.
J Oleo Sci ; 69(6): 573-584, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32404548

ABSTRACT

For the controversy still existed about the oxidation stability of the high oleic oils compared with palm oil (PO), this study was aimed to explore the possible reason causing the controversies. Total polar compounds (TPC) was used to evaluate the oxidation stability of oils. Results showed there exist two kinds of lineal changes about the content of total polar compounds (TPC) in each oil, which were closely linked with the fatty acid composition and the tocochromanols content. The possible influence of the initial quality of oils also should be considered. The TPC of high oleic peanut oil (HOPO), high oleic sunflower oil (HOSO), high oleic rapeseed oil (HORO) and PO increased slowly at the initial period mainly owing to the antioxidation of tocochromanols, then sharply after 24, 48, 36 and 72 h respectively, when tocochromanols in each oil almost reduced below the detection limit. After that, the major factor would be fatty acids, particularly PUFA. It showed that the major tocochromanols in different oils (e.g. α, γ-tocotrienols in PO, α, γ-tocopherols in HORO and HOPO, and α-tocopherols in HOSO), could impose the main effects of inhibiting the TPC generation in the initial thermal treatment. The TPC in HORO significantly increased after 84 hours of heat process, which might be caused by the higher content of the polyunsaturated fatty acids (PUFA) (i.e. C18:2 and C18:3). However, the content of the saturated fatty acid (SFA) did not show statistically significant change during the thermal treatment.


Subject(s)
Food Quality , Hot Temperature , Palm Oil/chemistry , Peanut Oil/chemistry , Rapeseed Oil/chemistry , Sunflower Oil/chemistry , Antioxidants/analysis , Fatty Acids/analysis , Fatty Acids, Unsaturated/analysis , Oxidation-Reduction , Time Factors , Tocopherols/analysis , Tocotrienols/analysis
SELECTION OF CITATIONS
SEARCH DETAIL