Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 545
Filter
1.
Exp Dermatol ; 33(7): e15128, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973249

ABSTRACT

Dry skin is common to many pruritic diseases and is difficult to improve with oral traditional antihistamines. Recently, increasing evidence indicated that histamine H4 receptor (H4R) plays an important role in the occurrence and development of pruritus. Extracellular signal-regulated kinase (ERK) phosphorylation activation in the spinal cord mediates histamine-induced acute and choric itch. However, whether the histamine H4 receptor regulates ERK activation in the dry skin itch remains unclear. In the study, we explore the role of the histamine H4 receptor and p-ERK in the spinal cord in a dry skin mouse model induced by acetone-ether-water (AEW). q-PCR, Western blot, pharmacology and immunofluorescence  were applied in the study. We established a dry skin itch model by repeated application of AEW on the nape of neck in mice. The AEW mice showed typically dry skin histological change and persistent spontaneous scratching behaviour. Histamine H4 receptor, instead of histamine H1 receptor, mediated spontaneous scratching behaviour in AEW mice. Moreover, c-Fos and p-ERK expression in the spinal cord neurons were increased and co-labelled with GRPR-positive neurons in AEW mice. Furthermore, H4R agonist 4-methyhistamine dihydrochloride (4-MH)induced itch. Both 4-MH-induced itch and the spontaneous itch in AEW mice were blocked by p-ERK inhibitor U0126. Finally, intrathecal H4R receptor antagonist JNJ7777120 inhibited spinal p-ERK expression in AEW mice. Our results indicated that spinal H4R mediates itch via ERK activation in the AEW-induced dry skin mice.


Subject(s)
Acetone , Extracellular Signal-Regulated MAP Kinases , Pruritus , Receptors, Histamine H4 , Spinal Cord , Animals , Pruritus/chemically induced , Pruritus/metabolism , Receptors, Histamine H4/metabolism , Mice , Spinal Cord/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Male , Acetone/pharmacology , Water , Ether , Disease Models, Animal , Phosphorylation , Indoles/pharmacology , Butadienes/pharmacology , Piperazines/pharmacology , Nitriles/pharmacology , Skin/metabolism , Chronic Disease , Methylhistamines , Proto-Oncogene Proteins c-fos/metabolism , Mice, Inbred C57BL
3.
J Mol Recognit ; : e3098, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924170

ABSTRACT

Doxepin is an antihistamine and tricyclic antidepressant that binds to the histamine H1 receptor (H1R) with high affinity. Doxepin is an 85:15 mixture of the E- and Z-isomers. The Z-isomer is well known to be more effective than the E-isomer, whereas based on the crystal structure of the H1R/doxepin complex, the hydroxyl group of Thr1123.37 is close enough to form a hydrogen bond with the oxygen atom of the E-isomer. The detailed binding characteristics and reasons for the differences remain unclear. In this study, we analyzed doxepin isomers bound to the receptor following extraction from a purified H1R protein complexed with doxepin. The ratio of the E- and Z-isomers bound to wild-type (WT) H1R was 55:45, indicating that the Z-isomer was bound to WT H1R with an approximately 5.2-fold higher affinity than the E-isomer. For the T1123.37V mutant, the E/Z ratio was 89:11, indicating that both isomers have similar affinities. Free energy calculations using molecular dynamics (MD) simulations also reproduced the experimental results of the relative binding free energy differences between the isomers for WT and T1123.37V. Furthermore, MD simulations revealed that the hydroxyl group of T1123.37 did not form hydrogen bonds with the E-isomer, but with the adjacent residues in the binding pocket. Analysis of the receptor-bound doxepin and MD simulations suggested that the hydroxyl group of T1123.37 contributes to the formation of a chemical environment in the binding pocket, which is slightly more favorable for the Z-isomer without hydrogen bonding with doxepin.

4.
J Chromatogr A ; 1729: 465057, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38857565

ABSTRACT

The histamine H1 receptor (H1R) plays a pivotal role in allergy initiation and undergoes the necessity of devising a high-throughput screening approach centered on H1R to screen novel ligands effectively. This study suggests a method employing styrene maleic acid (SMA) extraction and His-tag covalent bonding to immobilize H1R membrane proteins, minimizing the interference of nonspecific proteins interference while preserving native protein structure and maximizing target exposure. This approach was utilized to develop a novel material for high-throughput ligand screening and implemented in cell membrane chromatography (CMC). An H1R-His-SMALPs/CMC model was established and its chromatographic performance (selectivity, specificity and lifespan) validated, demonstrating a significant enhancement in lifespan compared to previous CMC models. Subsequently, this model facilitated high-throughput screening of H1R ligands in the compound library and preliminary activity verification of potential H1R antagonists. Identification of a novel H1R antagonist laid the foundation for further development in this area.


Subject(s)
High-Throughput Screening Assays , Maleates , Receptors, Histamine H1 , Ligands , Maleates/chemistry , High-Throughput Screening Assays/methods , Receptors, Histamine H1/chemistry , Receptors, Histamine H1/metabolism , Humans , Histidine/chemistry , Animals , Immobilized Proteins/chemistry , Immobilized Proteins/metabolism , CHO Cells , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Histamine H1 Antagonists/chemistry , Polystyrenes/chemistry , Cricetulus , Oligopeptides/chemistry
5.
Front Pharmacol ; 15: 1364353, 2024.
Article in English | MEDLINE | ID: mdl-38903994

ABSTRACT

Introduction: Brain histamine is considered an endogenous anticonvulsant and histamine H1 receptor. H1R antagonists have, in earlier studies, been found to induce convulsions. Moreover, research during the last two decades has provided more information concerning the anticonvulsant activities of histamine H3R (H3R) antagonists investigated in a variety of animal epilepsy models. Methods: Therefore, the in vivo anticonvulsant effect of the H3R antagonist DL76, with proven high in vitro affinity, in vitro selectivity profile, and high in vivo antagonist potency in mice against maximal electroshock (MES)-induced seizures in mice, was assessed. Valproic acid (VPA) was used as a reference antiepileptic drug (AED). In addition, DL76 was tested for its reproductive and fetal toxicity in the same animal species. Results and discussion: Our observations showed that acute systemic administration (intraperitoneal; i.p.) of DL76 (7.5 mg/kg, 15 mg/kg, 30 mg/kg, and 60 mg/kg, i.p.) provided significant and dose-dependent protection against MES-induced seizures in female and male mice. Moreover, the DL76-provided protective effects were comparable to those offered by the VPA and were reversed when animals were co-administered the CNS-penetrant selective H3R agonist R-(α)-methylhistamine (RAM, 10 mg/kg, i.p.). Furthermore, the administration of single (7.5 mg/kg, 15 mg/kg, 30 mg/kg, or 60 mg/kg, i.p.) or multiple doses (3 × 15 mg/kg, i.p.) of H3R antagonist DL76 on gestation days (GD) 8 or 13 failed to affect the maternal body weight of mice when compared with the control mice group. No significant alterations were detected in the average number of implantations and resorptions between the control and DL76-treated groups at the early stages of gestation and the organogenesis period. In addition, no significant differences in the occurrence of skeletal abnormalities, urogenital abnormalities, exencephaly, exomphalos, facial clefts, and caudal malformations were observed. The only significant abnormalities witnessed in the treated groups of mice were in the length of long bones and body length. In conclusion, the novel H3R antagonist DL76 protected test animals against MES-induced seizures and had a low incidence of reproductive and fetal malformation with decreased long bone lengths in vivo, signifying the potential therapeutic value of H3R antagonist DL76 for future preclinical as well as clinical development for use in the management of epilepsy.

6.
Front Pharmacol ; 15: 1418266, 2024.
Article in English | MEDLINE | ID: mdl-38939837

ABSTRACT

Introduction: Colorectal cancer is a highly aggressive and metastatic cancer with inadequate clinical outcomes. Given the crucial role of histamine and histamine receptors in colorectal carcinogenesis, this study aimed at exploring the anticancer effects of terfenadine against colorectal cancer HCT116 cells and elucidate its underlying mechanism. Methods: Herein, we examined the effect of terfenadine on growth and proliferation of HCT116 cells in vitro and in vivo. Various experimental techniques such as flow cytometry, western blot, immunoprecipitation, luciferase assay were employed to unveil the mechanism of cell death triggered by terfenadine. Results: Terfenadine markedly attenuated the viability of HCT116 cells by abrogating histamine H1 receptor (H1R) signaling. In addition, terfenadine modulated the balance of Bax and Bcl-2, triggering cytochrome c discharge in the cytoplasm, thereby stimulating the caspase cascade and poly-(ADP-ribose) polymerase (PARP) degradation. Moreover, terfenadine suppressed murine double minute-2 (Mdm2) expression, whereas p53 expression increased. Terfenadine suppressed STAT3 phosphorylation and expression of its gene products by inhibiting MEK/ERK and JAK2 activation in HCT116 cells. Furthermore, treatment with U0126, a MEK inhibitor, and AG490, a JAK2 inhibitor, dramatically diminished the phosphorylations of ERK1/2 and JAK2, respectively, leading to STAT3 downregulation. Likewise, terfenadine diminished the complex formation of MEK1/2 with ß-arrestin 2. In addition, terfenadine dwindled the phosphorylation of PKC substrates. Terfenadine administration (10 mg/kg) substantially retarded the growth of HCT116 tumor xenografts in vivo. Conclusion: Terfenadine induces the apoptosis of HCT116 cells by abrogating STAT3 signaling. Overall, this study supports terfenadine as a prominent anticancer therapy for colorectal cancer.

7.
Adv Clin Exp Med ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917321

ABSTRACT

INTRODUCTION: Proton pump inhibitors (PPIs) and histamine type-2 receptor antagonists (H2RAs) are generally effective in preventing delayed bleeding and healing artificial wounds after endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD). This study aimed to review the therapeutic effects of PPIs and H2RAs on damage caused by EMR and ESD. MATERIAL AND METHODS: Thirteen articles were collected between 2002 and 2022 by searching Medlib, ScienceDirect, PubMed, International Scientific Indexing (ISI), Embase, and Scopus databases using valid keywords. The main inclusion criteria were delayed wound healing, bleeding, epigastric pain, intraoperative bleeding, and perforation. The odds ratio (OR) and 95% confidence interval (95% CI) were evaluated using a random or fixed effects model. Data analysis was performed using Stata v. 14.2. RESULTS: A total of 13 articles including 1,483 patients were analyzed. The results showed that delayed bleeding was significantly less frequent in the PPI group than in the H2RA group (OR = 0.6; 95% CI: 0.39-0.92). Subgroup analysis showed that PPI was more effective in preventing delayed bleeding than H2RA for ESD wounds (OR = 0.65; 95% CI: 0.44-1.08). There was no statistically significant difference between both groups regarding the incidence of epigastric pain, intraoperative bleeding, wound healing, and perforation after endoscopic treatments. CONCLUSION: The meta-analysis results reveal that PPI is more effective than H2RA in preventing delayed bleeding after endoscopic treatment, particularly in patients treated with ESD. However, there was no significant difference between PPI and H2RA in terms of intraoperative bleeding, epigastric pain, wound healing, and perforation from endoscopic therapy.

8.
Alcohol ; 118: 45-55, 2024 08.
Article in English | MEDLINE | ID: mdl-38705312

ABSTRACT

Prenatal alcohol exposure can have persistent effects on learning, memory, and synaptic plasticity. Previous work from our group demonstrated deficits in long-term potentiation (LTP) of excitatory synapses on dentate gyrus granule cells in adult offspring of rat dams that consumed moderate levels of alcohol during pregnancy. At present, there are no pharmacotherapeutic agents approved for these deficits. Prior work established that systemic administration of the histaminergic H3R inverse agonist ABT-239 reversed deficits in LTP observed following moderate PAE. The present study examines the effect of a second H3R inverse agonist, SAR-152954, on LTP deficits following moderate PAE. We demonstrate that systemic administration of 1 mg/kg of SAR-152954 reverses deficits in potentiation of field excitatory post-synaptic potentials (fEPSPs) in adult male rats exposed to moderate PAE. Time-frequency analyses of evoked responses revealed PAE-related reductions in power during the fEPSP, and increased power during later components of evoked responses which are associated with feedback circuitry that are typically not assessed with traditional amplitude-based measures. Both effects were reversed by SAR-152954. These findings provide further evidence that H3R inverse agonism is a potential therapeutic strategy to address deficits in synaptic plasticity associated with PAE.


Subject(s)
Long-Term Potentiation , Prenatal Exposure Delayed Effects , Receptors, Histamine H3 , Animals , Long-Term Potentiation/drug effects , Female , Male , Rats , Pregnancy , Receptors, Histamine H3/metabolism , Receptors, Histamine H3/drug effects , Histamine Agonists/pharmacology , Rats, Sprague-Dawley , Ethanol/pharmacology , Drug Inverse Agonism , Excitatory Postsynaptic Potentials/drug effects
9.
J Comp Neurol ; 532(5): e25622, 2024 May.
Article in English | MEDLINE | ID: mdl-38712635

ABSTRACT

Histamine H1 receptor (H1R) in the central nervous system plays an important role in various functions, including learning and memory, aggression, feeding behaviors, and wakefulness, as evidenced by studies utilizing H1R knockout mice and pharmacological interventions. Although previous studies have reported the widespread distribution of H1R in the brains of rats, guinea pigs, monkeys, and humans, the detailed distribution in the mouse brain remains unclear. This study provides a comprehensive description of the distribution of H1R mRNA in the mouse brain using two recently developed techniques: RNAscope and in situ hybridization chain reaction, both of which offer enhanced sensitivity and resolution compared to traditional methodologies such as radioisotope labeling, which were used in previous studies. The H1R mRNA expression was observed throughout the entire brain, including key regions implicated in sleep-wake regulatory functions, such as the pedunculopontine tegmental nucleus and dorsal raphe. Additionally, strong H1R mRNA signals were identified in the paraventricular hypothalamus and ventromedial hypothalamus, which may explain the potential mechanisms underlying histamine-mediated feeding regulation. Notably, we identified strong H1R mRNA expression in previously unreported cerebral regions, such as the dorsal endopiriform nucleus, bed nucleus of the accessory olfactory tract, and postsubiculum. These findings significantly contribute to our understanding of the multifaceted roles of H1R in diverse brain functions.


Subject(s)
Brain Mapping , Brain , RNA, Messenger , Receptors, Histamine H1 , Animals , Male , Mice , Brain/metabolism , Brain Mapping/methods , In Situ Hybridization , Mice, Inbred C57BL , Receptors, Histamine H1/metabolism , RNA, Messenger/metabolism
10.
J Clin Med ; 13(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38610738

ABSTRACT

Background: Proton pump inhibitors (PPIs) are commonly prescribed long-acting drugs used to treat acid reflux, gastroesophageal reflux disease (GERD), and peptic ulcers. Recently, concerns have been raised about their safety, particularly due to the association between long-term PPI use and cancer development. Multiple comprehensive studies have consistently suggested a noteworthy link between prolonged PPI usage and an increased risk of developing gastric, esophageal, colorectal, and pancreatic cancers, yet the precise underlying mechanism remains elusive. Methods: First, we review the extensive body of research that investigates the intricate relationship between cancer and PPIs. Then, we predict PPI toxicity using the prodrug structures with the ProTox-II webserver. Finally, we predict the relative risk of cancer for each PPI, using PubMed citation counts of each drug and keywords related to cancer. Results: Our review indicates that prolonged PPI use (exceeding three months) is significantly associated with an elevated risk of cancer, while shorter-term usage (less than three months) appears to pose a comparatively lower risk. Our review encompasses various proposed mechanisms, such as pH and microbiome alterations, vitamin and mineral malabsorption, hypergastrinemia, and enterochromaffin-like cell proliferation, while ProTox-II also suggests aryl hydrocarbon receptor binding. Potentially, the PubMed citations count suggests that the PPIs omeprazole and lansoprazole are more associated with cancer than pantoprazole and esomeprazole. In comparison, the H2R blocker, famotidine, is potentially less associated with cancer than PPIs, and may serve as a safer alternative treatment for periods beyond 3 months. Conclusions: Despite the well-established cancer risk associated with PPIs, it is notable that these medications continue to be widely prescribed for periods longer than 3 months. Thus, it is of paramount importance for clinicians and patients to thoughtfully evaluate the potential risks and benefits of long-term PPI usage and explore alternative treatments before making informed decisions regarding their medical management.

11.
J Clin Pharmacol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38659369

ABSTRACT

Previous studies found that histamine H2 receptor antagonists (H2RAs) had blood pressure lowering and cardioprotective effects, but the impact of H2RAs on the survival outcomes of critically ill patients with essential hypertension is still unclear. The aim of this study was to investigate the association of H2RAs exposure with all-cause mortality in patients with essential hypertension based on Medical Information Mart for Intensive Care III database. A total of 17,739 patients were included, involving 8482 H2RAs users and 9257 non-H2RAs users. Propensity score matching (PSM) was performed to improve balance between 2 groups that were exposed to H2RAs or not. Kaplan-Meier survival curves were used to compare the cumulative survival rates and multivariable Cox regression models were performed to evaluate the association between H2RAs exposure and all-cause mortality. After 1:1 PSM, 4416 pairs of patients were enrolled. The results revealed potentially significant association between H2RAs exposure and decreased 30-day, 90-day, and 1-year mortalities in multivariate analyses (HR = 0.783, 95% CI: 0.696-0.882 for 30-day; HR = 0.860, 95% CI: 0.778-0.950 for 90-day; and HR = 0.883, 95% CI: 0.811-0.961 for 1-year mortality, respectively). Covariate effect analyses showed that the use of H2RAs was more beneficial in essential hypertension patients with age ≥ 60, BMI ≥ 25 kg/m2, coronary arteriosclerosis, stroke, and acute kidney failure, respectively. In conclusion, H2RAs exposure was related to lower mortalities in critically ill patients with essential hypertension, which provided novel potential strategy for the use of H2RAs in essential hypertension patients.

12.
Biomed Pharmacother ; 174: 116527, 2024 May.
Article in English | MEDLINE | ID: mdl-38579399

ABSTRACT

The aims of this work were to evaluate the expression of histamine H3 receptor (H3R) in triple negative breast cancer (TNBC) samples and to investigate the antitumoral efficacy and safety of the LINS01 series of H3R antagonists, through in silico, in vitro, and in vivo approaches. Antitumor activity of LINS01009, LINS01010, LINS01022, LINS01023 was assayed in vitro in 4T1 and MDA-MB-231 TNBC cells (0.01-100 µM), and in vivo in 4T1 tumors orthotopically established in BALB/c mice (1 or 20 mg/kg). Additionally, H3R expression was assessed in 50 human TNBC samples. We have described a higher H3R mRNA expression in basal-like/TNBC tumors vs. matched normal tissue using TCGA Pan-Cancer Atlas data, and a higher H3R expression in human tumor samples vs. peritumoral tissue evidenced by immunohistochemistry associated with poorer survival. Furthermore, while all the essayed compounds showed antitumoral properties, LINS01022 and LINS01023 exhibited the most potent antiproliferative effects by: i) inducing cell apoptosis and suppressing cell migration in 4T1 and MDA-MB-231 TNBC cells, and ii) inhibiting cell growth in paclitaxel-resistant 4T1 cells (potentiating the paclitaxel antiproliferative effect). Moreover, 20 mg/kg LINS01022 reduced tumor size in 4T1 tumor-bearing mice, exhibiting a safe toxicological profile and potential for druggability estimated by ADME calculations. We conclude that the H3R is involved in the regulation of TNBC progression, offering promising therapeutic potential for the novel LINS01 series of H3R antagonists.


Subject(s)
Antineoplastic Agents , Histamine H3 Antagonists , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Histamine H3 Antagonists/pharmacology , Histamine H3 Antagonists/therapeutic use , Mice, Inbred BALB C , Receptors, Histamine H3/metabolism , Receptors, Histamine H3/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
13.
ACS Chem Neurosci ; 15(6): 1206-1218, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38440987

ABSTRACT

This study examines the properties of a novel series of 4-oxypiperidines designed and synthesized as histamine H3R antagonists/inverse agonists based on the structural modification of two lead compounds, viz., ADS003 and ADS009. The products are intended to maintain a high affinity for H3R while simultaneously inhibiting AChE or/and BuChE enzymes. Selected compounds were subjected to hH3R radioligand displacement and gpH3R functional assays. Some of the compounds showed nanomolar affinity. The most promising compound in the naphthalene series was ADS031, which contained a benzyl moiety at position 1 of the piperidine ring and displayed 12.5 nM affinity at the hH3R and the highest inhibitory activity against AChE (IC50 = 1.537 µM). Eight compounds showed over 60% eqBuChE inhibition and hence were qualified for the determination of the IC50 value at eqBuChE; their values ranged from 0.559 to 2.655 µM. Therapy based on a multitarget-directed ligand combining H3R antagonism with additional AChE/BuChE inhibitory properties might improve cognitive functions in multifactorial Alzheimer's disease.


Subject(s)
Cholinesterases , Receptors, Histamine H3 , Molecular Structure , Ligands , Histamine , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Ethers , Drug Inverse Agonism , Receptors, Histamine H3/chemistry , Receptors, Histamine , Structure-Activity Relationship
14.
Int J Mol Sci ; 25(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38542369

ABSTRACT

Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), ß-arrestin2 (ß-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.


Subject(s)
Arrestin , Histamine , Animals , Cricetinae , Humans , Arrestin/metabolism , Arrestins/metabolism , beta-Arrestins/metabolism , CHO Cells , Clathrin/metabolism , Cricetulus , Extracellular Signal-Regulated MAP Kinases/metabolism , G-Protein-Coupled Receptor Kinases/metabolism , GTP-Binding Proteins/metabolism , Histamine/pharmacology , Histamine/metabolism , Phosphorylation , Protein Kinase C/metabolism , Receptors, Histamine H1/genetics , Receptors, Histamine H1/metabolism , Signal Transduction
15.
Biochem Pharmacol ; 223: 116164, 2024 May.
Article in English | MEDLINE | ID: mdl-38531422

ABSTRACT

Cancer morbimortality is still a great concern despite advances in research and therapies. Histamine and its receptors' ligands can modulate different biological responses according to the cell type and the receptor subtype involved. Besides the wide variety of histamine functions in normal tissues, diverse roles in the acquisition of hallmarks of cancer such as sustained proliferative signaling, resistance to cell death, angiogenesis, metastasis, altered immunity and modified microenvironment have been described. This review summarizes the present knowledge of the various roles of histamine H2 receptor (H2R) ligands in neoplasias. A bioinformatic analysis of human tumors showed dissimilar results in the expression of the H2R gene according to tumor type when comparing malignant versus normal tissues. As well, the relationship between patients' survival parameters and H2R gene expression levels also varied, signaling important divergences in the role of H2R in neoplastic progression in different cancer types. Revised experimental evidence showed multiple effects of H2R antihistamines on several of the cited hallmarks of cancer. Interventional and retrospective clinical studies evaluated different H2R antihistamines in cancer patients with two main adjuvant uses: improving antitumor efficacy (which includes regulation of immune response) and preventing toxic adverse effects produced by chemo or radiotherapy. While there is a long path to go, research on H2R antihistamines may provide new opportunities for developing more refined combination therapeutic strategies for certain cancer types to improve patients' survival and health-related quality of life.


Subject(s)
Histamine , Neoplasms , Humans , Histamine/metabolism , Retrospective Studies , Quality of Life , Histamine H2 Antagonists , Histamine Antagonists/pharmacology , Histamine Antagonists/therapeutic use , Receptors, Histamine H2/genetics , Receptors, Histamine H2/metabolism , Neoplasms/drug therapy , Tumor Microenvironment
16.
JMIR Res Protoc ; 13: e54882, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386393

ABSTRACT

BACKGROUND: Rituximab, an anti-CD20 monoclonal antibody, can cause infusion reactions (IRs), especially during the initial rituximab infusion therapy. Generally, patients are administered a histamine H1-receptor antagonist before the rituximab infusion, along with an antipyretic analgesic, to prevent or reduce IRs. Multiple retrospective case-control studies indicate that the second generation of histamine H1-receptor antagonists might be more effective than the first generation in suppressing IRs caused by the rituximab infusion. OBJECTIVE: This study aimed to assess the efficacy of first- and second-generation histamine H1-receptor antagonists for preventing IRs resulting from the initial infusion of rituximab in patients diagnosed with non-Hodgkin lymphoma. METHODS: This is a phase II, double-blind, active-controlled randomized trial. It will be a multicenter study conducted across 3 facilities that aims to enroll a total of 40 patients diagnosed with non-Hodgkin lymphoma who will receive their initial rituximab infusion. Participating patients will be administered hydroxyzine pamoate or bepotastine besilate, representing first- or second-generation histamine H1-receptor antagonists, respectively. This will be combined with 400-mg acetaminophen tablets taken approximately 30 minutes before the first infusion of rituximab. The primary end point of this trial is to assess severe IRs, equivalent to grade 2 or higher as defined by the National Cancer Institute Common Terminology Criteria for Adverse Events, version 5.0, that occur within a 4-hour period after the initiation of rituximab infusion. The secondary end points include assessing the severity of the initial IR, the maximum severity of the IR, and the duration between rituximab infusion initiation and the onset of the first IR within a 4-hour period. Additionally, the trial will evaluate histamine H1-receptor antagonist-induced drowsiness using the visual analogue scale, with each patient providing their individual response. RESULTS: This study began with patient recruitment in April 2023, with 17 participants enrolled as of November 12, 2023. The anticipated study completion is set for February 2026. CONCLUSIONS: This study is the first randomized controlled trial comparing the effects of oral first- and second-generation histamine H1-receptor antagonists in preventing IRs induced by the initial administration of rituximab. The findings from this study hold the potential to establish the rationale for a phase III study aimed at determining the standard premedication protocol for rituximab infusion. TRIAL REGISTRATION: Japan Registry of Clinical Trials jRCTs051220169; https://jrct.niph.go.jp/latest-detail/jRCTs051220169. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/54882.

17.
Korean J Intern Med ; 39(2): 228-237, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38321358

ABSTRACT

BACKGROUND/AIMS: Long-term use of acid suppressants such as proton pump inhibitors (PPIs) and histamine 2 receptor antagonist (H2RA) has been associated with the risk of osteoporotic fracture. Acid suppressants and muco-protective agents (MPAs) are often used together as anti-ulcer agents. We evaluated the association between the risk of osteoporotic fracture and the combined use of these anti-peptic agents. METHODS: A population-based case-control study was conducted by analyzing the Korean National Health Insurance Data from 2014 to 2020. Patients who had been prescribed anti-peptic agents, such as PPI, H2RA, or MPA, were included. Considering the incidence of osteoporotic fractures, the case group (n = 14,704) and control group (n = 58,816) were classified by 1:4 matching based on age and sex. RESULTS: The use of all types of anti-peptic agents was associated with an increased risk of osteoporotic fractures (PPI: hazard osteoratio [HR], 1.31; H2RA: HR, 1.44; and MPA: HR, 1.33; all p < 0.001). Compared to PPI alone, the combined use of "PPI and H2RA" (HR, 1.58; p = 0.010) as well as "PPI, H2RA, and MPA" (HR, 1.71; p = 0.001) was associated with an increased risk of osteoporotic fracture. However, compared with PPI alone, "MPA and PPI or H2RA" was not associated with an increased risk of osteoporotic fracture. CONCLUSION: This study found that the combined use of "PPI and H2RA" was associated with a higher risk of osteoporotic fractures. In cases where deemed necessary, the physicians may initially consider prescribing the combination use of MPA.


Subject(s)
Anti-Ulcer Agents , Osteoporotic Fractures , Humans , Case-Control Studies , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/prevention & control , Osteoporotic Fractures/chemically induced , Histamine H2 Antagonists/adverse effects , Proton Pump Inhibitors/adverse effects
18.
Eur J Med Chem ; 268: 116197, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38368709

ABSTRACT

Desloratadine, a second-generation histamine H1 receptor antagonist, has established itself as a first-line drug for the treatment of allergic diseases. Despite its effectiveness, desloratadine exhibits an antagonistic effect on muscarinic M3 receptor, which can cause side effects such as dry mouth and urinary retention, ultimately limiting its clinical application. Herein, we describe the discovery of compound Ⅲ-4, a novel H1 receptor antagonist with significant H1 receptor antagonistic activity (IC50 = 24.12 nM) and enhanced selectivity towards peripheral H1 receptor. In particular, Ⅲ-4 exhibits reduced M3 receptor inhibitory potency (IC50 > 10,000 nM) and acceptable hERG inhibitory activity (17.6 ± 2.1 µM) compare with desloratadine. Additionally, Ⅲ-4 exhibits favorable pharmacokinetic properties, as well as in vivo efficacy and safety profiles. All of these reveal that Ⅲ-4 has potential to emerge as a novel H1 receptor antagonist for the treatment of allergic diseases. More importantly, the compound Ⅲ-4 (HY-078020) has recently been granted clinical approval.


Subject(s)
Histamine H1 Antagonists , Hypersensitivity , Loratadine/analogs & derivatives , Humans , Histamine H1 Antagonists/pharmacology , Histamine H1 Antagonists/therapeutic use , Receptors, Histamine H1/therapeutic use , Loratadine/pharmacology , Loratadine/therapeutic use , Hypersensitivity/drug therapy
19.
Eur J Pharmacol ; 968: 176450, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38387718

ABSTRACT

The histamine H3 receptor (H3R) regulates as a presynaptic G protein-coupled receptor the release of histamine and other neurotransmitters in the brain, and is consequently a potential therapeutic target for neuronal disorders. The human H3R encodes for seven splice variants that vary in the length of intracellular loop 3 and/or the C-terminal tail but are all able to induce heterotrimeric Gi protein signaling. The last two decades H3R drug discovery and lead optimization has been exclusively focused on the 445 amino acids-long reference isoform H3R-445. In this study, we pharmacologically characterized for the first time all seven H3R isoforms by determining their binding affinities for reference histamine H3 receptor agonists and inverse agonists. The H3R-453, H3R-415, and H3R-413 isoforms display similar binding affinities for all ligands as the H3R-445. However, increased agonist binding affinities were observed for the three shorter isoforms H3R-329, H3R-365, and H3R-373, whereas inverse agonists such as the approved anti-narcolepsy drug pitolisant (Wakix®) displayed significantly decreased binding affinities for the latter two isoforms. This opposite change in binding affinity of agonist versus inverse agonists on H3R-365 and H3R-373 is associated with their higher constitutive activity in a cAMP biosensor assay as compared to the other five isoforms. The observed differences in pharmacology between longer and shorter H3R isoforms should be considered in future drug discovery programs.


Subject(s)
Histamine , Receptors, Histamine H3 , Humans , Histamine/pharmacology , Receptors, Histamine H3/metabolism , Drug Inverse Agonism , Receptors, Histamine , Protein Isoforms , Histamine Agonists/pharmacology
20.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 4927-4938, 2024 07.
Article in English | MEDLINE | ID: mdl-38170305

ABSTRACT

Proton pump inhibitor (PPI) use may be associated with renal dysfunction. Renal dysfunction in PPI users requires evaluation of development and progression risks simultaneously, using estimated glomerular filtration rate (eGFR) slope, which indicates changes in eGFR per year. To the best of our knowledge, no studies have evaluated eGFR slope in PPI users. This study investigated the association between PPI use and renal dysfunction using eGFR slope. A single-center cohort study was conducted using the health records data at Hamamatsu University Hospital in Japan. Participants were defined as first users of acid-suppressing drugs (PPIs or Histamine H2 receptor antagonists (H2RAs)) from 2010 to 2021 and continuously prescribed for ≥ 90 days. The H2RA group was used for the propensity-score matching (PSM) to the PPI group to minimize the effects of confounders. The eGFR slope was estimated using a linear mixed effects model. Participants were stratified by baseline eGFR and age, respectively, as subgroup analyses. A total of 4,649 acid-suppressing drug users met the inclusion criteria, including 950 taking H2RAs and 3,699 PPIs. After PSM, 911 patients were assigned to each group. The eGFR slopes of the PPI and H2RA users were -4.75 (95% CI: -6.29, -3.20) and -3.40 (-4.38, -2.42), respectively. The difference between the groups was not significant. Significant declines in eGFR were observed with PPIs with baseline eGFR ≥ 90 and age < 65. PPI use for ≥ 90 days may hasten eGFR decline compared to H2RA use, especially in patients with eGFR ≥ 90 or age < 65.


Subject(s)
Glomerular Filtration Rate , Histamine H2 Antagonists , Proton Pump Inhibitors , Humans , Proton Pump Inhibitors/administration & dosage , Proton Pump Inhibitors/adverse effects , Glomerular Filtration Rate/drug effects , Male , Female , Middle Aged , Aged , Histamine H2 Antagonists/administration & dosage , Cohort Studies , Japan , Aged, 80 and over , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...