Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 753
Filter
1.
Neurotherapeutics ; : e00388, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972779

ABSTRACT

Protein misfolding and mislocalization are common to both familial and sporadic forms of amyotrophic lateral sclerosis (ALS). Maintaining proteostasis through induction of heat shock proteins (HSP) to increase chaperoning capacity is a rational therapeutic strategy in the treatment of ALS. However, the threshold for upregulating stress-inducible HSPs remains high in neurons, presenting a therapeutic obstacle. This study used mouse models expressing the ALS variants FUSR521G or SOD1G93A to follow up on previous work in cultured motor neurons showing varied effects of the HSP co-inducer, arimoclomol, and class I histone deacetylase (HDAC) inhibitors on HSP expression depending on the ALS variant being expressed. As in cultured neurons, neither expression of the transgene nor drug treatments induced expression of HSPs in cortex, spinal cord or muscle of FUSR521G mice, indicating suppression of the heat shock response. Nonetheless, arimoclomol, and RGFP963, restored performance on cognitive tests and improved cortical dendritic spine densities. In SOD1G93A mice, multiple HSPs were upregulated in hindlimb skeletal muscle, but not in lumbar spinal cord with the exception of HSPB1 associated with astrocytosis. Drug treatments improved contractile force but reduced the increase in HSPs in muscle rather than facilitating their expression. The data point to mechanisms other than amplification of the heat shock response underlying recovery of cognitive function in ALS-FUS mice by arimoclomol and class I HDAC inhibition and suggest potential benefits in counteracting cognitive impairment in ALS, frontotemporal dementia and related disorders.

2.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(2): 207-214, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38857968

ABSTRACT

Schistosomiasis is a neglected zoonotic parasitic disease. Currently, praziquantel is the drug of choice for the treatment of schistosomiasis, and is the only effective chemical for treatment of schistosomiasis japonica. Since its introduction in the 1970s, praziquantel has been used for large-scale chemotherapy of schistosomiasis for over 40 years. However, there have been reports pertaining to the resistance to praziquantel in schistosomes. Therefore, development of novel antischistosomal agents as alternatives of praziquantel, is of great need. Histone deacetylases and histone acetyltransferases have been recently reported to play critical roles in the growth, development and reproduction of schistosomes, and are considered as potential drug targets for the treatment of schistosomiasis. This review summarizes the latest advances of histone deacetylase and histone acetyltransferase inhibitors in the research on antischistosomal drugs, so as to provide insights into research and development of novelantischistosomal agents.


Subject(s)
Histone Acetyltransferases , Histone Deacetylase Inhibitors , Histone Deacetylases , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Acetyltransferases/antagonists & inhibitors , Humans , Histone Deacetylases/metabolism , Schistosoma/drug effects , Schistosoma/enzymology , Schistosoma/physiology , Schistosomiasis/drug therapy , Schistosomicides/pharmacology , Schistosomicides/therapeutic use
3.
J Hematol Oncol ; 17(1): 37, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822399

ABSTRACT

Histone deacetylase (HDAC) serves as a critical molecular regulator in the pathobiology of various malignancies and have garnered attention as a viable target for therapeutic intervention. A variety of HDAC inhibitors (HDACis) have been developed to target HDACs. Many preclinical studies have conclusively demonstrated the antitumor effects of HDACis, whether used as monotherapy or in combination treatments. On this basis, researchers have conducted various clinical studies to evaluate the potential of selective and pan-HDACis in clinical settings. In our work, we extensively summarized and organized current clinical trials, providing a comprehensive overview of the current clinical advancements in targeting HDAC therapy. Furthermore, we engaged in discussions about several clinical trials that did not yield positive outcomes, analyzing the factors that led to their lack of anticipated therapeutic effectiveness. Apart from the experimental design factors, issues such as toxicological side effects, tumor heterogeneity, and unexpected off-target effects also contributed to these less-than-expected results. These challenges have naturally become significant barriers to the application of HDACis. Despite these challenges, we believe that advancements in HDACi research and improvements in combination therapies will pave the way or lead to a broad and hopeful future in the treatment of solid tumors.


Subject(s)
Histone Deacetylase Inhibitors , Histone Deacetylases , Neoplasms , Humans , Neoplasms/drug therapy , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Animals , Clinical Trials as Topic , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Molecular Targeted Therapy/methods
4.
Biol Pharm Bull ; 47(6): 1196-1203, 2024.
Article in English | MEDLINE | ID: mdl-38897970

ABSTRACT

Microglia, resident immune cells in the central nervous system (CNS), play a critical role in maintaining CNS homeostasis. However, microglia activated in response to brain injury produce various inflammatory mediators, including nitric oxide (NO) and proinflammatory cytokines, leading to considerable neuronal damage. NO generated by inducible NO synthase (iNOS) rapidly reacts with superoxide to form a highly toxic product, peroxynitrite. Therefore, iNOS is considered to be a putative therapeutic target for cerebral ischemia. Here, we examined the effects of panobinostat (Pano), a histone deacetylase inhibitor, on lipopolysaccharide (LPS)-induced iNOS expression using rat immortalized microglia HAPI cells. Pano inhibited LPS-induced expression of iNOS mRNA and NO production in a dose-dependent manner; however, it had little effect on the LPS-induced activation of c-Jun N-terminal kinase (JNK) and p38 or nuclear translocation of nuclear factor-κB (NF-κB). The interferon-ß (IFN-ß)/signal transducer and activator of transcription (STAT) pathway is essential for LPS-induced iNOS expression in macrophages/microglia. We also examined the effects of Pano on LPS-induced IFN-ß signaling. Pano markedly inhibited LPS-induced IFN-ß expression and subsequent tyrosine phosphorylation of STAT1. However, the addition of IFN-ß restored the decreased STAT1 phosphorylation but not the decreased iNOS expression. In addition, Pano inhibited the LPS-increased expression of octamer binding protein-2 and interferon regulatory factor 9 responsible for iNOS expression, but IFN-ß addition also failed to restore the decreased expression of these factors. Thus, we conclude that the inhibitory effects of Pano are due not only to the inhibition of the IFN-ß/STAT axis but also to the downregulation of other factors not involved in this axis.


Subject(s)
Histone Deacetylase Inhibitors , Lipopolysaccharides , Microglia , Nitric Oxide Synthase Type II , Nitric Oxide , Panobinostat , Animals , Microglia/drug effects , Microglia/metabolism , Lipopolysaccharides/pharmacology , Nitric Oxide Synthase Type II/metabolism , Histone Deacetylase Inhibitors/pharmacology , Rats , Panobinostat/pharmacology , Nitric Oxide/metabolism , NF-kappa B/metabolism , Cell Line , Interferon-beta/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction/drug effects
5.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931419

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal form of pancreatic cancer characterized by therapy resistance and early metastasis, resulting in a low survival rate. Histone deacetylase (HDAC) inhibitors showed potential for the treatment of hematological malignancies. In PDAC, the overexpression of HDAC 2 is associated with the epithelial-mesenchymal transition (EMT), principally accompanied by the downregulation of the epithelial marker E-cadherin and increased metastatic capacity. The effector cytokine transforming growth factor-ß (TGF ß) is known to be a major inducer of the EMT in PDAC, leading to high metastatic and invasive potential. In addition, the overexpression of HDAC 6 in PDAC is associated with reduced apoptosis. Here, we have demonstrated that a novel HDAC 2/6 inhibitor not only significantly increased E-cadherin expression in PANC-1 cells (5.5-fold) and in 3D PDAC co-culture spheroids (2.5-fold) but was also able to reverse the TGF-ß-induced downregulation of E-cadherin expression. Moreover, our study indicates that the HDAC inhibitor mediated re-differentiation resulting in a significant inhibition of tumor cell invasion by approximately 60% compared to control. In particular, we have shown that the HDAC inhibitor induces both apoptosis (2-fold) and cell cycle arrest. In conclusion, the HDAC 2/6 inhibitor acts by suppressing invasion via upregulating E-cadherin mediated by HDAC 2 blockade and by inducing cell cycle arrest leading to apoptosis via HDAC 6 inhibition. These results suggest that the HDAC 2/6 inhibitor might represent a novel therapeutic strategy for the treatment of PDAC tumorigenesis and metastasis.

6.
Br J Pharmacol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38936407

ABSTRACT

BACKGROUND AND PURPOSE: Inhibitors of histone deacetylases (iHDACs) are promising drugs for neurodegenerative diseases. We have evaluated the therapeutic potential of the new iHDAC LASSBio-1911 in Aß oligomer (AßO) toxicity models and astrocytes, key players in neuroinflammation and Alzheimer's disease (AD). EXPERIMENTAL APPROACH: Astrocyte phenotype and synapse density were evaluated by flow cytometry, Western blotting, immunofluorescence and qPCR, in vitro and in mice. Cognitive function was evaluated by behavioural assays using a mouse model of intracerebroventricular infusion of AßO. KEY RESULTS: LASSBio-1911 modulates reactivity and synaptogenic potential of cultured astrocytes and improves synaptic markers in cultured neurons and in mice. It prevents AßO-triggered astrocytic reactivity in mice and enhances the neuroprotective potential of astrocytes. LASSBio-1911 improves behavioural performance and rescues synaptic and memory function in AßO-infused mice. CONCLUSION AND IMPLICATIONS: These results contribute to unveiling the mechanisms underlying astrocyte role in AD and provide the rationale for using astrocytes as targets to new drugs for AD.

7.
CNS Neurosci Ther ; 30(5): e14745, 2024 05.
Article in English | MEDLINE | ID: mdl-38715326

ABSTRACT

BACKGROUND: Neuropathic pain remains a formidable challenge for modern medicine. The first-line pharmacological therapies exhibit limited efficacy and unfavorable side effect profiles, highlighting an unmet need for effective therapeutic medications. The past decades have witnessed an explosion in efforts to translate epigenetic concepts into pain therapy and shed light on epigenetics as a promising avenue for pain research. Recently, the aberrant activity of histone deacetylase (HDAC) has emerged as a key mechanism contributing to the development and maintenance of neuropathic pain. AIMS: In this review, we highlight the distinctive role of specific HDAC subtypes in a cell-specific manner in pain nociception, and outline the recent experimental evidence supporting the therapeutic potential of HDACi in neuropathic pain. METHODS: We have summarized studies of HDAC in neuropathic pain in Pubmed. RESULTS: HDACs, widely distributed in the neuronal and non-neuronal cells of the dorsal root ganglion and spinal cord, regulate gene expression by deacetylation of histone or non-histone proteins and involving in increased neuronal excitability and neuroinflammation, thus promoting peripheral and central sensitization. Importantly, pharmacological manipulation of aberrant acetylation using HDAC-targeted inhibitors (HDACi) has shown promising pain-relieving properties in various preclinical models of neuropathic pain. Yet, many of which exhibit low-specificity that may induce off-target toxicities, underscoring the necessity for the development of isoform-selective HDACi in pain management. CONCLUSIONS: Abnormally elevated HDACs promote neuronal excitability and neuroinflammation by epigenetically modulating pivotal gene expression in neuronal and immune cells, contributing to peripheral and central sensitization in the progression of neuropathic pain, and HDACi showed significant efficacy and great potential for alleviating neuropathic pain.


Subject(s)
Epigenesis, Genetic , Histone Deacetylase Inhibitors , Histone Deacetylases , Neuralgia , Humans , Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism
8.
Exp Cell Res ; 439(1): 114055, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38704080

ABSTRACT

BACKGROUND: Being implicated during tumor migration, invasion, clonogenicity, and proliferation, the nicotinamide adenine dinucleotide (NAD)/-phosphate (NADP)-dependent dehydrogenase/reductase member 2 (DHRS2) has been considered to be induced upon inhibition of histone deacetylases (HDACi). In this study, we evaluated the current knowledge on the underlying mechanisms of the (epi)genetic regulation of DHRS2, as well as its function during tumor progression. METHODS: DHRS2 expression was evaluated on mRNA- and protein-level upon treatment with HDACi by means of qRT-PCR and western blot analyses, respectively. Re-analysis of RNA-sequencing data gained insight into expression of specific DHRS2 isoforms, while re-analysis of ATAC-sequencing data shed light on the chromatin accessibility at the DHRS2 locus. Further examination of the energy and lipid metabolism of HDACi-treated urologic tumor cells was performed using liquid chromatography-mass spectrometry. RESULTS: Enhanced DHRS2 expression levels upon HDACi treatment were directly linked to an enhanced chromatin accessibility at the DHRS2 locus. Particularly the DHRS2 ENST00000250383.11 protein-coding isoform was increased upon HDACi treatment. Application of the HDACi quisinostat only mildly influenced the energy metabolism of urologic tumor cells, though, the analysis of the lipid metabolism showed diminished sphingosine levels, as well as decreased S1P levels. Also the ratios of S1P/sphingosine and S1P/ceramides were reduced in all four quisinostat-treated urologic tumor cells. CONCLUSIONS: With the emphasis on urologic malignancies (testicular germ cell tumors, urothelial, prostate, and renal cell carcinoma), this study concluded that elevated DHRS2 levels are indicative of a successful HDACi treatment and, thereby offering a novel putative predictive biomarker.


Subject(s)
Histone Deacetylase Inhibitors , Humans , Histone Deacetylase Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Urologic Neoplasms/drug therapy , Urologic Neoplasms/genetics , Urologic Neoplasms/pathology , Urologic Neoplasms/metabolism , Cell Proliferation/drug effects
9.
Cell Stress Chaperones ; 29(3): 359-380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570009

ABSTRACT

Protein misfolding and mislocalization are common themes in neurodegenerative disorders, including motor neuron disease, and amyotrophic lateral sclerosis (ALS). Maintaining proteostasis is a crosscutting therapeutic target, including the upregulation of heat shock proteins (HSP) to increase chaperoning capacity. Motor neurons have a high threshold for upregulating stress-inducible HSPA1A, but constitutively express high levels of HSPA8. This study compared the expression of these HSPs in cultured motor neurons expressing three variants linked to familial ALS: TAR DNA binding protein 43 kDa (TDP-43)G348C, fused in sarcoma (FUS)R521G, or superoxide dismutase I (SOD1)G93A. All variants were poor inducers of Hspa1a, and reduced levels of Hspa8 mRNA and protein, indicating multiple compromises in chaperoning capacity. To promote HSP expression, cultures were treated with the putative HSP coinducer, arimoclomol, and class I histone deacetylase inhibitors, to promote active chromatin for transcription, and with the combination. Treatments had variable, often different effects on the expression of Hspa1a and Hspa8, depending on the ALS variant expressed, mRNA distribution (somata and dendrites), and biomarker of toxicity measured (histone acetylation, maintaining nuclear TDP-43 and the neuronal Brm/Brg-associated factor chromatin remodeling complex component Brg1, mitochondrial transport, FUS aggregation). Overall, histone deacetylase inhibition alone was effective on more measures than arimoclomol. As in the FUS model, arimoclomol failed to induce HSPA1A or preserve Hspa8 mRNA in the TDP-43 model, despite preserving nuclear TDP-43 and Brg1, indicating neuroprotective properties other than HSP induction. The data speak to the complexity of drug mechanisms against multiple biomarkers of ALS pathogenesis, as well as to the importance of HSPA8 for neuronal proteostasis in both somata and dendrites.


Subject(s)
Amyotrophic Lateral Sclerosis , Biomarkers , DNA-Binding Proteins , Histone Deacetylase Inhibitors , Motor Neurons , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Biomarkers/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Humans , Motor Neurons/metabolism , Motor Neurons/drug effects , Motor Neurons/pathology , Animals , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSC70 Heat-Shock Proteins/metabolism , HSC70 Heat-Shock Proteins/genetics , Hydroxylamines/pharmacology , Cells, Cultured , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics
10.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38675387

ABSTRACT

Aberrant epigenetic modifications are fundamental contributors to the pathogenesis of various cancers. Consequently, targeting these aberrations with small molecules, such as histone deacetylase (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors, presents a viable strategy for cancer therapy. The objective of this study is to assess the anti-cancer efficacy of trichostatin C (TSC), an analogue of trichostatin A sourced from the fermentation of Streptomyces sp. CPCC 203909. Our investigations reveal that TSC demonstrates potent activity against both human lung cancer and urothelial bladder cancer cell lines, with IC50 values in the low micromolar range. Moreover, TSC induces apoptosis mediated by caspase 3/7 and arrests the cell cycle at the G2/M phase. When combined with the DNMT inhibitor decitabine, TSC exhibits a synergistic anti-cancer effect. Additionally, protein analysis elucidates a significant reduction in the expression of the tyrosine kinase receptor Axl. Notably, elevated concentrations of TSC correlate with the up-regulation of the transcription factor forkhead box class O1 (FoxO1) and increased levels of the proapoptotic proteins Bim and p21. In conclusion, our findings suggest TSC as a promising anti-cancer agent with HDAC inhibitory activity. Furthermore, our results highlight the potential utility of TSC in combination with DNMT inhibitors for cancer treatment.

11.
Inflammopharmacology ; 32(3): 1791-1804, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653938

ABSTRACT

Huntington's disease (HD) is an inherited, autosomal, neurodegenerative ailment that affects the striatum of the brain. Despite its debilitating effect on its patients, there is no proven cure for HD management as of yet. Neuroinflammation, excitotoxicity, and environmental factors have been reported to influence the regulation of gene expression by modifying epigenetic mechanisms. Aside focusing on the etiology, changes in epigenetic mechanisms have become a crucial factor influencing the interaction between HTT protein and epigenetically transcribed genes involved in neuroinflammation and HD. This review presents relevant literature on epigenetics with special emphasis on neuroinflammation and HD. It summarizes pertinent research on the role of neuroinflammation and post-translational modifications of chromatin, including DNA methylation, histone modification, and miRNAs. To achieve this about 1500 articles were reviewed via databases like PubMed, ScienceDirect, Google Scholar, and Web of Science. They were reduced to 534 using MeSH words like 'epigenetics, neuroinflammation, and HD' coupled with Boolean operators. Results indicated that major contributing factors to the development of HD such as mitochondrial dysfunction, excitotoxicity, neuroinflammation, and apoptosis are affected by epigenetic alterations. However, the association between neuroinflammation-altered epigenetics and the reported transcriptional changes in HD is unknown. Also, the link between epigenetically dysregulated genomic regions and specific DNA sequences suggests the likelihood that transcription factors, chromatin-remodeling proteins, and enzymes that affect gene expression are all disrupted simultaneously. Hence, therapies that target pathogenic pathways in HD, including neuroinflammation, transcriptional dysregulation, triplet instability, vesicle trafficking dysfunction, and protein degradation, need to be developed.


Subject(s)
Epigenesis, Genetic , Huntington Disease , Neuroinflammatory Diseases , Huntington Disease/genetics , Huntington Disease/therapy , Humans , Animals , Neuroinflammatory Diseases/genetics , DNA Methylation/genetics , Inflammation/genetics
12.
Tomography ; 10(3): 428-443, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38535775

ABSTRACT

Current diagnostic and therapeutic approaches for gliomas have limitations hindering survival outcomes. We propose spectroscopic magnetic resonance imaging as an adjunct to standard MRI to bridge these gaps. Spectroscopic MRI is a volumetric MRI technique capable of identifying tumor infiltration based on its elevated choline (Cho) and decreased N-acetylaspartate (NAA). We present the clinical translatability of spectroscopic imaging with a Cho/NAA ≥ 5x threshold for delineating a biopsy target in a patient diagnosed with non-enhancing glioma. Then, we describe the relationship between the undertreated tumor detected with metabolite imaging and overall survival (OS) from a pilot study of newly diagnosed GBM patients treated with belinostat and chemoradiation. Each cohort (control and belinostat) were split into subgroups using the median difference between pre-radiotherapy Cho/NAA ≥ 2x and the treated T1-weighted contrast-enhanced (T1w-CE) volume. We used the Kaplan-Meier estimator to calculate median OS for each subgroup. The median OS was 14.4 months when the difference between Cho/NAA ≥ 2x and T1w-CE volumes was higher than the median compared with 34.3 months when this difference was lower than the median. The T1w-CE volumes were similar in both subgroups. We find that patients who had lower volumes of undertreated tumors detected via spectroscopy had better survival outcomes.


Subject(s)
Glioblastoma , Glioma , Hydroxamic Acids , Sulfonamides , Humans , Pilot Projects , Spectrum Analysis , Biopsy , Magnetic Resonance Imaging , Choline
13.
Arch Microbiol ; 206(4): 137, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436734

ABSTRACT

Butyrate, a short-chain fatty acid (SCFA) produced by bacterial fermentation of fiber in the colon, is a source of energy for colonocytes. Butyrate is essential for improving gastrointestinal (GI) health since it helps colonocyte function, reduces inflammation, preserves the gut barrier, and fosters a balanced microbiome. Human colonic butyrate producers are Gram-positive firmicutes, which are phylogenetically varied. The two most prevalent subgroups are associated with Eubacterium rectale/Roseburia spp. and Faecalibacterium prausnitzii. Now, the mechanism for the production of butyrate from microbes is a very vital topic to know. In the present study, we discuss the genes encoding the core of the butyrate synthesis pathway and also discuss the butyryl-CoA:acetate CoA-transferase, instead of butyrate kinase, which usually appears to be the enzyme that completes the process. Recently, butyrate-producing microbes have been genetically modified by researchers to increase butyrate synthesis from microbes. The activity of butyrate as a histone deacetylase inhibitor (HDACi) has led to several clinical trials to assess its effectiveness as a potential cancer treatment. Among various significant roles, butyrate is the main energy source for intestinal epithelial cells, which helps maintain colonic homeostasis. Moreover, people with non-small-cell lung cancer (NSCLC) have distinct gut microbiota from healthy adults and frequently have dysbiosis of the butyrate-producing bacteria in their guts. So, with an emphasis on colon and lung cancer, this review also discusses how the microbiome is crucial in preventing the progression of certain cancers through butyrate production. Further studies should be performed to investigate the underlying mechanisms of how these specific butyrate-producing bacteria can control both colon and lung cancer progression and prognosis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Colorectal Neoplasms , Lung Neoplasms , Adult , Humans , Lung Neoplasms/prevention & control , Fatty Acids, Volatile , Butyrates , Colorectal Neoplasms/prevention & control
14.
Breast Cancer Res ; 26(1): 35, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429789

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with a poor prognosis. Doxorubicin is part of standard curative therapy for TNBC, but chemotherapy resistance remains an important clinical challenge. Bocodepsin (OKI-179) is a small molecule class I histone deacetylase (HDAC) inhibitor that promotes apoptosis in TNBC preclinical models. The purpose of this study was to investigate the combination of bocodepsin and doxorubicin in preclinical TNBC models and evaluate the impact on terminal cell fate, including apoptosis and senescence. METHODS: TNBC cell lines were treated with doxorubicin and CellTiter-Glo was used to assess proliferation and determine doxorubicin sensitivity. Select cell lines were treated with OKI-005 (in vitro version of bocodepsin) and doxorubicin and assessed for proliferation, apoptosis as measured by Annexin V/PI, and cell cycle by flow cytometry. Immunoblotting was used to assess changes in mediators of apoptosis, cell cycle arrest, and senescence. Senescence was measured by the senescence-associated ß-galactosidase assay. An MDA-MB-231 xenograft in vivo model was treated with bocodepsin, doxorubicin, or the combination and assessed for inhibition of tumor growth. shRNA knockdown of p53 was performed in the CAL-51 cell line and proliferation, apoptosis and senescence were assessed in response to combination treatment. RESULTS: OKI-005 and doxorubicin resulted in synergistic antiproliferative activity in TNBC cells lines regardless of p53 mutation status. The combination led to increased apoptosis and decreased senescence. In vivo, the combination resulted in increased tumor growth inhibition compared to either single agent. shRNA knock-down of p53 led to increased doxorubicin-induced senescence that was decreased with the addition of OKI-005 in vitro. CONCLUSION: The addition of bocodepsin to doxorubicin resulted in synergistic antiproliferative activity in vitro, improved tumor growth inhibition in vivo, and promotion of apoptosis which makes this a promising combination to overcome doxorubicin resistance in TNBC. Bocodepsin is currently in clinical development and has a favorable toxicity profile compared to other HDAC inhibitors supporting the feasibility of evaluating this combination in patients with TNBC.


Subject(s)
Histone Deacetylase Inhibitors , Triple Negative Breast Neoplasms , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Apoptosis , RNA, Small Interfering
15.
Ann Hematol ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38453702

ABSTRACT

Histone deacetylase (HDAC) inhibitors are emerging as promising treatments for hematological malignancies, with potential applications extending to solid tumors in the future. Given their wide-ranging biological effects, there is a pressing need for a thorough understanding of the toxicities linked to HDAC inhibition. In this study, a pharmacovigilance analysis was conducted using the FDA Adverse Event Reporting System database. Suspected adverse events linked to HDAC inhibitors were detected through various statistical methodologies, including reporting odds ratio, proportional reporting ratio, information component, and Empirical Bayes Geometric Mean. Our study findings have illuminated that, among the total reported cases examined, gastrointestinal disorders accounted for 13% patients of the cohort, while lymphatic system disorders comprised 8% cases of the cohort, all of which manifested as adverse events induced by HDAC inhibitors. Importantly, the usage of HDAC inhibitors was found to be associated with incidents of atrial fibrillation, heart failure, respiratory failure, hepatic dysfunction, and acute kidney injury. Romidepsin and belinostat demonstrated more pronounced signals of adverse events compared to panobinostat and vorinostat, emphasizing the need for vigilant monitoring of adverse events in this particular population. Furthermore, atrial fibrillation (clinical priority score of 7 points) emerged as the paramount medical event warranting utmost clinical attention. Eventually, multiple adverse events were observe to emerge within the initial and second months following the initiation of treatment. Vigilant monitoring and supportive care strategies are critical in addressing the toxicities associated with HDAC inhibitors, particularly those concerning cardiotoxicity, respiratory toxicity, renal toxicity, and hepatotoxicity.

16.
Acta Pharmacol Sin ; 45(6): 1305-1315, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38383757

ABSTRACT

Histone deacetylase inhibitors (HDACis) are important drugs for cancer therapy, but the indistinct resistant mechanisms of solid tumor therapy greatly limit their clinical application. In this study we conducted HDACi-perturbated proteomics and phosphoproteomics analyses in HDACi-sensitive and -resistant cell lines using a tandem mass tag (TMT)-based quantitative proteomic strategy. We found that the ribosome biogenesis proteins MRTO4, PES1, WDR74 and NOP16 vital to tumorigenesis might regulate the tumor sensitivity to HDACi. By integrating HDACi-perturbated protein signature with previously reported proteomics and drug sensitivity data, we predicted and validated a series of drug combination pairs potentially to enhance the sensitivity of HDACi in diverse solid tumor. Functional phosphoproteomic analysis further identified the kinase PDK1 and ROCK as potential HDACi-resistant signatures. Overall, this study reveals the potential HDACi-resistant signatures and may provide promising drug combination strategies to attenuate the resistance of solid tumor to HDACi.


Subject(s)
Drug Resistance, Neoplasm , Histone Deacetylase Inhibitors , Neoplasms , Proteomics , Humans , Histone Deacetylase Inhibitors/pharmacology , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
17.
J Clin Med ; 13(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38337591

ABSTRACT

Background: This phase II study evaluated the efficacy and safety of the histone deacetylase (HDAC) inhibitor, vorinostat, administered in combination with paclitaxel and carboplatin in patients with platinum sensitive recurrent ovarian cancer. Methods: Women with recurrent platinum-sensitive ovarian, peritoneal, or Fallopian tube carcinoma, a performance status of 0-2, and good overall organ function were eligible. Patients received 6 courses of paclitaxel (175 mg/m2) and carboplatin area under the curve (AUC) of 5.0 mg/mL/min administered via intravenous infusion on day 1 of a 3-week schedule. In addition, patients received vorinostat 400 mg orally once daily on days -4 through 10 of Cycle 1 and days 1 through 14 of each subsequent treatment cycle. The primary endpoints were progression-free survival (PFS) and adverse events. The secondary endpoints were the objective response rate and overall survival. Results: Fifty-five patients were included. CR was obtained in 14 patients (26.4%) and PR in 19 patients (35.8%), resulting in an ORR of 62.2%. Twenty patients (37.7%) had SD. The median duration of response (DoR) was 12.6 (range 6-128) months. The median PFS was 11.6 months (95% CI, 10.3-18.0; p < 0.001). Median OS was 40.6 months (95% Cl, 25.1-56.1). The most common treatment-related adverse events (all grades) were fatigue, anemia, thrombocytopenia, neutropenia, anorexia, nausea, pain, sensory neuropathy, myalgia, stomatitis and diarrhea. Conclusions: Vorinostat combined with carboplatin plus paclitaxel was tolerable and generated significant responses including a long median overall survival in recurrent platinum-sensitive ovarian cancer.

18.
J Inflamm Res ; 17: 947-955, 2024.
Article in English | MEDLINE | ID: mdl-38370467

ABSTRACT

Rheumatic disease is a disease which is not yet fully clarified to etiology and also involved in a local pathological injury or systemic disease. With the continuous improvement of clinical medical research in recent years, the development process of rheumatic diseases has been gradually elucidated; with the intensely study of epigenetics, it is realized that environmental changes can affect genetics, among which histone acetylation is one of the essential mechanisms in epigenetics. Histone deacetylases (HDACs) play an important role in regulating gene expression in various biological processes, including differentiation, development, stress response, and injury. HDACs are involved in a variety of physiological processes and are promising drug targets in various pathological conditions, such as cancer, cardiac and neurodegenerative diseases, inflammation, metabolic and immune disorders, and viral and parasitic infections. In this paper, we reviewed the roles of HDACs in rheumatic diseases in terms of their classification and function.

19.
Bioeng Transl Med ; 9(1): e10611, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38193117

ABSTRACT

Excessive immune activation and immunosuppression are opposing factors that contribute to the dysregulated innate and adaptive immune responses seen in severe inflammation and sepsis. Here, a novel analog of the histone deacetylase inhibitor (HDACi), suberoylanilide hydroxamic acid (SAHA-OH), was incorporated into immunomodulatory poly(lactic acid)-based nanoparticles (iNP-SAHA) by employing a prodrug approach through the covalent modification of poly(lactic-co-glycolic acid) (PLGA) with SAHA-OH. iNP-SAHA formulation allowed for controlled incorporation and delivery of SAHA-OH from iNP-SAHA and treatment led to multimodal biological responses including significant reductions in proinflammatory cytokine secretions and gene expression, while increasing the survival of primary macrophages under lipopolysaccharide (LPS) challenge. Using a lethal LPS-induced endotoxemia mouse model of sepsis, iNP-SAHA administration improved the survival of mice in a dose-dependent manner and tended to improve survival at the lowest doses compared to iNP control. Further, iNP-SAHA reduced the levels of plasma proinflammatory cytokines and chemokines associated with sepsis more significantly than iNP and similarly improved inflammation-induced spleen and liver toxicity as iNP, supporting its potential polypharmacological activity. Collectively, iNP-SAHA offers a potential drug delivery approach to modulate the multifaceted inflammatory responses observed in diseases such as sepsis.

20.
Biotechnol J ; 19(1): e2300232, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37975165

ABSTRACT

Chlamydomonas reinhardtii has been successfully engineered to produce compounds of interest following transgene integration and heterologous protein expression. The advantages of this model include the availability of validated tools for bioengineering, its photosynthetic ability, and its potential use as biofuel. Despite this, breakthroughs have been hindered by its ability to silence transgene expression through epigenetic changes. Histone deacetylases (HDAC) are main players in gene expression. We hypothesized that transgene silencing can be reverted with chemical treatments using HDAC inhibitors. To analyze this, we transformed C. reinhardtii, integrating into its genome the mVenus reporter gene under the HSP70-rbcs2 promoter. From 384 transformed clones, 88 (22.9%) displayed mVenus positive (mVenus+ ) cells upon flow-cytometry analysis. Five clones with different fluorescence intensities were selected. The number of integrated copies was measured by qPCR. Transgene expression levels were followed over the growth cycle and upon SAHA treatment, using a microplate reader, flow cytometry, RT-qPCR, and western blot analysis. First, we observed that expression varies with the cell cycle, reaching a maximum level just before the stationary phase in all clones. Second, we uncovered that supplementation with HDAC inhibitors of the hydroxamate family, such as vorinostat (suberoylanilide-hydroxamic-acid, SAHA) at the initiation of culture increases the frequency (% of mVenus+ cells) and the level of transgene expression per cell over the whole growth cycle, through histone deacetylase inhibition. Thus, we propose a new tool to successfully trigger the expression of heterologous proteins in the green algae C. reinhardtii, overcoming its main obstacle as an expression platform.


Subject(s)
Chlamydomonas reinhardtii , Histone Deacetylase Inhibitors , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Vorinostat , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Histone Deacetylases/metabolism , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...