Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 113(46): 13215-13220, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27789727

ABSTRACT

In the vertebrate retina, three types of photoreceptors-visual photoreceptor cones and rods and the intrinsically photosensitive retinal ganglion cells (ipRGCs)-converged through evolution to detect light and regulate image- and nonimage-forming activities such as photic entrainment of circadian rhythms, pupillary light reflexes, etc. ipRGCs express the nonvisual photopigment melanopsin (OPN4), encoded by two genes: the Xenopus (Opn4x) and mammalian (Opn4m) orthologs. In the chicken retina, both OPN4 proteins are found in ipRGCs, and Opn4x is also present in retinal horizontal cells (HCs), which connect with visual photoreceptors. Here we investigate the intrinsic photosensitivity and functioning of HCs from primary cultures of embryonic retinas at day 15 by using calcium fluorescent fluo4 imaging, pharmacological inhibitory treatments, and Opn4x knockdown. Results show that HCs are avian photoreceptors with a retinal-based OPN4X photopigment conferring intrinsic photosensitivity. Light responses in HCs appear to be driven through an ancient type of phototransduction cascade similar to that in rhabdomeric photoreceptors involving a G-protein q, the activation of phospholipase C, calcium mobilization, and the release of the inhibitory neurotransmitter GABA. Based on their intrinsic photosensitivity, HCs may have a key dual function in the retina of vertebrates, potentially regulating nonvisual tasks together with their sister cells, ipRGCs, and with visual photoreceptors, modulating lateral interactions and retinal processing.


Subject(s)
Photoreceptor Cells, Vertebrate/physiology , Retinal Horizontal Cells/physiology , Rod Opsins/physiology , Animals , Calcium/physiology , Cells, Cultured , Chickens , Embryo, Nonmammalian , Light , Retinaldehyde/physiology , Rod Opsins/genetics , gamma-Aminobutyric Acid/physiology
2.
J Comp Neurol ; 522(11): 2609-33, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24477985

ABSTRACT

The Down syndrome cell adhesion molecule (DSCAM) is required for regulation of cell number, soma spacing, and cell type-specific dendrite avoidance in many types of retinal ganglion and amacrine cells. In this study we assay the organization of cells making up the outer plexiform layer of the retina in the absence of Dscam. Some types of OFF bipolar cells, type 3b and type 4 bipolar cells, had defects in dendrite arborization in the Dscam mutant retina, whereas other cell types appeared similar to wild type. The cone synapses that these cells project their dendrites to were intact, as visualized by electron microscopy, and had a distribution and density that was not significantly different from that of wild type. The spacing of type 3b bipolar cell dendrites was further analyzed by Voronoi domain analysis, density recovery profiling (DRP) analysis, and nearest neighbor analysis. Spacing was found to be significantly different when wild-type and mutant type 3b bipolar cell dendrites were compared. Defects in arborization of these bipolar cells could not be attributed to the disorganization of inner plexiform layer cells that occurs in the Dscam mutant retina or an increase in cell number, as they arborized when Dscam was targeted in retinal ganglion cells only or in the bax null retina. Localization of DSCAM was assayed and the protein was localized near to cone synapses in mouse, macaque, and ground squirrel retinas. DSCAM protein was detected in several types of bipolar cells, including type 3b and type 4 bipolar cells.


Subject(s)
Retinal Cone Photoreceptor Cells/cytology , Retinal Cone Photoreceptor Cells/physiology , Synapses/physiology , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Count , Dendrites/physiology , Female , Macaca , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron , Mutation , Retina/cytology , Retina/physiopathology , Retinal Bipolar Cells/cytology , Retinal Bipolar Cells/physiology , Sciuridae , Species Specificity , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL