Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microbiome ; 11(1): 216, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777794

ABSTRACT

BACKGROUND: Microbiome recruitment is influenced by plant host, but how host plant impacts the assembly, functions, and interactions of perennial plant root microbiomes is poorly understood. Here we examined prokaryotic and fungal communities between rhizosphere soils and the root endophytic compartment in two native Miscanthus species (Miscanthus sinensis and Miscanthus floridulus) of Taiwan and further explored the roles of host plant on root-associated microbiomes. RESULTS: Our results suggest that host plant genetic variation, edaphic factors, and site had effects on the root endophytic and rhizosphere soil microbial community compositions in both Miscanthus sinensis and Miscanthus floridulus, with a greater effect of plant genetic variation observed for the root endophytic communities. Host plant genetic variation also exerted a stronger effect on core prokaryotic communities than on non-core prokaryotic communities in each microhabitat of two Miscanthus species. From rhizosphere soils to root endophytes, prokaryotic co-occurrence network stability increased, but fungal co-occurrence network stability decreased. Furthermore, we found root endophytic microbial communities in two Miscanthus species were more strongly driven by deterministic processes rather than stochastic processes. Root-enriched prokaryotic OTUs belong to Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Sphingobacteriia, and [Saprospirae] both in two Miscanthus species, while prokaryotic taxa enriched in the rhizosphere soil are widely distributed among different phyla. CONCLUSIONS: We provide empirical evidence that host genetic variation plays important roles in root-associated microbiome in Miscanthus. The results of this study have implications for future bioenergy crop management by providing baseline data to inform translational research to harness the plant microbiome to sustainably increase agriculture productivity. Video Abstract.


Subject(s)
Bacteria , Microbiota , Bacteria/genetics , Soil Microbiology , Poaceae/microbiology , Microbiota/genetics , Rhizosphere , Plants , Soil , Genetic Variation , Plant Roots/microbiology
2.
Pathogens ; 11(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36297211

ABSTRACT

Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (M.tb), is responsible for >1.5 million deaths worldwide annually. Innate immune cells, especially macrophages, are the first to encounter M.tb, and their response dictates the course of infection. During infection, macrophages exert a variety of immune factors involved in either controlling or promoting the growth of M.tb. Research on this topic has been performed in both in vitro and in vivo animal models with discrepant results in some cases based on the model of study. Herein, we review macrophage resistance and susceptibility immune factors, focusing primarily on recent advances in the field. We include macrophage cellular pathways, bioeffector proteins and molecules, cytokines and chemokines, associated microbiological factors and bacterial strains, and host genetic factors in innate immune genes. Recent advances in mechanisms underlying macrophage resistance and susceptibility factors will aid in the successful development of host-directed therapeutics, a topic emphasized throughout this review.

3.
Mol Ecol ; 31(22): 5784-5794, 2022 11.
Article in English | MEDLINE | ID: mdl-36130047

ABSTRACT

Symbiotic interactions can determine the evolutionary trajectories of host species, influencing genetic variation through selection and changes in demography. In the context of strong selective pressures such as those imposed by infectious diseases, symbionts providing defences could contribute to increase host fitness upon pathogen emergence. Here, we generated genome-wide data of an amphibian species to find evidence of evolutionary pressures driven by two skin symbionts: a batrachochytrid fungal pathogen and an antifungal bacterium. Using demographic modelling, we found evidence of decreased effective population size, probably due to pathogen infections. Additionally, we investigated host genetic associations with infection status, antifungal bacterium abundance and overall microbiome diversity using structural equation models. We uncovered relatively lower nucleotide diversity in infected frogs and potential heterozygote advantage to recruit the candidate beneficial symbiont and fight infections. Our models indicate that environmental conditions have indirect effects on symbiont abundance through both host body traits and microbiome diversity. Likewise, we uncovered a potential offsetting effect among host heterozygosity-fitness correlations, plausibly pointing to different ecological and evolutionary processes among the three species due to dynamic interactions. Our findings revealed that evolutionary pressures not only arise from the pathogen but also from the candidate beneficial symbiont, and both interactions shape the genetics of the host. Our results advance knowledge about multipartite symbiotic relationships and provide a framework to model ecological and evolutionary dynamics in wild populations. Finally, our study approach can be applied to inform conservation actions such as bioaugmentation strategies for other imperilled amphibians affected by infectious diseases.


Subject(s)
Chytridiomycota , Microbiota , Animals , Chytridiomycota/genetics , Antifungal Agents , Amphibians/microbiology , Microbiota/genetics , Bacteria/genetics , Population Dynamics
4.
Cell Rep Med ; 2(6): 100322, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34195685

ABSTRACT

We recently reported that the risk of sexually acquired HIV-1 infection is increased significantly by variants in the gene encoding CD101, a protein thought to modify inflammatory responses. Using blood samples from individuals with and without these variants, we demonstrate that CD101 variants modify the prevalence of circulating inflammatory cell types and show that CD101 variants are associated with increased proinflammatory cytokine production by circulating T cells. One category of CD101 variants is associated with a reduced capacity of regulatory T cells to suppress T cell cytokine production, resulting in a reduction in the baseline level of immune quiescence. These data are supported by transcriptomics data revealing alterations in the intrinsic regulation of antiviral pathways and HIV resistance genes in individuals with CD101 variants. Our data support the hypothesis that CD101 contributes to homeostatic regulation of bystander inflammation, with CD101 variants altering heterosexual HIV-1 acquisition by facilitating increased prevalence and altered function of T cell subsets.


Subject(s)
Antigens, CD/genetics , Cell Lineage/immunology , HIV Infections/immunology , HIV-1/immunology , Mutation , T-Lymphocytes, Regulatory/immunology , Adult , Antigens, CD/immunology , B-Lymphocytes/immunology , B-Lymphocytes/virology , Dendritic Cells/immunology , Dendritic Cells/virology , Female , Gene Expression Profiling , Gene Expression Regulation , Genetic Predisposition to Disease , HIV Infections/transmission , HIV Infections/virology , Humans , Immunity, Innate , Immunophenotyping , Male , Monocytes/immunology , Monocytes/virology , Phenotype , Receptors, CCR5/genetics , Receptors, CCR5/immunology , Receptors, CXCR4/genetics , Receptors, CXCR4/immunology , T-Lymphocytes, Regulatory/virology
5.
Rev Med Virol ; 29(2): e2026, 2019 03.
Article in English | MEDLINE | ID: mdl-30609190

ABSTRACT

Respiratory syncytial virus (RSV) infection is the most common cause of bronchiolitis and pneumonia in the pediatric population worldwide. The immunopathology of RSV infection varies considerably and severe disease occurs only in a minority of the population. There are many factors (host, viral, and environmental) that contribute to the complicated disease phenotype. In this regard, host factors are decisive for pulmonary susceptibility to RSV infection. Host genetic diversity certainly affects the balance between control of viral replication and tissue damage during RSV infection, consequently impacting on diseases outcome. In this review, we discuss the role of host genetic variation in disease caused by RSV aiming to highlight genetic risk factors for one of the most common diseases in early childhood. Our findings clearly indicate that the response of each individual to infection is influenced by genetic diversity mainly linked to the regulation of host immune responses. Future genetic association and functional studies using more powerful and consistently reproducible approaches will likely be able to confirm, refine, and expand our developing concept of RSV disease pathogenesis.


Subject(s)
Genetic Predisposition to Disease , Immunologic Factors/genetics , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Viruses/immunology , Bronchiolitis/genetics , Bronchiolitis/immunology , Humans , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Respiratory Syncytial Virus Infections/immunology
6.
Viruses ; 10(11)2018 11 07.
Article in English | MEDLINE | ID: mdl-30405055

ABSTRACT

We followed the presence of Zika virus (ZIKV) in four healthy adults (two men and two women), for periods ranging from 78 to 298 days post symptom onset. The patients were evaluated regarding the presence of the virus in different body fluids (blood, saliva, urine and semen), development of immune responses (including antibodies, cytokines and chemokines), and virus genetic variation within samples collected from semen and urine during the infection course. The analysis was focused primarily on the two male patients who shed the virus for up to 158 days after the initial symptoms. ZIKV particles were detected in the spermatozoa cytoplasm and flagella, in immature sperm cells and could also be isolated from semen in cell culture, confirming that the virus is able to preserve integrity and infectivity during replication in the male reproductive system (MRS). Despite the damage caused by ZIKV infection within the MRS, our data showed that ZIKV infection did not result in infertility at least in one of the male patients. This patient was able to conceive a child after the infection. We also detected alterations in the male genital cytokine milieu, which could play an important role in the replication and transmission of the virus which could considerably increase the risk of ZIKV sexual spread. In addition, full genome ZIKV sequences were obtained from several samples (mainly semen), which allowed us to monitor the evolution of the virus within a patient during the infection course. We observed genetic changes over time in consensus sequences and lower frequency intra-host single nucleotide variants (iSNV), that suggested independent compartmentalization of ZIKV populations in the reproductive and urinary systems. Altogether, the present observations confirm the risks associated with the long-term replication and shedding of ZIKV in the MRS and help to elucidate patterns of intra-host genetic evolution during long term replication of the virus.


Subject(s)
Evolution, Molecular , Host-Pathogen Interactions , Zika Virus Infection/virology , Zika Virus/physiology , Brazil/epidemiology , Cytokines/metabolism , Female , Genitalia, Male/virology , Host-Pathogen Interactions/immunology , Humans , Male , Semen/metabolism , Semen/virology , Zika Virus/classification , Zika Virus/ultrastructure , Zika Virus Infection/epidemiology , Zika Virus Infection/immunology , Zika Virus Infection/transmission
7.
Viruses ; 10(11): [E615], Nov. 2018. ilus
Article in English | Sec. Est. Saúde SP, SESSP-IIERPROD, Sec. Est. Saúde SP | ID: biblio-1021597

ABSTRACT

We followed the presence of Zika virus (ZIKV) in four healthy adults (two men and two women), for periods ranging from 78 to 298 days post symptom onset. The patients were evaluated regarding the presence of the virus in different body fluids (blood, saliva, urine and semen), development of immune responses (including antibodies, cytokines and chemokines), and virus genetic variation within samples collected from semen and urine during the infection course. The analysis was focused primarily on the two male patients who shed the virus for up to 158 days after the initial symptoms. ZIKV particles were detected in the spermatozoa cytoplasm and flagella, in immature sperm cells and could also be isolated from semen in cell culture, confirming that the virus is able to preserve integrity and infectivity during replication in the male reproductive system (MRS). Despite the damage caused by ZIKV infection within the MRS, our data showed that ZIKV infection did not result in infertility at least in one of the male patients. This patient was able to conceive a child after the infection. We also detected alterations in the male genital cytokine milieu, which could play an important role in the replication and transmission of the virus which could considerably increase the risk of ZIKV sexual spread. In addition, full genome ZIKV sequences were obtained from several samples (mainly semen), which allowed us to monitor the evolution of the virus within a patient during the infection course. We observed genetic changes over time in consensus sequences and lower frequency intra-host single nucleotide variants (iSNV), that suggested independent compartmentalization of ZIKV populations in the reproductive and urinary systems. Altogether, the present observations confirm the risks associated with the long-term replication and shedding of ZIKV in the MRS and help to elucidate patterns of intra-host genetic evolution during long term replication of the virus


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Host-Pathogen Interactions , Zika Virus
8.
Viruses ; 10(8)2018 08 11.
Article in English | MEDLINE | ID: mdl-30103523

ABSTRACT

Zika virus (ZIKV) causes no-to-mild symptoms or severe neurological disorders. To investigate the importance of viral and host genetic variations in determining ZIKV infection outcomes, we created three full-length infectious cDNA clones as bacterial artificial chromosomes for each of three spatiotemporally distinct and genetically divergent ZIKVs: MR-766 (Uganda, 1947), P6-740 (Malaysia, 1966), and PRVABC-59 (Puerto Rico, 2015). Using the three molecularly cloned ZIKVs, together with 13 ZIKV region-specific polyclonal antibodies covering nearly the entire viral protein-coding region, we made three conceptual advances: (i) We created a comprehensive genome-wide portrait of ZIKV gene products and their related species, with several previously undescribed gene products identified in the case of all three molecularly cloned ZIKVs. (ii) We found that ZIKV has a broad cell tropism in vitro, being capable of establishing productive infection in 16 of 17 animal cell lines from 12 different species, although its growth kinetics varied depending on both the specific virus strain and host cell line. More importantly, we identified one ZIKV-non-susceptible bovine cell line that has a block in viral entry but fully supports the subsequent post-entry steps. (iii) We showed that in mice, the three molecularly cloned ZIKVs differ in their neuropathogenicity, depending on the particular combination of viral and host genetic backgrounds, as well as in the presence or absence of type I/II interferon signaling. Overall, our findings demonstrate the impact of viral and host genetic variations on the replication kinetics and neuropathogenicity of ZIKV and provide multiple avenues for developing and testing medical countermeasures against ZIKV.


Subject(s)
Genetic Variation , Host-Pathogen Interactions/genetics , Zika Virus Infection/genetics , Zika Virus/genetics , Animals , Cell Line , Chlorocebus aethiops , Cloning, Molecular , Female , Gene Expression , Genomics , Humans , Male , Mice , Mice, Inbred C57BL , Reverse Genetics , Vero Cells , Viral Load , Virus Internalization , Virus Replication , Zika Virus/physiology , Zika Virus Infection/virology
9.
Parasitology ; 145(10): 1279-1286, 2018 09.
Article in English | MEDLINE | ID: mdl-29478432

ABSTRACT

Understanding how individual parasite traits contribute to overall fitness, and how they are modulated by both external and host environment, is crucial for predicting disease outcome. Fungal (chytrid) parasites of phytoplankton are important yet poorly studied pathogens with the potential to modulate the abundance and composition of phytoplankton communities and to drive their evolution. Here, we studied life-history traits of a chytrid parasite infecting the planktonic, bloom-forming cyanobacterium Planktothrix spp. under host genotype and thermal variation. When expressing parasite fitness in terms of transmission success, disease outcome was largely modulated by temperature alone. Yet, a closer examination of individual parasite traits linked to different infection phases, such as (i) the establishment of the infection (i.e. intensity of infection) and (ii) the exploitation of host resources (i.e. size of reproductive structures and propagules), revealed differential host genotype and temperature × host genotype modulation, respectively. This illustrates how parasite fitness results from the interplay of individual parasite traits that are differentially controlled by host and external environment, and stresses the importance of combining multiple traits to gain insights into underlying infection mechanisms.


Subject(s)
Chytridiomycota/pathogenicity , Cyanobacteria/genetics , Genetic Fitness , Host-Parasite Interactions/genetics , Phytoplankton/parasitology , Temperature , Cyanobacteria/physiology , Genetic Variation , Genotype , Host Specificity , Phytoplankton/genetics
10.
Viruses, v. 10, n. 11, 615, 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2602

ABSTRACT

We followed the presence of Zika virus (ZIKV) in four healthy adults (two men and two women), for periods ranging from 78 to 298 days post symptom onset. The patients were evaluated regarding the presence of the virus in different body fluids (blood, saliva, urine and semen), development of immune responses (including antibodies, cytokines and chemokines), and virus genetic variation within samples collected from semen and urine during the infection course. The analysis was focused primarily on the two male patients who shed the virus for up to 158 days after the initial symptoms. ZIKV particles were detected in the spermatozoa cytoplasm and flagella, in immature sperm cells and could also be isolated from semen in cell culture, confirming that the virus is able to preserve integrity and infectivity during replication in the male reproductive system (MRS). Despite the damage caused by ZIKV infection within the MRS, our data showed that ZIKV infection did not result in infertility at least in one of the male patients. This patient was able to conceive a child after the infection. We also detected alterations in the male genital cytokine milieu, which could play an important role in the replication and transmission of the virus which could considerably increase the risk of ZIKV sexual spread. In addition, full genome ZIKV sequences were obtained from several samples (mainly semen), which allowed us to monitor the evolution of the virus within a patient during the infection course. We observed genetic changes over time in consensus sequences and lower frequency intra-host single nucleotide variants (iSNV), that suggested independent compartmentalization of ZIKV populations in the reproductive and urinary systems. Altogether, the present observations confirm the risks associated with the long-term replication and shedding of ZIKV in the MRS and help to elucidate patterns of intra-host genetic evolution during long term replication of the virus.

SELECTION OF CITATIONS
SEARCH DETAIL
...