Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 620
Filter
1.
Phytopathology ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373566

ABSTRACT

The development of xylem embolism in 1-year-old stems of Japanese black pine (Pinus thunbergii) seedlings was monitored by compact magnetic resonance imaging (MRI) after inoculation with the pinewood nematode (Bursaphelenchus xylophilus). In parallel, the nematode distribution and population structure in the stems were examined by isolating the nematodes using the Baermann funnel technique. The vertical length and volume of massive embolisms in each seedling were strongly correlated with the maximum relative embolized area (REA) in stem cross-sections. Embolism development and nematode reproduction were not restricted to the inoculation site, as any portion of the stem could be the initial point of a population burst. The nematode population in the stem xylem was strongly correlated with the REA and with the circumferential proportion of cambial death in cross-sections monitored by MRI. The proportion of second-stage juveniles was also correlated with the REA in the xylem. In contrast, the nematode population in bark tissue was not correlated with either the REA or cambial death. These results suggested that nematode reproduction in the cambial zone is the key step in pine wilt disease, and second-stage juveniles were suggested to induce massive embolisms in the advanced stage of the disease.

2.
Mol Ecol ; : e17523, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248016

ABSTRACT

Genetic analyses of host-specific parasites can elucidate the evolutionary histories and biological features of their hosts. Here, we used population-genomic analyses of ectoparasitic seal lice (Echinophthirius horridus) to shed light on the postglacial history of seals in the Arctic Ocean and the Baltic Sea region. One key question was the enigmatic origin of relict landlocked ringed seal populations in lakes Saimaa and Ladoga in northern Europe. We found that that lice of four postglacially diverged subspecies of the ringed seal (Pusa hispida) and Baltic gray seal (Halichoerus grypus), like their hosts, form genetically differentiated entities. Using coalescent-based demographic inference, we show that the sequence of divergences of the louse populations is consistent with the geological history of lake formation. In addition, local effective population sizes of the lice are generally proportional to the census sizes of their respective seal host populations. Genome-based reconstructions of long-term effective population sizes revealed clear differences among louse populations associated with gray versus ringed seals, with apparent links to Pleistocene and Holocene climatic variation as well as to the isolation histories of ringed seal subspecies. Interestingly, our analyses also revealed ancient gene flow between the lice of Baltic gray and ringed seals, suggesting that the distributions of Baltic seals overlapped to a greater extent in the past than is the case today. Taken together, our results demonstrate how genomic information from specialized parasites with higher mutation and substitution rates than their hosts can potentially illuminate finer scale population genetic patterns than similar data from their hosts.

3.
Ecol Evol ; 14(9): e70298, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39267690

ABSTRACT

Due to their large size and obligate nature, Cymothoid isopods inflict a high degree of tissue damage to fish. Still, they are understudied at an ecosystem level despite their global presence and ecological role. In this work, we collected fish host-isopod parasite data, along with their life history and ecological traits, from the northern part of the east coast of India and investigated patterns in host specialisation and preference of isopod parasites using a trait-based network perspective. We observed that the region of attachment of the parasite (buccal cavity, branchial cavity, and skin) and host fish ecology (schooling behaviour and habitat characteristics) influenced host specialisation and preference. We found that branchial cavity-attaching parasites preferred schooling, pelagic fishes, whereas buccal cavity-attaching parasites preferred mostly non-schooling, demersal fishes. Skin-attaching parasites were found to be generalists and had no preference based on our examined host traits.

4.
Phytopathology ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283194

ABSTRACT

Potato cyst nematodes (PCN) are notorious pathogens in all major potato production areas worldwide. Mainly due to the low mobility of this soil pathogen, PCN infestations are mostly observed as patches ('foci') that only cover a fraction of the acreage. In-field pre-symptomatic localization of this pathogen is valuable as it would allow for the localized application of control measures. Although the mapping of foci is technically feasible, it is unpractical as it would take the analysis of numerous soil samples. We investigated whether chlorophyll fluorescence (Chl-F) could be suitable as a rapid, non-destructive method for early PCN detection. To this end, the impact of four Globodera pallida densities on the Chl-F of tomato was investigated in a phenotyping greenhouse for 26 days. Furthermore, classical plant performance indicators biomass and root surface area were compared with Chl-F. Thermal dissipation ('NPQ_Lss') and actual photosynthetic rate ('QY_Lss') responded at 1 DPI, while QY_Lss was most sensitive to low PCN infection levels. Chl-F parameters responded more readily to PCN infection than biomass and root surface area. The efficiency of photosystem II (QY_max) and the potential activity of photosystem II (Fv/Fo) initially increased at low PCN infection levels, whereas a sharp decrease was observed at higher infestation levels. Hence, our data suggest that low PCN levels promoted plant performance before becoming detrimental at higher levels. While Chl-F allowed for early and sensitive PCN detection, it remains to be investigated whether these signals can be distinguished from those produced by other below-ground stressors in the field.

6.
Coral Reefs ; 43(5): 1285-1302, 2024.
Article in English | MEDLINE | ID: mdl-39308990

ABSTRACT

In this study, we delved into the interaction between corallivorous marine gastropods, the muricid Coralliophilinae Chenu, 1859, and their cnidarian food targets. Coralliophilinae is a subfamily of specialised corallivorous caenogastropods that feed by browsing on octocorals or hexacorals. Only sparse information is available on the phylogenetic relationships and the degree of specificity of the trophic relationships within this corallivorous lineage. To address these gaps, we generated the largest molecular dataset to date, comprising two mitochondrial (cox1 and 16S rDNA) and one nuclear gene (ITS2 rDNA) from 586 specimens collected worldwide. The coral hosts of coralliophilines were identified through an integrative approach, combining literature data with new records, employing morphological and/or molecular markers, and incorporating data from DNA barcoding of the snail stomach content. Our comprehensive approach unveiled the existence of numerous cryptic species in Coralliophilinae, while the phylogeny showed that most of the currently accepted genera are not monophyletic. The molecular dating confirmed the origin of the Coralliophilinae in Middle Eocene, with diversification of most lineages during the Miocene. Our results indicate that the subfamily's ancestor evolved in shallow waters in association with Scleractinia. Through the evolutionary history of Coralliophilinae, multiple host shifts to other cnidarian orders were observed, not correlated with changes in the depth range. The results of diversification analyses within the subfamily further suggest that the association with the host has influenced the evolutionary patterns of Coralliophilinae, but not vice versa. Supplementary Information: The online version contains supplementary material available at 10.1007/s00338-024-02537-1.

7.
Parasite ; 31: 54, 2024.
Article in English | MEDLINE | ID: mdl-39269256

ABSTRACT

A recent study in hamsters showed that infection with the liver fluke Opisthorchis viverrini in diabetic hosts worsens the severity of hepatobiliary disease. However, the effects of diabetes on the worm's phenotype and gene expression pattern remain unknown. This study investigated the impact of diabetes on the global gene expression and development of O. viverrini in diabetic hamsters. Parasitological parameters were assessed, and mRNA sequencing with bioinformatic analysis was performed. The study revealed that worm establishment rates in diabetic hamsters were directly correlated with fasting plasma glucose levels. Interestingly, worms collected from diabetic hosts exhibited stunted growth and reduced egg production. Transcriptomic analysis revealed significant alterations in gene expression, with 4314 and 567 differentially expressed genes at 21- and 35-days post-infection, respectively. Gene ontology enrichment analysis highlighted changes in biological processes related to stress response, metabolism, and cellular organization. Notably, genes associated with parasite virulence, including granulin, tetraspanins, and thioredoxins, showed significant upregulation in diabetic hosts. These findings demonstrate the profound impact of host diabetic status on O. viverrini development and gene expression, providing insights into the complex interplay between host metabolism and parasite biology, including molecular adaptations of O. viverrini in hosts. This study contributes to our understanding of opisthorchiasis in the context of metabolic disorders and may inform future strategies for disease management in diabetic human populations.


Title: Modifications du transcriptome de la douve du foie Opisthorchis viverrini chez les hamsters diabétiques. Abstract: Une étude récente sur les hamsters a montré que l'infection par la douve du foie Opisthorchis viverrini chez les hôtes diabétiques aggrave la gravité de la maladie hépatobiliaire. Cependant, les effets du diabète sur le phénotype et le profil d'expression génétique du ver restent inconnus. Cette étude a examiné l'impact du diabète sur l'expression génétique globale et le développement d'O. viverrini chez les hamsters diabétiques. Les paramètres parasitologiques ont été évalués et un séquençage de l'ARNm avec analyse bioinformatique a été effectué. L'étude a révélé que les taux d'établissement des vers chez les hamsters diabétiques étaient directement corrélés au taux de glucose plasmatique à jeun. Il est intéressant de noter que les vers récupérés auprès d'hôtes diabétiques présentaient une croissance retardée et une production d'œufs réduite. L'analyse transcriptomique a révélé des altérations significatives de l'expression génétique, avec 4 314 et 567 gènes exprimés de manière différentielle à 21 et 35 jours après l'infection, respectivement. L'analyse d'enrichissement de l'ontologie génétique a mis en évidence des changements dans les processus biologiques liés à la réponse au stress, au métabolisme et à l'organisation cellulaire. Notamment, les gènes associés à la virulence du parasite, en particulier la granuline, les tétraspanines et les thiorédoxines, ont montré une régulation positive significative chez les hôtes diabétiques. Ces résultats démontrent l'impact profond du statut diabétique de l'hôte sur le développement et l'expression génétique d'O. viverrini, offrant un aperçu de l'interaction complexe entre le métabolisme de l'hôte et la biologie du parasite, y compris les adaptations moléculaires d'O. viverrini chez les hôtes. Cette étude contribue à notre compréhension de l'opisthorchiase dans le contexte des troubles métaboliques et peut éclairer les futures stratégies de gestion de la maladie pour les populations humaines diabétiques.


Subject(s)
Diabetes Mellitus, Experimental , Opisthorchiasis , Opisthorchis , Transcriptome , Animals , Opisthorchis/genetics , Opisthorchis/physiology , Opisthorchiasis/parasitology , Opisthorchiasis/complications , Cricetinae , Diabetes Mellitus, Experimental/parasitology , Male , Mesocricetus , Gene Expression Profiling , Blood Glucose , Virulence , Granulins , Female , Host-Parasite Interactions
8.
Phytopathology ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39321129

ABSTRACT

The coevolution of virulence reduces the effectiveness of host resistance to pathogens, posing a direct threat to forest species and their key ecosystem functions. This exacerbates the threat to limber pine (Pinus flexilis), an endangered species in Canada due to rapid declines mainly driven by white pine blister rust (WPBR) as caused by Cronartium ribicola. We present the first report on a new C. ribicola virulent race (designated vcr4) that overcomes limber pine major gene (Cr4) resistance (MGR). Field surveys found that three parental trees (pf-503, pf-508 and pf-2015-0070) were cankered with WPBR in Alberta, but their progenies showed MGR-related phenotypic segregation post-inoculation of avirulent race (Avcr4). Genotyping of their progenies using Cr4-linked DNA markers and genome-wide association study (GWAS) provided additional support that these cankered parental trees had Cr4-controlled MGR. To confirm the presence of vcr4, aeciospores were collected from the cankered pf-503 tree to inoculate resistant seedlings that had survived prior inoculation using Avcr4 race, as well as seedlings of two US seed parents, one previously confirmed with MGR (Cr4) and one non-MGR, respectively. All inoculated seedlings showed clear stem symptoms, confirming the virulent race is vcr4. These results provide insights into evolution of C. ribicola virulence, and reinforces caution on deployment of Cr4-controlled MGR. The information will be useful for designing a breeding program for durable resistance by layering both R genes with quantitative trait loci (QTLs) for resistance to WPBR in North America.

9.
Evol Lett ; 8(5): 638-646, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39328283

ABSTRACT

Sperm function is suggested to evolve by sexual selection but is also reduced by microbial damage. Here, we provide experimental evidence that male fertility can adapt to microbes. We found that in vivo, male fertility was reduced by one-fifth if sperm encountered microbes in the females that they had not previously been exposed to, compared to sperm from males that coevolved with these microbes. The female immune system activation reduced male fertility by an additional 13 percentage points. For noncoevolved males, fertility was larger if microbes were injected into females after they had stored away the sperm, indicating microbial protection as a previously unrecognized benefit of female sperm storage. Both medical and evolutionary research on reproductive health and fertility will benefit from considering our findings that the impact of microbes on sperm depends on their joint evolutionary history. Our results may assist in reconciling contradictory results of sexually transmitted disease effects on sperm and bring empirical realism to a recently proposed role of locally adapted reproductive microbiomes to speciation.

10.
Trop Med Infect Dis ; 9(9)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39330884

ABSTRACT

The United States of America (US) has the highest annual number of human babesiosis cases caused by Babesia microti (Bm). Babesia, like malaria-causing Plasmodium, are protozoan parasites that live within red blood cells (RBCs). Both infectious diseases can be associated with hemolysis and organ damage, which can be fatal. Since babesiosis was made a nationally notifiable condition by the Centers for Disease Control and Prevention (CDC) in January 2011, human cases have increased, and drug-resistant strains have been identified. Both the Bm ligand(s) and RBC receptor(s) needed for invasion are unknown, partly because of the difficulty of developing a continuous in vitro culture system. Invasion pathways are relevant for therapies (e.g., RBC exchange) and vaccines. We hypothesize that there is at least one RBC surface antigen that is essential for Bm invasion and that all Bm hosts express this. Because most RBC surface antigens that impact Plasmodium invasion are in human blood group (hBG) systems, which are generated by 51 genes, they were the focus of this study. More than 600 animals with at least one hBG system gene ortholog were identified using the National Center for Biotechnology Information (NCBI) command-line tools. Google Scholar searches were performed to determine which of these animals are susceptible to Bm infection. The literature review revealed 28 Bm non-human hosts (NHH). For 5/51 (9.8%) hBG system genes (e.g., RhD), no NHH had orthologs. This means that RhD is unlikely to be an essential receptor for invasion. For 24/51 (47.1%) hBG system genes, NHH had 4-27 orthologs. For the ABO gene, 15/28 NHH had an ortholog, meaning that this gene is also unlikely to generate an RBC antigen, which is essential for Bm invasion. Our prior research showed that persons with blood type A, B, AB, O, RhD+, and RhD- can all be infected with Bm, supporting our current study's predictions. For 22/51 (43.1%) hBG system genes, orthologs were found in all 28 NHH. Nineteen (37.3%) of these genes encode RBC surface proteins, meaning they are good candidates for generating a receptor needed for Bm invasion. In vitro cultures of Bm, experimental Bm infection of transgenic mice (e.g., a CD44 KO strain), and analyses of Bm patients can reveal further clues as to which RBC antigens may be essential for invasion.

11.
RNA Biol ; 21(1): 62-77, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39344634

ABSTRACT

Parasitic worms (helminths) establish chronic infection within mammalian hosts by strategically regulating their host's immune responses. Deciphering the mechanisms by which host non-coding RNAs (ncRNA) co-ordinate the activation and regulation of immune cells is essential to understanding host immunity and immune-related pathology. It is also important to comprehend how pathogens secrete specific ncRNAs to manipulate gene expression of host immune cells and influence their response to infection. To investigate the contribution of both host and helminth derived ncRNAs to the activation and/or regulation of innate immune responses during a parasite infection, we examined ncRNA expression in the peritoneal macrophages from mice infected with Fasciola hepatica. We discovered the presence of several parasitic-derived miRNAs within host macrophages at 6 hrs and 18 hrs post infection. Target prediction analysis showed that these Fasciola miRNAs regulate host genes associated with the activation of host pro-inflammatory macrophages. Concomitantly, there was a distinct shift in host ncRNA expression, which was significant at 5 days post-infection. Prediction analysis suggested that these host ncRNAs target a different cohort of host genes compared to the parasite miRNAs, although the functional outcome was predicted to be similar i.e. reduced pro-inflammatory response and the promotion of a reparative/tolerant phenotype. Taken together, these observations uncover the interplay between host and parasitic ncRNAs and reveal a complementary regulation of the immune response that allows the parasite to evade immune detection and promote tissue repair for the host. These findings will provide a new understanding of the molecular interaction between parasites and host.


Subject(s)
Fasciola hepatica , Fascioliasis , Gene Expression Regulation , Host-Parasite Interactions , MicroRNAs , Animals , Fasciola hepatica/genetics , Mice , Fascioliasis/parasitology , Fascioliasis/immunology , Fascioliasis/genetics , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , MicroRNAs/genetics , Macrophages/parasitology , Macrophages/immunology , Macrophages/metabolism , RNA, Untranslated/genetics , Immunity, Innate , Macrophages, Peritoneal/parasitology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Female
12.
Int J Parasitol ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326487

ABSTRACT

In the late 1990s, the San Miguel Island fox (Urocyon littoralis littoralis) faced near-extinction. Fourteen of the 15 remaining foxes were placed into an island-based captive breeding program used to repopulate the island. Although the fox population in San Miguel reached pre-decline numbers by 2010, a second decline started around 2014, coincidental with a newly observed acanthocephalan parasite. To identify this introduced acanthocephalan species and determine the pathologic consequences of its infection on the health of foxes, we used an extensive record of island fox necropsies and associated parasite collections. In addition, we used detailed fox capture-recapture data to investigate population health and demographic trends of foxes before and after parasite emergence. We identify the parasite as Pachysentis canicola, a common acanthocephalan in mainland foxes in North America. The parasite was detected in 69% of the necropsied foxes from San Miguel Island and was not found in any of the other five Channel Island fox subspecies. Health impacts attributed to the acanthocephalan parasite, including erosive and ulcerative enteritis, transmural necrosis, and inflammation, were described in 47% of the foxes infected with the acanthocephalan. Despite infection with various other helminth parasite species, body condition remained good and the mortality rate low in San Miguel Island foxes until the arrival of the acanthocephalan. Body condition improved after 2018, perhaps due to increases in rainfall following a drought, but remained 27% lower than the pre-acanthocephalan period, which suggests that environmental conditions and parasitism jointly drive fox population dynamics.

13.
Mol Ecol ; : e17534, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39314079

ABSTRACT

Coevolution of parasites with their hosts may lead to balancing selection on genes involved in determining the specificity of host-parasite interactions, but examples of such specific interactions in wild vertebrates are scarce. Here, we investigated whether the polymorphic outer surface protein C (OspC), used by the Lyme disease agent, Borrelia afzelii, to manipulate vertebrate host innate immunity, interacts with polymorphic major histocompatibility genes (MHC), while concurrently eliciting a strong antibody response, in one of its main hosts in Europe, the bank vole. We found signals of balancing selection acting on OspC, resulting in little differentiation in OspC variant frequencies between years. Neither MHC alleles nor their inferred functional groupings (supertypes) significantly predicted the specificity of infection with strains carrying different OspC variants. However, we found that MHC alleles, but not supertypes, significantly predicted the level of IgG antibodies against two common OspC variants among seropositive individuals. Our results thus indicate that MHC alleles differ in their ability to induce antibody responses against specific OspC variants, which may contribute to selection of OspC polymorphism by the vole immune system.

14.
Environ Sci Pollut Res Int ; 31(38): 51025-51036, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39138730

ABSTRACT

With the growth of the fashion and textile industries into the twenty-first century, associated pollution has become pervasive. Fibre-based microplastics are the most common types of plastics recovered from aquatic ecosystems encouraging the move towards organic fibre usage. Often marketed as biodegradable and 'environmentally friendly', organic textile fibres are seen as less harmful, but their impacts are understudied. Here, we assess the health effects of reconstituted bamboo-viscose fibres, processed bamboo-elastane fibres (both at 700 fibres/L) and their associated dye (Reactive Black-5, at 1 mg/L) on fish, with an emphasis on disease resistance utilising an established host-parasite system: the freshwater guppy host (Poecilia reticulata) and Gyrodactylus turnbulli (monogenean ectoparasite). Following 3 weeks exposure to the bamboo fibres and associated dye, half the experimental fish were infected with G. turnbulli, after which individual parasite trajectories were monitored for a further 17 days. Overall, exposures to reconstituted bamboo-viscose fibres, processed bamboo-elastane fibres or dye were not associated with any change in host mortality nor any significant changes in parasite infection burdens. When analysing the routine metabolic rate (RMR) of fish, uninfected fish had, on average, significantly impacted RMR when exposed to processed bamboo-elastane (increased RMR) and reconstituted bamboo-viscose (decreased RMR). Hosts exposed to reconstituted bamboo-viscose and the associated dye treatment showed significant changes in RMR pre- and post-infection. This study bolsters the growing and needed assessment of the potential environmental impacts of alternative non-plastic fibres; nevertheless, more research is needed in this field to prevent potential greenwashing.


Subject(s)
Fresh Water , Animals , Poecilia , Coloring Agents , Host-Parasite Interactions , Fishes , Sasa
15.
Int J Parasitol ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39209213

ABSTRACT

The fast technological advances of molecular tools have enabled us to uncover a new dimension hidden within parasites and their hosts: their microbiomes. Increasingly, parasitologists characterise host microbiome changes in the face of parasitic infections, revealing the potential of these microscopic fast-evolving entities to influence host-parasite interactions. However, most of the changes in host microbiomes seem to depend on the host and parasite species in question. Furthermore, we should understand the relative role of parasitic infections as microbiome modulators when compared with other microbiome-impacting factors (e.g., host size, age, sex). Here, we characterised the microbiome of a single intermediate host species infected by two parasites belonging to different phyla: the acanthocephalan Plagiorhynchus allisonae and a dilepidid cestode, both infecting Transorchestia serrulata amphipods collected simultaneously from the same locality. We used the v4 hypervariable region of the 16S rRNA prokaryotic gene to identify the hemolymph bacterial community of uninfected, acanthocephalan-infected, and cestode-infected amphipods, as well as the bacteria in the amphipods' immediate environment and in the parasites infecting them. Our results show that parasitic infections were more strongly associated with differences in host bacterial community richness than amphipod size, presence of amphipod eggs in female amphipods, and even parasite load. Amphipods infected by acanthocephalans had the most divergent bacterial community, with a marked decrease in alpha diversity compared with cestode-infected and uninfected hosts. In accordance with the species-specific nature of microbiome changes in parasitic infections, we found unique microbial taxa associating with hosts infected by each parasite species, as well as taxa only shared between a parasite species and their infected hosts. However, there were some bacterial taxa detected in all parasitised amphipods (regardless of the parasite species), but not in uninfected amphipods or the environment. We propose that shared bacteria associated with all hosts parasitised by distantly related helminths may be important either in helping host defences or parasites' success, and could thus interact with host-parasite evolution.

16.
Phytopathology ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39186063

ABSTRACT

In soil-borne diseases, the plant-pathogen interaction begins as soon as the seed germinates and develops into a seedling. Aphanomyces euteiches, an oomycete, stays dormant in soil and gets activated by sensing the host through chemical signals present in the root exudates. The composition of plant exudates may, thus, play an important role during the early phase of infection. To better understand the role of root exudates in plant resistance, we investigated the interaction between partially resistant lines (PI660736 and PI557500) and susceptible pea cultivars (CDC Meadow and AAC Chrome) against Aphanomyces euteiches during the pre-invasion phase. The root exudates of two sets of cultivars clearly distinguished from each other in inducing oospore germination. PI557500 root exudate not only had diminished induction but also inhibited the oospore germination. The contrast between the root exudates of resistance and susceptible cultivars was reflected in their metabolic profiles. Data from fractionation and oospore germination inhibitory experiments identified a group of saponins that accumulated differentially in susceptible and resistant cultivars. We detected 56 saponins and quantified 44 of them in pea root and 30 from root exudate; the majority of them, especially Soyasaponin I and dehydrosoyasaponin I with potent in vitro inhibitory activities, were present in significantly higher amounts in both roots and root exudates of PI660736 and PI557500 as compared to Meadow and Chrome. Our results provide evidence for saponins as deterrents against Aphanomyces euteiches, which might have contributed to the resistance against root rot in the studied pea cultivars.

17.
Front Immunol ; 15: 1430057, 2024.
Article in English | MEDLINE | ID: mdl-39100678

ABSTRACT

The protozoan parasite Entamoeba histolytica is the causative agent of amebiasis, with clinical outcomes ranging from asymptomatic infections to severe invasive diseases. The innate immune system, particularly macrophages, is of paramount importance in resisting the invasion of host tissues and organs by the trophozoites of E. histolytica. Parasite-derived pathogenic factors, such as lectins, play a pivotal role in the promotion of macrophage polarization phenotypes that have undergone alteration. Nevertheless, the precise mechanisms by which E. histolytica modulates immune polarization remain largely unknown. The current study focused on the immunomodulatory effects of the Igl-C fragment of E. histolytica Gal/GalNAc lectin on macrophage polarization. These results demonstrated that Igl-C could induce the secretion of IL-1ß, IL-6, and other cytokines, activating a mixed M1/M2 polarization state. M1 polarization of macrophages occurs in the early stages and gradually transitions to M2 polarization in the later stages, which may contribute to the persistence of the infection. Igl-C induces the macrophage M1 phenotype and causes the release of immune effector molecules, including iNOS and cytokines, by activating the NF-κB p65 and JAK-STAT1 transcription factor signaling pathways. Furthermore, Igl-C supports the macrophage M2 phenotype via JAK-STAT3 and IL-4-STAT6 pathways, which activate arginase expression in later stages, contributing to the tissue regeneration and persistence of the parasite. The involvement of distinct signaling pathways in mediating this response highlights the complex interplay between the parasite and the host immune system. These findings enhance our understanding of the Igl-C-mediated pathogenic mechanisms during E. histolytica infection.


Subject(s)
Entamoeba histolytica , Entamoebiasis , Lectins , Macrophages , Entamoeba histolytica/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Entamoebiasis/immunology , Entamoebiasis/parasitology , Animals , Mice , Lectins/metabolism , Lectins/immunology , Cytokines/metabolism , Macrophage Activation , Humans , Signal Transduction , Protozoan Proteins/immunology , Protozoan Proteins/metabolism
18.
Phytopathology ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140841

ABSTRACT

In recent years, the bacterium Xylella fastidiosa has been spreading in almond orchards (causing almond leaf scorch) and in grapevines (causing Pierce's disease) in northern Israel. Sucking insects specialized for xylem sap-feeding transmit this plant pathogen but the identity of the vector(s) in Israel has not been determined. Hence, we sought to determine the main potential vector(s) of X. fastidiosa in Israel. In our surveys in northern Israel, we collected and identified four species of spittlebugs: Neophilaenus campestris, Philaenus arslani, Cercopis intermedia, and Mesoptyelus impictifrons. The first two species were found in very low numbers. Cercopis intermedia was found only in spring and did not transmit X. fastidiosa in controlled experiments. Mesoptyelus impictifrons was the most abundant and widely distributed species in our survey and was found in and around infected vineyards in northern Israel. In controlled experiments we found that 35%-39% of M. impictifrons adults acquire X. fastidiosa from infected vines and almonds and subsequently transmit it to vines and almonds. Taken together, this study suggests that M. impictifrons is an important new vector of X. fastidiosa in almond orchards and vineyards in northern Israel. Further studies are needed on M. impictifrons' biology, ecology, and role as a vector of X. fastidiosa.

19.
Ecol Evol ; 14(8): e70079, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39139916

ABSTRACT

Predators negatively affect prey outside of direct attack, and these nonconsumptive effects (NCEs) may cause over half the impacts of predators on prey populations. This "ecology of fear" framework has been extended to host-parasite interactions. The NCEs of parasites are thought to be small relative to those of predators. However, recent research shows ectoparasites exert NCEs on multiple life stages of Drosophila. In this study, we apply recent data to a matrix-based model of fly populations experiencing infection/consumption and NCEs from an ectoparasitic mite. We found the NCEs of parasites on larvae, which are not actively parasitized, decreased the size of simulated host populations. By contrast, the NCEs on adult flies increased population size through compensatory egg production. The negative NCEs on larvae outweighed the positive effects on adults to reduce population size. This study suggests that parasitic NCEs can suppress host populations independent of infection.

20.
Phytopathology ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078375

ABSTRACT

Cerasus × yedoensis (cherry 'Shomei-yoshino' Fujino) is affected by bacterial gall disease caused by Pseudomonas syringae pv. cerasicola (PSC). C. × yedoensis is often infected with PSC under weak light intensity which indicates that susceptibility of C. × yedoensis to PSC is affected by light. To evaluate the effects of white light intensity and different light qualities, white or blue, on bacterial gall disease development, we quantitatively assessed the anatomical and histological features of bacterial-inoculated sites on branches of two-year-old potted C. × yedoensis seedlings grown under different light intensities and qualities. The stronger the white light intensity, the less severe the gall symptoms. Gall formation was suppressed more by blue than white light of the same intensity. The validity of a simple gall index for assessing gall development with the naked eye, via quantitative evaluation of gall shape by measuring gall height, width and volume, showed that the gall index could be used as a practical method for on-site assessments of gall development. The ratio of degenerated area in the gall remained constant, suggesting the presence of some regulatory mechanism preventing PSC from affecting the entire gall exists within the plant. Microscopy showed that gall tissue is comprised primarily of callus cells and has voids containing gummy material that is exuded from cracks in the gall, and that the periderm develops at the gall foot but not at the gall apex, so that the cells at the gall apex were necrotic or collapsed.

SELECTION OF CITATIONS
SEARCH DETAIL