Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Cell Transplant ; 28(9-10): 1306-1320, 2019.
Article in English | MEDLINE | ID: mdl-31161782

ABSTRACT

Amniotic fluid has been investigated as new cell source for stem cells in the development of future cell-based transplantation. This study reports isolation of viable human amniotic fluid-derived stem cells, labeled with multimodal iron oxide nanoparticles, and its effect on focal cerebral ischemia-reperfusion injury in Wistar rats. Middle cerebral artery occlusion of 60 min followed by reperfusion for 1 h, 6 h, and 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in rats. Tests were employed to assess the functional outcome of the sensorimotor center activity in the brain, through a set of modified neurological severity scores used to assess motor and exploratory capacity 24 h, 14, and 28 days after receiving cellular therapy via tail vein. In our animal model of stroke, transplanted cells migrated to the ischemic focus, infarct volume decreased, and motor deficits improved. Therefore, we concluded that these cells appear to have beneficial effects on the ischemic brain, possibly based on their ability to enhance endogenous repair mechanisms.


Subject(s)
Amniotic Fluid/metabolism , Behavior, Animal , Brain Ischemia , Stem Cell Transplantation , Stem Cells/metabolism , Stroke , Adult , Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Brain Ischemia/therapy , Disease Models, Animal , Female , Heterografts , Humans , Pregnancy , Rats , Rats, Wistar , Stem Cells/pathology , Stroke/metabolism , Stroke/pathology , Stroke/physiopathology , Stroke/therapy
2.
Cell Transplant, v. 28, n. 9-10, p. 1306-1320, jun. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2856

ABSTRACT

Amniotic fluid has been investigated as new cell source for stem cells in the development of future cell-based transplantation. This study reports isolation of viable human amniotic fluid-derived stem cells, labeled with multimodal iron oxide nanoparticles, and its effect on focal cerebral ischemia–reperfusion injury in Wistar rats. Middle cerebral artery occlusion of 60 min followed by reperfusion for 1 h, 6 h, and 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in rats. Tests were employed to assess the functional outcome of the sensorimotor center activity in the brain, through a set of modified neurological severity scores used to assess motor and exploratory capacity 24 h, 14, and 28 days after receiving cellular therapy via tail vein. In our animal model of stroke, transplanted cells migrated to the ischemic focus, infarct volume decreased, and motor deficits improved. Therefore, we concluded that these cells appear to have beneficial effects on the ischemic brain, possibly based on their ability to enhance endogenous repair mechanisms.

3.
Tissue Cell ; 48(4): 312-20, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27346451

ABSTRACT

The amniotic fluid has a heterogeneous population of cells. Some human amniotic fluid-derived stem (hAFS) cells have been shown to harbor the potential to differentiate into neural cells. However, the neural differentiation efficiency of hAFS cells remains low. In this study, we isolated CD117-positive hAFS cells from amniotic fluid and then examined the pluripotency of these cells through the formation of embryoid bodies (EBs). Additionally, we induced the neural differentiation of these cells using neuroectodermal medium. This study revealed that the GSK3-beta inhibitor SB216763 was able to stimulate the proliferation of CD117-positive hAFS cells without influencing their undifferentiated state. Moreover, SB216763 can efficiently promote the neural differentiation of CD117-positive hAFS cells towards neural progenitor cells in the presence of DMEM/F12 and N2 supplement. These findings provide an easy and low-cost method to maintain the proliferation of hAFS cells, as well as induce an efficacious generation of neural progenitor cells from hAFS cells. Such induction of the neural commitment of hAFS cells may provide an option for the treatment of neurodegenerative diseases by hAFS cells-based therapies.


Subject(s)
Amniotic Fluid/cytology , Cell Differentiation/genetics , Glycogen Synthase Kinase 3/biosynthesis , Neural Stem Cells/cytology , Cell Proliferation/drug effects , Gene Expression Regulation, Developmental , Glycogen Synthase Kinase 3/antagonists & inhibitors , Humans , Indoles/administration & dosage , Maleimides/administration & dosage , Neural Stem Cells/metabolism , Neurons/cytology , Neurons/metabolism , Stem Cell Transplantation
4.
Expert Opin Biol Ther ; 14(6): 831-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24655038

ABSTRACT

INTRODUCTION: The first application of tissue engineering was based on the use of differentiated cells from the adult organism, which was associated with an invasiveness and high risk of diseased cells' transplantation. Over the years, the range of available cell populations for tissue engineering has widened. AREAS COVERED: We review the comprehensive information concerning the characteristic features of amniotic-fluid-derived stem cells (AFSCs). We also review the potential applications of these cells in clinical practice. EXPERT OPINION: AFSCs hold promise for the future treatment of many incurable diseases. However, such cell-based therapies have some limitations, and there are questions relating to the use of stem cells, which should be carefully analyzed before translation of these cells into clinical practice.


Subject(s)
Amniotic Fluid/cytology , Cell Separation , Regenerative Medicine/methods , Stem Cell Transplantation , Stem Cells/physiology , Tissue Engineering/methods , Animals , Biomarkers/metabolism , Cell Differentiation , Cell Lineage , Cell Proliferation , Female , Humans , Phenotype , Pregnancy , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...