Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 248: 114288, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36371887

ABSTRACT

1-nitropyrene (1-NP) is representative nitropolycyclic aromatic hydrocarbon pollutant widely present in exhaust particles of internal combustion engine, which is known for its carcinogenicity and mutagenicity. Previous studies have demonstrated that 1-NP has reproductive toxicity, but the specific mechanism is unknown. In this study, Human decidual stromal cells (HDSCs) were treated by 1-NP, exosomes were extracted from the conditioned medium of HDSCs, which were then used to treat human chorionic trophoblast cells (HTR8/SVneo) for 24 h. The findings showed that human decidual stromal cell-derived exosomes (HDSC-EXOs) can promote the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT; Vimentin and N-cadherin) of HTR8/SVneo by about 64%, 17%, 23%, 81% and 13%. The process of regulating the biological behaviors of embryonic trophoblast cells by maternal decidual stromal cells during pregnancy was simulated. Further investigations showed that HDSC-EXOs treatment activated the Wnt/ß-catenin signaling pathway in HTR8/SVneo. Co-treatment by dickkopf-1 (DKK-1) significantly suppressed the activation of Wnt/ß-catenin signaling pathway in HTR8/SVneo, and inhibited the proliferation, migration, invasion and EMT (N-cadherin and E-cadherin) of HTR8/SVneo by about 60%, 22%, 42%, 25%, 55% and 21%. These findings indicated that 1-NP exposure could induce the secretion of HDSC-EXOs from HDSCs, which in turn activate the Wnt/ß-catenin signaling pathway and enhance the proliferation, migration, invasion and EMT of HTR8/SVneo.


Subject(s)
Exosomes , Trophoblasts , Pregnancy , Female , Humans , Cell Movement , Cell Line , Cadherins/metabolism , Stromal Cells
2.
J Biol Chem ; 295(8): 2248-2258, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31937587

ABSTRACT

The regulation mechanisms involved in matrix metalloproteinase (MMP) expression and the motility of human endometrial and decidual stromal cells (ESCs and DSCs, respectively) during decidualization remain unclear. DSCs show significant increased cell motility and expression of FOS-like 1 (FOSL1) and MMP1, MMP2, and MMP9 compared with ESCs, whereas lack of decidualization inducers leads to a rapid decrease in FOSL1 and MMP1 and MMP9 expression in DSCs in vitro Therefore, we hypothesized that a link exists between decidualization inducers and FOSL1 in up-regulation of motility during decidualization. Based on the response of ESCs/DSCs to different decidualization systems in vitro, we found that progesterone (P4) alone had no significant effect and that 17ß-estradiol (E2) significantly increased cell motility and FOSL1 and MMP1 and MMP9 expression at the mRNA and protein levels, whereas 8-bromo-cAMP significantly decreased cell motility and FOSL1 and MMP9 expression in the presence of P4. In addition, we showed that E2 triggered phosphorylation of estrogen receptor 1 (ESR1), which could directly bind to the promoter of FOSL1 in ESCs/DSCs. Additionally, we also revealed silencing of ESR1 expression by siRNA abrogated E2-induced FOSL1 expression at the transcript and protein levels. Moreover, silencing of FOSL1 expression by siRNA was able to block E2-induced MMP1 and MMP9 expression and cell motility in ESCs/DSCs. Taken together, our data suggest that, in addition to its enhancement of secretory function, the change in MMP expression and cell motility is another component of the decidualization of ESCs/DSCs, including estrogen-dependent MMP1 and MMP9 expression mediated by E2-ESR1-FOSL1 signaling.


Subject(s)
Cell Movement , Decidua/cytology , Endometrium/cytology , Estrogens/pharmacology , Matrix Metalloproteinases/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Adult , Cell Movement/drug effects , Estrogen Receptor alpha/metabolism , Female , Humans , Insulin-Like Growth Factor Binding Protein 1/metabolism , Middle Aged , Prolactin/metabolism , Stromal Cells/cytology , Stromal Cells/drug effects , Stromal Cells/enzymology , Young Adult
3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-737128

ABSTRACT

An early embryo co-culture system with human decidual stromal cells was established to study its effect on early embryonic cleavage and growth in vitro. Three hundred and eight 2-cell mouse embryos were co-cultured with human decidual stromal cell monolayer in MEM+0.4%bovine serum albumin (BSA) and 163 embryos cultured in MEM+15 % FCS alone as control. Among the mouse 2-cell embryos co-cultured with human decidual stromal cells, 72.73% developed to the morula stage and 67.21% cavitated to blastocysts with 59.74 % hatching, as compared with 61.34% to morula stage, 48.47% to blastocysts and none hatching in the controls,respectively. Co-cultured embryos cleaved slightly faster than controls and showed no or less fragmentation than those in the control. These results suggested that human decidual stromal cells can support early embryonic development and yield a reasonable number of embryos with good quality up to blastocyst stage.

4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-735660

ABSTRACT

An early embryo co-culture system with human decidual stromal cells was established to study its effect on early embryonic cleavage and growth in vitro. Three hundred and eight 2-cell mouse embryos were co-cultured with human decidual stromal cell monolayer in MEM+0.4%bovine serum albumin (BSA) and 163 embryos cultured in MEM+15 % FCS alone as control. Among the mouse 2-cell embryos co-cultured with human decidual stromal cells, 72.73% developed to the morula stage and 67.21% cavitated to blastocysts with 59.74 % hatching, as compared with 61.34% to morula stage, 48.47% to blastocysts and none hatching in the controls,respectively. Co-cultured embryos cleaved slightly faster than controls and showed no or less fragmentation than those in the control. These results suggested that human decidual stromal cells can support early embryonic development and yield a reasonable number of embryos with good quality up to blastocyst stage.

SELECTION OF CITATIONS
SEARCH DETAIL
...