Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Mol Neurobiol ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937422

ABSTRACT

Cyclin-dependent kinase 5 (CDK5) is a protein kinase involved in neuronal homeostasis and development critical for neuronal survival. Besides, its deregulation is linked to neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases. For that reason, we aimed to generate a deficient CDK5 genetic model in neurons derived from human-induced pluripotent stem cells (hiPSCs) using CRISPR/Cas9 technology. We obtained a heterozygous CDK5+/- clone for the FN2.1 hiPSC line that retained hiPSC stemness and pluripotent potential. Then, neural stem cells (NSCs) and further neurons were derived from the CDK5+/- KO FN2.1 hiPSCs, and their phenotype was validated by immunofluorescence staining using antibodies that recognize lineage-specific markers (SOX-1, SOX-2, and NESTIN for NSCs and TUJ-1, MAP-5, and MAP-2 for neurons). We found that the proliferation rate increased in CDK5+/- KO hiPSC-derived neurons concomitantly with a reduction in NEUN and P35 expression levels. However, the morphometric analysis revealed that CDK5 deficiency caused an increase in the length of the main, primary, and secondary neurites and the neuronal soma area. As a whole, we found that a deficit in CDK5 does not impair hiPSC neuronal differentiation but deregulates proliferation and neurite outgrowth, favoring elongation. The misregulated activity of specific kinases leads to abnormalities such as impaired axonal connectivity in neurodegenerative diseases. Thus, therapeutic approaches aimed at normalizing the activity of kinases, such as CDK5, may help prevent the degeneration of vulnerable neurons.

2.
Cell Biosci ; 12(1): 189, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36451159

ABSTRACT

BACKGROUND: Schizophrenia is a complex and severe neuropsychiatric disorder, with a wide range of debilitating symptoms. Several aspects of its multifactorial complexity are still unknown, and some are accepted to be an early developmental deficiency with a more specifically neurodevelopmental origin. Understanding the timepoints of disturbances during neural cell differentiation processes could lead to an insight into the development of the disorder. In this context, human brain organoids and neural cells differentiated from patient-derived induced pluripotent stem cells are of great interest as a model to study the developmental origins of the disease. RESULTS: Here we evaluated the differential expression of proteins of schizophrenia patient-derived neural progenitors (NPCs), early neurons, and brain organoids in comparison to healthy individuals. Using bottom-up shotgun proteomics with a label-free approach for quantitative analysis, we found multiple dysregulated proteins since NPCs, modified, and disrupted the 21DIV neuronal differentiation, and cerebral organoids. Our experimental methods have shown impairments in pathways never before found in patient-derived induced pluripotent stem cells studies, such as spliceosomes and amino acid metabolism; but also, those such as axonal guidance and synaptogenesis, in line with postmortem tissue studies of schizophrenia patients. CONCLUSION: In conclusion, here we provide comprehensive, large-scale, protein-level data of different neural cell models that may uncover early events in brain development, underlying several of the mechanisms within the origins of schizophrenia.

3.
Front Neurosci ; 15: 674563, 2021.
Article in English | MEDLINE | ID: mdl-34483818

ABSTRACT

Over the past years, brain development has been investigated in rodent models, which were particularly relevant to establish the role of specific genes in this process. However, the cytoarchitectonic features, which determine neuronal network formation complexity, are unique to humans. This implies that the developmental program of the human brain and neurological disorders can only partly be reproduced in rodents. Advancement in the study of the human brain surged with cultures of human brain tissue in the lab, generated from induced pluripotent cells reprogrammed from human somatic tissue. These cultures, termed brain organoids, offer an invaluable model for the study of the human brain. Brain organoids reproduce the cytoarchitecture of the cortex and can develop multiple brain regions and cell types. Integration of functional activity of neural cells within brain organoids with genetic, cellular, and morphological data in a comprehensive model for human development and disease is key to advance in the field. Because the functional activity of neural cells within brain organoids relies on cell repertoire and time in culture, here, we review data supporting the gradual formation of complex neural networks in light of cell maturity within brain organoids. In this context, we discuss how the technology behind brain organoids brought advances in understanding neurodevelopmental, pathogen-induced, and neurodegenerative diseases.

4.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;51(5): e7183, 2018. graf
Article in English | LILACS | ID: biblio-889088

ABSTRACT

Human pluripotent stem cells (hPSCs)/OP9 coculture system is a widely used hematopoietic differentiation approach. The limited understanding of this process leads to its low efficiency. Thus, we used single-cell qPCR to reveal the gene expression profiles of individual CD34+ cells from different stages of differentiation. According to the dynamic gene expression of hematopoietic transcription factors, we overexpressed specific hematopoietic transcription factors (Gata2, Lmo2, Etv2, ERG, and SCL) at an early stage of hematopoietic differentiation. After overexpression, we generated more CD34+ cells with normal expression level of CD43 and CD31, which are used to define various hematopoietic progenitors. Furthermore, these CD34+ cells possessed normal differentiation potency in colony-forming unit assays and normal gene expression profiles. In this study, we demonstrated that single-cell qPCR can provide guidance for optimization of hematopoietic differentiation and transient overexpression of selected hematopoietic transcription factors can enhance hematopoietic differentiation.


Subject(s)
Humans , Hematopoietic Stem Cells/cytology , Cell Differentiation , Coculture Techniques/methods , Pluripotent Stem Cells/cytology , Phenotype , Gene Expression , Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Single-Cell Analysis/methods , Flow Cytometry
5.
PeerJ ; 5: e2927, 2017.
Article in English | MEDLINE | ID: mdl-28194309

ABSTRACT

Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development in vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood.

SELECTION OF CITATIONS
SEARCH DETAIL