Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Int Endod J ; 51 Suppl 2: e157-e166, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28667765

ABSTRACT

AIM: To assess the effects of 2-hydroxyethyl methacrylate (HEMA) on proliferation and migration of human pulp cells, as well as on matrix metalloproteinase (MMP-2 and MMP-9) expression in human odontoblast-like cells, contributing to the goal of determining the relationship between resin materials and MMP activity in pulp-dentine complexes. METHODOLOGY: Dental pulp cell cultures were established from pulp tissue of human teeth extracted for orthodontic purposes. Pulp cell differentiation was characterized in the presence of dentine sialophosphoprotein, bone sialoprotein and alkaline phosphatase by reverse transcription polymerase chain reaction. MMP activity was assessed by gelatine zymography with media containing HEMA. Cell viability was evaluated using methyl thiazolyl tetrazolium assay for 24-72 h. Cell migration was tested using Transwell migration assay. Western blotting was used to visualize MMP expression with the nontoxic HEMA concentrations (0-400 µg mL-1 ) for 48 h. RESULTS: Pulp cell proliferation decreased with HEMA exposure in a time- and concentration-dependent manner. HEMA concentrations ≤400 µg mL-1 did not induce changes in cell viability at 48 h (P < 0.05). Pulp cells were induced to differentiate into odontoblast-like cells in media containing 5 mg mL-1 ascorbic acid and 10 mmol L-1 ß-sodium glycerophosphate for 3-4 weeks. After incubation with HEMA, dose-dependent inhibition was observed; HEMA had a strong inhibitory effect on MMP activity. Compared with the control group, cell migration and MMP expression were inhibited significantly with increasing HEMA concentration at noncytotoxic doses (P < 0.05). CONCLUSIONS: Cell viability was not affected at HEMA concentrations ≤400 µg mL-1 . Within this range, HEMA inhibited MMP-2 and MMP-9 expression and activity, which may protect against type I collagen degradation effectively during dentine adhesive procedures.


Subject(s)
Dental Cements/pharmacology , Dental Pulp/cytology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Methacrylates/pharmacology , Odontoblasts/cytology , Adolescent , Adult , Blotting, Western , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Child , Dental Pulp/drug effects , Dental Pulp/enzymology , Humans , In Vitro Techniques , Matrix Metalloproteinase 2/drug effects , Matrix Metalloproteinase 9/drug effects , Odontoblasts/drug effects , Odontoblasts/enzymology , Reverse Transcriptase Polymerase Chain Reaction , Young Adult
2.
Article in Korean | WPRIM (Western Pacific) | ID: wpr-31983

ABSTRACT

The purpose of this study is to investigate the response of human pulp cell on Portland cement mixed with beta-glycerophosphate. To investigate the effect of beta-glycerophosphate and/or dexamethasone on human pulp cell, ALP activity on various concentration of beta-glycerophosphate and dexamethasone was measured and mineral nodule of human pulp cell was stained with Alizarin red S. MTS assay and ALP activity of human pulp cell on Portland cement mixed with various concentration of beta-glycerophosphate (10 mM, 100mM, 1M) was measured and the specimens were examined under SEM. Addition of beta-glycerophosphate or dexamethasone alone had no effect however, the addition of 5 mM beta-glycerophosphate and 100 nM dexamethasone had the largest increasement in ALP activity. There was no toxicity in all samples and the data showed that Portland cement mixed with 10 mM beta-glycerophosphate had more increase in ALP activity compared with control. In conclusion, Portland cement mixed with beta-glycerophosphate has no toxicity and promotes differentiation and mineralization of pulp cell compared with additive-free Portland cement. This implicated that application of Portland cement mixed with beta-glycerophosphate might form more reparative dentin and in turn it would bring direct pulp capping to success.


Subject(s)
Humans , Anthraquinones , Dental Pulp Capping , Dentin , Dexamethasone , Glycerophosphates
SELECTION OF CITATIONS
SEARCH DETAIL
...