Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 237
Filter
1.
Arch Dermatol Res ; 316(6): 323, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822901

ABSTRACT

Refractory diabetic wounds are still a clinical challenge that can cause persistent inflammation and delayed healing. Exosomes of adipose stem cells (ADSC-exos) are the potential strategy for wound repair; however, underlying mechanisms remain mysterious. In this study, we isolated ADSC-exos and identified their characterization. High glucose (HG) stimulated human umbilical vein endothelial cells (HUVECs) to establish in vitro model. The biological behaviors were analyzed by Transwell, wound healing, and tube formation assays. The underlying mechanisms were analyzed using quantitative real-time PCR, co-immunoprecipitation (Co-IP), IP, and western blot. The results showed that ADSC-exos promoted HG-inhibited cell migration and angiogenesis. In addition, ADSC-exos increased the levels of TRIM32 in HG-treated HUVECs, which promoted the ubiquitination of STING and downregulated STING protein levels. Rescue experiments affirmed that ADSC-exos promoted migration and angiogenesis of HG-treated HUVECs by regulating the TRIM32/STING axis. In conclusion, ADSC-exos increased the levels of TRIM32, which interacted with STING and promoted its ubiquitination, downregulating STING levels, thus promoting migration and angiogenesis of HG-treated HUVECs. The findings suggested that ADSC-exos could promote diabetic wound healing and demonstrated a new mechanism of ADSC-exos.


Subject(s)
Cell Movement , Exosomes , Glucose , Human Umbilical Vein Endothelial Cells , Membrane Proteins , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Wound Healing , Humans , Adipose Tissue/metabolism , Adipose Tissue/cytology , Cells, Cultured , Exosomes/metabolism , Glucose/metabolism , Membrane Proteins/metabolism , Neovascularization, Physiologic , Signal Transduction , Stem Cells/metabolism , Transcription Factors , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 252-259, 2024 Feb 20.
Article in Chinese | MEDLINE | ID: mdl-38501410

ABSTRACT

OBJECTIVE: To investigate the protective effect of PF-562271, a FAK inhibitor, against aging platelet-induced injury in human umbilical vein endothelial cells (HUVECs). METHODS: Cultured HUVECs were treated with vehicle, lipopolysaccharide (LPS), LPS+aging platelets, or LPS+aging platelets+PF-562271. The changes in protein expressions of FAK, pFAK and PECAM-1 in the treated cells were detected using Western blotting and immunofluorescence assay, and the level of reactive oxygen species (ROS) was detected with flow cytometry. The changes of barrier function of the cells were assessed with cell permeability test and transendothelial cell resistance test. RT-qPCR was used to analyze mRNA expressions of inflammatory factors, and pro-inflammatory cytokine levels in the culture supernatants was determined with enzyme-linked immunosorbent assay. Immunofluorescence assay was used to examine the effect of the ROS inhibitor vitamin C on PECAM-1 expression in the cells with different treatments. RESULTS: Treatment of HUVECs with LPS and aging platelets significantly increased cellular protein expressions of FAK, pFAK and PECAM-1, which were effectively lowered by addition of PF-562271 (P < 0.05). LPS and aged platelets obviously enhanced ROS production in the cells, which was inhibited by the addition of PF-562271 (P < 0.001). PF-562271 significantly alleviated the damage of endothelial cell barrier function of the cells caused by LPS and aging platelets (P < 0.01). The expressions of TNF-α, IL-6 and IL-8 in HUVECs increased significantly after exposure to LPS and aging platelets, and were obviously lowered after treatment with PF-562271 (P < 0.05). Treatment with vitamin C significantly decreased the expression of PECAM-1 protein in the cells (P < 0.01). CONCLUSION: The FAK inhibitor PF-562271 alleviates endothelial cell damage induced by LPS and aging platelets by lowering cellular oxidative stress levels and reducing inflammatory responses.


Subject(s)
Aging , Indoles , Lipopolysaccharides , Pyridines , Sulfonamides , Humans , Aged , Human Umbilical Vein Endothelial Cells/metabolism , Lipopolysaccharides/pharmacology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/pharmacology , Reactive Oxygen Species/metabolism , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology
3.
Biomed Rep ; 20(4): 70, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38495345

ABSTRACT

In 2012, the threshold radiation dose (0.5 Gy) for cardiovascular and cerebrovascular diseases was revised, and this threshold dose may be exceeded during procedures involving radiation such as interventional radiology. Therefore, in addition to regulating radiation dose, it is necessary to develop strategies to prevent and mitigate the development of cardiovascular disease. Cellular senescence is irreversible arrest of cell proliferation. Although cellular senescence is one of the mechanisms for suppressing cancer, it also has adverse effects. For example, senescence of vascular endothelial cells is involved in development of vascular disorders. However, the mechanisms underlying induction of cellular senescence are not fully understood. Therefore, the present study explored the factors involved in the radiation-induced senescence in human umbilical vein endothelial cells (HUVECs). The present study reanalyzed the gene expression data of senescent normal human endothelial cells and fibroblast after irradiation (NCBI Gene Expression Omnibus accession no. GSE130727) and microarray data of HUVECs 24 h after irradiation (NCBI Gene Expression Omnibus accession no. GSE76484). Numerous genes related to viral infection and inflammation were upregulated in radiation-induced senescent cells. In addition, the gene group involved in the retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) signaling pathway, which plays an important role to induce anti-viral response, was altered in irradiated HUVECs. Therefore, to investigate the involvement of RIG-I and melanoma differentiation-associated gene 5 (MDA5), which are RLRs, in radiation-induced senescence of HUVECs, the protein expression of RIG-I and MDA5 and the activity of senescence-associated ß-galactosidase (SA-ß-gal), a representative senescence marker, were analyzed. Of note, knockdown of RIG-I in HUVECs significantly decreased radiation-increased proportion of cells with high SA-ß-gal activity (i.e., senescent cells), whereas this phenomenon was not observed in MDA5-knockdown cells. Taken together, the present results suggested that RIG-I, but not MDA5, was associated with radiation-induced senescence in HUVECs.

4.
Article in English | MEDLINE | ID: mdl-38357906

ABSTRACT

INTRODUCTION: Bone marrow mesenchymal stem cell-derived exosomes (BMSC-exos) may function as novel candidates for treating diabetic wounds due to their ability to promote angiogenesis. MATERIALS AND METHODS: This study investigated the effects of BMSC-exos on the growth and metastasis of human umbilical vein endothelial cells (HUVECs) treated with high glucose (HG). The exosomes were separated from BMSCs and identified. The cell phenotype was detected by 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and 5-ethynyl-2'-deoxyuridine, wound healing, and transwell assays, while the number of tubes was measured via tube formation assay. RESULT: The RNA and protein expression levels were studied using reverse transcription-quantitative polymerase chain reaction and western blotting, whereas integration of microRNA-99b-5p (miR-99b-5p) with THAP domain containing 2 (THAP2) was confirmed via dual-luciferase reporter and RNA pull-down assays. Results of transmission electron microscopy, nanoparticle tracking analysis, and laser scanning confocal microscopy revealed that exosomes were successfully separated from BMSCs and endocytosed into the cytoplasm by HUVECs. Similarly, BMSC-exos were found to promote the growth of HG-treated HUVECs, while their growth was inhibited by suppressing miR-99b-5p. THAP2 was found to bind to miR-99b-5p, where THAP2 inhibition reversed the miR-99b-5p-induced effects on cell growth, migration, and tube numbers. CONCLUSION: In conclusion, miR-99b-5p in BMSC-exo protects HUVECs by negatively regulating THAP2 expression.

5.
Placenta ; 146: 101-109, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38241839

ABSTRACT

INTRODUCTION: Inward rectifier K+ (Kir) channel, a major factor determining endothelial membrane potential, regulates Ca2+ influx and vasodilator release, which is impaired in preeclamptic blood vessels. Previously, human umbilical vein endothelial cell (HUVEC) Kir currents were shown to decrease after incubating in preeclamptic plasma. We aimed to demonstrate whether sFlt-1, which is high in preeclamptic blood, could inhibit Kir channel function and expression. METHODS: HUVECs were cultured in regular medium, regular medium with added sFlt-1, or serum from preeclampsia patients or normal pregnant women (Control, sFlt-1, PE, or NP, respectively). Using whole-cell patch clamp technique, we identified Kir currents with the Kir blocker 2 mM BaCl2 and compared the currents among groups. The expression of Kir 2.1 and 2.2 channels were determined using immunofluorescent staining. RESULTS: sFlt-1 and PE groups exhibited similar Kir currents, while NP group possessed significantly larger currents, similar to Control group currents. Moreover, sFlt-1 and sFlt-1/PlGF ratio showed strong negative correlation with Kir currents (r = -0.71 and -0.70, respectively; P < 0.05). There were no significant differences in mean fluorescence intensity representing Kir 2.1 and 2.2 channels expression in all four groups. DISCUSSION: This is the first report to demonstrate sFlt-1 inhibition against Kir currents, which could lead to maternal endothelial dysfunction and hypertension seen in preeclampsia. However, channel expression was unaffected by sFlt-1 incubation, suggesting dysfunctions of channel or other processes (e.g., membrane translocation). The present data could pave the way for novel therapies targeting sFlt-1 or Kir to alleviate hypertension in preeclampsia.


Subject(s)
Hypertension , Pre-Eclampsia , Humans , Pregnancy , Female , Vascular Endothelial Growth Factor Receptor-1/metabolism , Pre-Eclampsia/metabolism , Potassium/metabolism , Placenta Growth Factor , Human Umbilical Vein Endothelial Cells/metabolism
6.
J Nutr Sci Vitaminol (Tokyo) ; 69(5): 370-376, 2023.
Article in English | MEDLINE | ID: mdl-37940577

ABSTRACT

Vascular endothelial cells produce vasoactive substances, such as nitric oxide (NO), to regulate vascular relaxation and contraction. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) enhance NO production in endothelial cells, and sesamin, a sesame lignan contained in sesame seeds, also promotes NO production. This study examined DHA, EPA, and sesamin's combined effects since it was expected that combining them would further enhance NO production in endothelial cells. Using a human umbilical vein endothelial cell (HUVEC), the NO amount secreted in the culture supernatant was analyzed. Sesamin metabolite (SC1) was used in the experiments because it is a major metabolite in human blood after sesamin absorption. When cells were treated with DHA or EPA alone, they increased NO production in a concentration-dependent manner, whereas no change in NO production was observed for SC1. NO production increased when DHA and EPA were treated in combination with SC1, although the low DHA and EPA concentrations showed no difference in NO production. In the concentrations in which the combined effect was observed, SC1 activated eNOS via calcium signaling, whereas DHA and EPA activated eNOS via alterations in the membrane lipid environment. The combined effect of the two pathways was considered to have enhanced the eNOS activity. These results suggested that combining DHA, EPA, and sesamin might improve vascular endothelial function.


Subject(s)
Lignans , Sesamum , Humans , Eicosapentaenoic Acid/pharmacology , Docosahexaenoic Acids/pharmacology , Lignans/pharmacology , Lignans/metabolism , Human Umbilical Vein Endothelial Cells/metabolism
7.
Endocrinol Metab (Seoul) ; 38(6): 760-769, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37915121

ABSTRACT

BACKGRUOUND: G protein-coupled receptor 40 (GPR40) is a key molecule in diabetes and fatty liver, but its role in endothelial dysfunction remains unclear. Our objective in this study was to determine whether GPR40 agonists protect endothelial cells against palmitatemediated oxidative stress. METHODS: Human umbilical vein endothelial cells (HUVECs) were used to investigate effects of various GPR40 agonists on vascular endothelium. RESULTS: In HUVECs, AM1638, a GPR40-full agonist, enhanced nuclear factor erythroid 2-related factor 2 (NRF2) translocation to the nucleus and heme oxygenase-1 (HO-1) expression, which blocked palmitate-induced superoxide production. Those antioxidant effects were not detected after treatment with LY2922470 or TAK875, GPR40-partial agonists, suggesting that GPR40 regulates reactive oxygen species (ROS) removal in a ligand-dependent manner. We also found that palmitate-induced CCAAT/enhancer-binding protein homologous protein expression; X-box binding protein-1 splicing, nuclear condensation, and fragmentation; and caspase-3 cleavage were all blocked in an NRF2-dependent manner after AM1638 treatment. Both LY2922470 and TAK875 also improved cell viability independent of the NRF2/ROS pathway by reducing palmitate-mediated endoplasmic reticulum stress and nuclear damage. GPR40 agonists thus have beneficial effects against palmitate in HUVECs. In particular, AM1638 reduced palmitate-induced superoxide production and cytotoxicity in an NRF2/HO-1 dependent manner. CONCLUSION: GPR40 could be developed as a good therapeutic target to prevent or treat cardiovascular diseases such as atherosclerosis.


Subject(s)
NF-E2-Related Factor 2 , Superoxides , Humans , Endoplasmic Reticulum Stress , Human Umbilical Vein Endothelial Cells , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/pharmacology , Receptors, G-Protein-Coupled/metabolism , Superoxides/metabolism , Superoxides/pharmacology
8.
J Interferon Cytokine Res ; 43(11): 495-511, 2023 11.
Article in English | MEDLINE | ID: mdl-37906101

ABSTRACT

Interleukin-6 (IL-6) can promote cell proliferation in prostate cancer (PCa). Full-length transient receptor potential melastatin 2 (TRPM2-L) is highly expressed in PCa. However, the association between IL-6 and TRPM2-L in PCa is unclear. Here, human PCa cell lines, PC-3 and DU-145, were treated with 10 µg/mL tocilizumab, an IL-6 receptor (IL-6R) inhibitor, and the TRPM2-L protein expression in cells was significantly decreased. Cells were stably transfected with TRPM2 short-interfering RNA (siRNA) and cell survival clearly declined. Recombinant IL-6 treatment weakened the effects of TRPM2-siRNA on cell survival. TRPM2-L binds directly to IL-6R in PC-3 and DU-145 cells. The protein expression of hypoxia-inducible factor-1α was suppressed by reduction with TRPM2-L in PC-3 and DU-145 cells. Human umbilical vein endothelial cells (HUVECs) were indirectly cocultured with PCa cells, and the invasion and angiogenic activity of HUVECs were enhanced after coculture with PCa cells. However, TRPM2-L reduction in PCa cells significantly decreased the invasion and angiogenic activity of HUVECs compared to the control coculture. In vivo, xenograft tumors were induced using PC-3 cells. Tocilizumab treatment or TRPM2-L reduction clearly suppressed tumor growth. Meanwhile, the injection of mouse recombinant IL-6 weakened the antitumor effects of TRPM2-L reduction. These data demonstrate that the IL-6/TRPM2-L axis in PCa tumor growth is important, and interference of the IL-6/TRPM2-L axis may be a novel approach for PCa therapy.


Subject(s)
Prostatic Neoplasms , TRPM Cation Channels , Male , Humans , Animals , Mice , Interleukin-6/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , RNA, Small Interfering , Cell Line, Tumor
9.
Microbiol Spectr ; 11(4): e0188823, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37382544

ABSTRACT

The Treponema pallidum membrane protein Tp47 induces immunocyte adherence to vascular cells and contributes to vascular inflammation. However, it is unclear whether microvesicles are functional inflammatory mediators between vascular cells and immunocytes. Microvesicles that were isolated from Tp47-treated THP-1 cells using differential centrifugation were subjected to adherence assays to determine the adhesion-promoting effect on human umbilical vein endothelial cells (HUVECs). Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) levels in Tp47-induced microvesicle (Tp47-microvesicle)-treated HUVECs were measured, and the related intracellular signaling pathways of Tp47-microvesicle-induced monocyte adhesion were investigated. Tp47-microvesicles promoted THP-1 cell adhesion to HUVECs (P < 0.01) and upregulated ICAM-1 and VCAM-1 expression in HUVECs (P < 0.001). The adhesion of THP-1 cells to HUVECs was inhibited by anti-ICAM-1 and anti-VCAM-1 neutralizing antibodies. Tp47-microvesicle treatment of HUVECs activated the extracellular signal-regulated kinase 1/2 (ERK1/2) and NF-κB signaling pathways, whereas ERK1/2 and NF-κB inhibition suppressed the expression of ICAM-1 and VCAM-1 and significantly decreased the adhesion of THP-1 cells to HUVECs. IMPORTANCE Tp47-microvesicles promote the adhesion of THP-1 cells to HUVECs through the upregulation of ICAM-1 and VCAM-1 expression, which is mediated by the activation of the ERK1/2 and NF-κB pathways. These findings provide insight into the pathophysiology of syphilitic vascular inflammation.


Subject(s)
Monocytes , NF-kappa B , Humans , NF-kappa B/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Monocytes/metabolism , MAP Kinase Signaling System , THP-1 Cells , Inflammation/metabolism , Cell Adhesion , Tumor Necrosis Factor-alpha/metabolism
10.
Exp Ther Med ; 26(1): 354, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37324509

ABSTRACT

The senescence of vascular endothelial cells (VECs) drives the occurrence and development of cardiovascular disease (CVD). Homocysteine (HCY) is a general risk factor for age-associated CVDs. Autophagy, an evolutionarily conserved lysosomal protein degradation pathway, serves a part in VEC senescence. The purpose of this study was to investigate the role of autophagy in HCY-induced endothelial cell senescence and explore novel mechanisms and therapeutic approaches for related CVDs. Human umbilical vein endothelial cells (HUVECs) were isolated from fresh umbilical cords of healthy pregnancies. Cell Counting Kit-8, flow cytometry and senescence-associated (SA) ß-galactosidase (Gal) staining demonstrated that HCY induced HUVEC senescence by decreasing cell proliferation, arresting cell cycle and increasing the number of SA-ß-Gal-positive cells. Stub-RFP-Sens-GFP-LC3 autophagy-related double fluorescence lentivirus revealed that HCY increased autophagic flux. Further, inhibition of autophagy using 3-methyladenine increased HCY-induced HUVEC senescence. By contrast, the induction of autophagy via rapamycin alleviated HCY-induced HUVEC senescence. Finally, the detection of reactive oxygen species (ROS) with ROS kit showed that HCY increased intracellular ROS, whereas induction of autophagy reduced intracellular ROS. In conclusion, HCY increased HUVEC senescence and upregulated autophagy; moderate autophagy could reverse HCY-induced cell senescence. Autophagy may alleviate HCY-induced cell senescence by decreasing intracellular ROS. This provides insight into the underlying mechanism of HCY-induced VEC senescence and potential treatments for age-associated CVDs.

11.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(5): 521-526, 2023 May 15.
Article in Chinese | MEDLINE | ID: mdl-37272180

ABSTRACT

OBJECTIVES: To study the effect of procalcitonin (PCT) on lipopolysaccharide (LPS)-induced expression of the pyroptosis-related proteins nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) and caspase-1 in human umbilical vein endothelial cells (HUVECs). METHODS: HUVECs were induced by LPS to establish a model of sepsis-induced inflammatory endothelial cell injury. The experiment was divided into two parts. In the first part, HUVECs were randomly divided into four groups: normal control, LPS (1 µg/mL), PCT (10 ng/mL), and LPS+PCT (n=3 each). In the second part, HUVECs were randomly grouped: normal control, LPS, and LPS+PCT of different concentrations (0.1, 1, 10, and 100 ng/mL) (n=3 each). Quantitative real-time PCR and Western blot were used to measure the mRNA and protein expression levels of NLRP3 and caspase-1 in each group. RESULTS: In the first experiment: compared with the normal control group, the PCT, LPS, and LPS+PCT groups had significantly upregulated mRNA and protein expression levels of NLRP3 and caspase-1 (P<0.05); compared with the LPS group, the LPS+PCT group had significantly downregulated mRNA and protein expression levels of NLRP3 and caspase-1 (P<0.05). In the second experiment: compared with those in the LPS group, the mRNA and protein expression levels of NLRP3 and caspase-1 in the LPS+PCT of different concentrations groups were significantly downregulated in a concentration-dependent manner (P<0.05). CONCLUSIONS: LPS can promote the expression of the pyroptosis-related proteins NLRP3 and caspase-1 in HUVECs, while PCT can inhibit the LPS-induced expression of the pyroptosis-related proteins NLRP3 and caspase-1 in HUVECs in a concentration-dependent manner.


Subject(s)
Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Caspase 1/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Lipopolysaccharides/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Procalcitonin , Nucleotides/metabolism , Nucleotides/pharmacology
12.
Arterioscler Thromb Vasc Biol ; 43(8): 1441-1454, 2023 08.
Article in English | MEDLINE | ID: mdl-37317855

ABSTRACT

BACKGROUND: Endothelial CLICs (chloride intracellular channel proteins) CLIC1 and CLIC4 are required for the GPCRs (G-protein-coupled receptors) S1PR1 (sphingosine-1-phosphate receptor 1) and S1PR3 to activate the small GTPases Rac1 (Ras-related C3 botulinum toxin substrate 1) and RhoA (Ras homolog family member A). To determine whether CLIC1 and CLIC4 function in additional endothelial GPCR pathways, we evaluated CLIC function in thrombin signaling via the thrombin-regulated PAR1 (protease-activated receptor 1) and downstream effector RhoA. METHODS: We assessed the ability of CLIC1 and CLIC4 to relocalize to cell membranes in response to thrombin in human umbilical vein endothelial cells (HUVEC). We examined CLIC1 and CLIC4 function in HUVEC by knocking down expression of each CLIC protein and compared thrombin-mediated RhoA or Rac1 activation, ERM (ezrin/radixin/moesin) phosphorylation, and endothelial barrier modulation in control and CLIC knockdown HUVEC. We generated a conditional murine allele of Clic4 and examined PAR1-mediated lung microvascular permeability and retinal angiogenesis in mice with endothelial-specific loss of Clic4. RESULTS: Thrombin promoted relocalization of CLIC4, but not CLIC1, to HUVEC membranes. Knockdown of CLIC4 in HUVEC reduced thrombin-mediated RhoA activation, ERM phosphorylation, and endothelial barrier disruption. Knockdown of CLIC1 did not reduce thrombin-mediated RhoA activity but prolonged the RhoA and endothelial barrier response to thrombin. Endothelial-specific deletion of Clic4 in mice reduced lung edema and microvascular permeability induced by PAR1 activating peptide. CONCLUSIONS: CLIC4 is a critical effector of endothelial PAR1 signaling and is required to regulate RhoA-mediated endothelial barrier disruption in cultured endothelial cells and murine lung endothelium. CLIC1 was not critical for thrombin-mediated barrier disruption but contributed to the barrier recovery phase after thrombin treatment.


Subject(s)
Receptor, PAR-1 , rhoA GTP-Binding Protein , Humans , Mice , Animals , Receptor, PAR-1/genetics , Receptor, PAR-1/metabolism , rhoA GTP-Binding Protein/metabolism , Thrombin/pharmacology , Thrombin/metabolism , Endothelium/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Cells, Cultured , Chloride Channels/genetics , Chloride Channels/metabolism , Mitochondrial Proteins/metabolism
13.
Int Wound J ; 20(9): 3606-3618, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37203309

ABSTRACT

After skin injury, wound repair involves a complex process in which angiogenesis plays a crucial role. Previous research has indicated that fucoidan may aid in wound healing; we therefore hypothesised that fucoidan may speed up the process by promoting angiogenesis. In this study, we investigated the potential molecular mechanism underlying fucoidan's ability to accelerate wound healing by promoting angiogenesis. Using a full-cut wound model, we observed that fucoidan significantly intensified wound closure and promoted granulation formation and collagen deposition. Immunofluorescence staining revealed that fucoidan also promoted wound angiogenesis, specifically by accelerating the migration of new blood vessels to the middle area of the wound. Furthermore, fucoidan demonstrated the ability to enhance the proliferation of human umbilical vein endothelial cells (HUVECs) damaged by hydrogen peroxide (H2 O2 ) and to improve the formation of endothelial tubes. Mechanistic studies revealed that fucoidan upregulated the protein levels of the AKT/Nrf2/HIF-1α signalling pathway, which plays a crucial role in angiogenesis. This was further confirmed using the inhibitor LY294002, which reversed the promotion of endothelial tube formation by fucoidan. Overall, our findings suggest that fucoidan can promote angiogenesis via the AKT/Nrf2/HIF-1α signalling pathway and accelerate wound healing.


Subject(s)
NF-E2-Related Factor 2 , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , NF-E2-Related Factor 2/metabolism , Neovascularization, Physiologic , Wound Healing , Human Umbilical Vein Endothelial Cells , Cell Proliferation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
14.
J Sep Sci ; 46(14): e2201010, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37192526

ABSTRACT

Analytical screening and validation systems based on a combination of cell membrane chromatography and two-dimensional chromatography-tandem mass spectrometry are incapable of providing prepared samples containing the active ingredients found in traditional Chinese medicine; therefore, these samples cannot be directly used in subsequent studies. In this study, a semi-preparative cell membrane chromatography column was developed using a hydrogel-modified carrier and human umbilical vein endothelial cells to optimize prepared conditions, such as hydrogel polymerization, cell fragmentation, and cell membrane volume. This increased the binding ratio of membrane protein and carrier to 15.79 mg/g. The column was systematically evaluated using multitarget tyrosine kinase inhibitors that displayed good specificity and reproducibility. Subsequently, using the column coupled with a semi-preparative high-performance liquid chromatography-offline-high-performance liquid chromatography-mass spectrometry system, 15 active ingredients were screened and purified from Indigo naturalis, and five main components were identified: l-lysine, oxyresveratrol, tryptanthrin, isorhamnetin, and indirubin. Furthermore, the pharmacological effects of the ingredients were confirmed using cell proliferation and apoptosis assays. Results revealed potent proliferation-inhibiting and apoptosis-promoting abilities on human chronic myelogenous leukemic cells and human promyelocytic leukemic cells (p < 0.001). Overall, the system presented screening and purification functions that could be used to prepare I. naturalis samples acting on the epidermal growth factor receptor and vascular endothelial cell growth factor.


Subject(s)
Drugs, Chinese Herbal , Hydrogels , Humans , Chromatography, High Pressure Liquid/methods , Human Umbilical Vein Endothelial Cells , Reproducibility of Results , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Plant Extracts , Tandem Mass Spectrometry
15.
Mater Today Bio ; 18: 100539, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36686035

ABSTRACT

Hydrogel-based micro-tissue engineering technique, a bottom-up approach, is promising in constructing soft tissue of large size with homogeneous spatial distribution and superior regeneration capacity compared to the top-down approach. However, most of the studies employed micro-tissues with simple mesenchymal stem cells, which could hardly meet the growth of matrix and vessels. Therefore, we recommend a dual micro-tissues assembly strategy to construct vascularized tissue-engineered breast grafts (TEBGs). Adipose micro-tissues (AMs) and vessel micro-tissues (VMs) were fabricated by seeding adipose-derived stem cells (ADSCs) and human umbilical vein endothelial cells (HUVECs) on collagen microgels (COLs) with a uniform diameter of ∼250 â€‹µm, respectively. TEBGs were constructed by injecting the dual micro-tissues into 3D printed breast-like Thermoplastic Urethane (TPU) scaffolds, then implanted into the subcutaneous pockets on the back of nude mice. After 3 months of implantation, TEBGs based on dual micro-tissues performed larger volume of adipose tissue regeneration and neo-vessel formation compared to TEBGs based on single AMs. This study extends the application of micro-tissue engineering technique for the construction of soft grafts, and is expected to be useful for creating heterogeneous tissue constructs in the future.

16.
Mater Today Bio ; 18: 100522, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36593913

ABSTRACT

Extracellular vesicles (EVs) are a collective term for nanoscale or microscale vesicles secreted by cells that play important biological roles. Mesenchymal stem cells are a class of cells with the potential for self-healing and multidirectional differentiation. In recent years, numerous studies have shown that EVs, especially those secreted by mesenchymal stem cells, can promote the repair and regeneration of various tissues and, thus, have significant potential in regenerative medicine. However, due to the rapid clearance capacity of the circulatory system, EVs are barely able to act persistently at specific sites for repair of target tissues. Hydrogels have good biocompatibility and loose and porous structural properties that allow them to serve as EV carriers, thereby prolonging the retention in certain specific areas and slowing the release of EVs. When EVs are needed to function at specific sites, the EV-loaded hydrogels can stand as an excellent approach. In this review, we first introduce the sources, roles, and extraction and characterization methods of EVs and describe their current application status. We then review the different types of hydrogels and discuss factors influencing their abilities to carry and release EVs. We summarize several strategies for loading EVs into hydrogels and characterizing EV-loaded hydrogels. Furthermore, we discuss application strategies for EV-loaded hydrogels and review their specific applications in tissue regeneration and repair. This article concludes with a summary of the current state of research on EV-loaded hydrogels and an outlook on future research directions, which we hope will provide promising ideas for researchers.

17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981988

ABSTRACT

OBJECTIVES@#To study the effect of procalcitonin (PCT) on lipopolysaccharide (LPS)-induced expression of the pyroptosis-related proteins nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) and caspase-1 in human umbilical vein endothelial cells (HUVECs).@*METHODS@#HUVECs were induced by LPS to establish a model of sepsis-induced inflammatory endothelial cell injury. The experiment was divided into two parts. In the first part, HUVECs were randomly divided into four groups: normal control, LPS (1 μg/mL), PCT (10 ng/mL), and LPS+PCT (n=3 each). In the second part, HUVECs were randomly grouped: normal control, LPS, and LPS+PCT of different concentrations (0.1, 1, 10, and 100 ng/mL) (n=3 each). Quantitative real-time PCR and Western blot were used to measure the mRNA and protein expression levels of NLRP3 and caspase-1 in each group.@*RESULTS@#In the first experiment: compared with the normal control group, the PCT, LPS, and LPS+PCT groups had significantly upregulated mRNA and protein expression levels of NLRP3 and caspase-1 (P<0.05); compared with the LPS group, the LPS+PCT group had significantly downregulated mRNA and protein expression levels of NLRP3 and caspase-1 (P<0.05). In the second experiment: compared with those in the LPS group, the mRNA and protein expression levels of NLRP3 and caspase-1 in the LPS+PCT of different concentrations groups were significantly downregulated in a concentration-dependent manner (P<0.05).@*CONCLUSIONS@#LPS can promote the expression of the pyroptosis-related proteins NLRP3 and caspase-1 in HUVECs, while PCT can inhibit the LPS-induced expression of the pyroptosis-related proteins NLRP3 and caspase-1 in HUVECs in a concentration-dependent manner.


Subject(s)
Humans , Caspase 1/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Lipopolysaccharides/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Procalcitonin , Nucleotides/pharmacology
18.
J Orthop Translat ; 37: 12-22, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36196150

ABSTRACT

Background: Distraction osteogenesis (DO) is a widely used bone regenerative technique. However, the DO process is slow, and the consolidation phase is long. Therefore, it is of great clinical significance to explore the mechanism of DO, and shorten its duration. Recent studies reported that stem cell exosomes may play an important role in promoting angiogenesis related to DO, but the mechanism remains unclear. Methods: Canine endothelial colony-forming cells (ECFCs) were isolated and cultured, and the expression of THBS1 in canine ECFCs were inhibited using a lentiviral vector. The exosomes secreted by canine ECFCs were isolated and extracted, and the effect of exosomes on the angiogenic activity of Human umbilical vein endothelial cells (HUVECs) was detected by proliferation, migration, and tube formation experiments. WB and qRT-PCR were used to explore the effects and mechanisms of THBS1-mediated ECFC-Exos on HUVECs angiogenesis. Then, a mandibular distraction osteogenesis (MDO) model was established in adult male beagles, and exosomes were injected into the canine peripheral blood. Micro-CT, H&E, Masson, and IHC staining were used to explore the effects and mechanisms of THBS1-mediated ECFC-Exos on angiogenesis and osteogenesis in the DO area. Results: ECFC-Exo accelerated HUVECs proliferation, migration and tube formation, and this ability was enhanced by inhibiting the expression of THBS1 in ECFC-Exo. Using Western blot-mediated detection, we demonstrated that inhibiting THBS1 expression in ECFCs-Exo activated PI3K, AKT, and ERK phosphorylation levels in HUVECs, which promoted VEGF and bFGF expressions. In the DO model of the canine mandible, ECFCs-Exo injected into the peripheral blood aggregated into the DO gap, thus promoting angiogenesis and bone formation in the DO tissue by reducing THBS1 expression in ECFC-Exo. Conclusion: Our findings suggested that ECFC-Exos markedly enhances angiogenesis of endothelial cells, and promotes bone healing in canine MDO. Thus, THBS1 plays a crucial role in the ECFC-Exos-mediated regulation of canine MDO angiogenesis and bone remodeling. The translational potential of this article: This study reveals that the angiogenic promotion via THBS1 suppression in ECFC-Exos may be a promising strategy for shortening the DO duration.

19.
Matrix Biol Plus ; 16: 100121, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36160687

ABSTRACT

The glycocalyx attached to the apical surface of vascular endothelial cells is a rich network of proteoglycans, glycosaminoglycans, and glycoproteins with instrumental roles in vascular homeostasis. Given their molecular complexity and ability to interact with the intra- and extracellular environment, heparan sulfate proteoglycans uniquely contribute to the glycocalyx's role in regulating endothelial permeability, mechanosignaling, and ligand recognition by cognate cell surface receptors. Much attention has recently been devoted to the enzymatic shedding of heparan sulfate proteoglycans from the endothelial glycocalyx and its impact on vascular function. However, other molecular modifications to heparan sulfate proteoglycans are possible and may have equal or complementary clinical significance. In this narrative review, we focus on putative mechanisms driving non-proteolytic changes in heparan sulfate proteoglycan expression and alterations in the sulfation of heparan sulfate side chains within the endothelial glycocalyx. We then discuss how these specific changes to the endothelial glycocalyx impact endothelial cell function and highlight therapeutic strategies to target or potentially reverse these pathologic changes.

20.
Mol Med Rep ; 26(5)2022 11.
Article in English | MEDLINE | ID: mdl-36069225

ABSTRACT

Tanshinone IIA (Tan 2A) is a lipid­soluble compound extracted from the Chinese herb Danshen (Salvia miltiorrhiza Bunge). It protects neuron and microvascular endothelial cells against hypoxia/ischemia both in vitro and in vivo however the mechanism is not fully known. Glucose transporter 1 (GLUT­1) is ubiquitously expressed in all types of tissue in the human body and serves important physiological functions due to its glucose uptake ability. The present study evaluated the role of Tan 2A in regulating GLUT­1 expression and its potential mechanism. RT­PCR and western Blot were used to detect the expression of GLUT­1. Si RNA mediated knockdown and CHIP assay were used to explore the mechanism of Tan 2A on GLUT­1expression. Tan 2A treatment induced expression of GLUT­1 and subsequently increased glucose uptake in endothelial cells (ECs). Furthermore, mRNA expression levels of vascular endothelial cell growth factor, BCL2 interacting protein 3 and enolase 2, which are target genes for hypoxia­inducible factor­1α (HIF­1α), were significantly upregulated by Tan 2A. Co­immunoprecipitation demonstrated that Tan 2A markedly increased the association of HIF­1α with recombination signal­binding protein for immunoglobulin κJ region (RBPJκ). Moreover, knockdown of HIF­1α and RBPJκ significantly reversed the regulatory effect of Tan 2A on mRNA expression levels of these genes in ECs. The results of the present study suggested that HIF­1α partially mediated the regulatory effect of Tan 2A on GLUT­1 expression in ECs. Therefore, GLUT­1 may be a potential therapeutic target for Tan 2A.


Subject(s)
Abietanes , Endothelial Cells , Salvia miltiorrhiza , Humans , Abietanes/pharmacology , Endothelial Cells/metabolism , Glucose/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , RNA, Messenger/metabolism , Salvia miltiorrhiza/chemistry , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...